Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 342, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123091

RESUMEN

A Disintegrin And Metalloproteinase 10 (ADAM10) plays a pivotal role in shaping neuronal networks by orchestrating the activity of numerous membrane proteins through the shedding of their extracellular domains. Despite its significance in the brain, the specific cellular localization of ADAM10 remains not well understood due to a lack of appropriate tools. Here, using a specific ADAM10 antibody suitable for immunostainings, we observed that ADAM10 is localized to presynapses and especially enriched at presynaptic vesicles of mossy fiber (MF)-CA3 synapses in the hippocampus. These synapses undergo pronounced frequency facilitation of neurotransmitter release, a process that play critical roles in information transfer and neural computation. We demonstrate, that in conditional ADAM10 knockout mice the ability of MF synapses to undergo this type of synaptic plasticity is greatly reduced. The loss of facilitation depends on the cytosolic domain of ADAM10 and association with the calcium sensor synaptotagmin 7 rather than ADAM10's proteolytic activity. Our findings unveil a new role of ADAM10 in the regulation of synaptic vesicle exocytosis.


Asunto(s)
Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide , Proteínas de la Membrana , Ratones Noqueados , Plasticidad Neuronal , Vesículas Sinápticas , Animales , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Plasticidad Neuronal/fisiología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Vesículas Sinápticas/metabolismo , Ratones Endogámicos C57BL , Sinapsis/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Hipocampo/metabolismo , Exocitosis/fisiología , Terminales Presinápticos/metabolismo , Transmisión Sináptica , Sinaptotagminas/metabolismo , Sinaptotagminas/genética
2.
Cell Rep ; 43(7): 114386, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38909362

RESUMEN

The dentate gyrus plays a key role in the discrimination of memories by segregating and storing similar episodes. Whether hilar mossy cells, which constitute a major excitatory principal cell type in the mammalian hippocampus, contribute to this decorrelation function has remained largely unclear. Using two-photon calcium imaging of head-fixed mice performing a spatial virtual reality task, we show that mossy cell populations robustly discriminate between familiar and novel environments. The degree of discrimination depends on the extent of visual cue differences between contexts. A context decoder revealed that successful environmental classification is explained mainly by activity difference scores of mossy cells. By decoding mouse position, we reveal that in addition to place cells, the coordinated activity among active mossy cells markedly contributes to the encoding of space. Thus, by decorrelating context information according to the degree of environmental differences, mossy cell populations support pattern separation processes within the dentate gyrus.


Asunto(s)
Giro Dentado , Animales , Ratones , Giro Dentado/fisiología , Giro Dentado/citología , Masculino , Ratones Endogámicos C57BL , Fibras Musgosas del Hipocampo/fisiología , Fibras Musgosas del Hipocampo/metabolismo
3.
Neurotoxicology ; 101: 36-45, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311184

RESUMEN

Methamphetamine (METH) - induced cognitive impairments may be related to synaptic degeneration at mossy fiber terminals, critical for spatial memory formation in hippocampal circuits. We have previously found METH-induced neurodegeneration in the striatum by increasing the α-synuclein (α-SYN) level. However, whether and how the METH-induced mossy fiber degeneration is also blamed for the abnormal accumulation of α-SYN remains to be elucidated. Chronic METH exposure decreased mossy fiber density but upregulatedα-SYN and phosphorylated TAU (TAU-pSer396) in hippocampal CA3, associated with glial cell overactivation, axonal neuropathies, and memory impairment. Notably, the knockout of the α-SYN gene significantly alleviated the METH-induced mossy fiber degeneration and memory impairment. Meanwhile, the TAU-pSer396 accumulation and glial activation were ameliorated by α-SYN knockout. Our findings suggest an essential role of α-SYN in mediating METH-induced mossy fiber degeneration, providing promising therapeutic and prophylactic targets for METH-related neurodegenerative diseases.


Asunto(s)
Metanfetamina , Metanfetamina/toxicidad , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Hipocampo/metabolismo
4.
Mol Psychiatry ; 29(4): 1192-1204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38212372

RESUMEN

At the center of the hippocampal tri-synaptic loop are synapses formed between mossy fiber (MF) terminals from granule cells in the dentate gyrus (DG) and proximal dendrites of CA3 pyramidal neurons. However, the molecular mechanism regulating the development and function of these synapses is poorly understood. In this study, we showed that neurotrophin-3 (NT3) was expressed in nearly all mature granule cells but not CA3 cells. We selectively deleted the NT3-encoding Ntf3 gene in the DG during the first two postnatal weeks to generate a Ntf3 conditional knockout (Ntf3-cKO). Ntf3-cKO mice of both sexes had normal hippocampal cytoarchitecture but displayed impairments in contextual memory, spatial reference memory, and nest building. Furthermore, male Ntf3-cKO mice exhibited anxiety-like behaviors, whereas female Ntf3-cKO showed some mild depressive symptoms. As MF-CA3 synapses are essential for encoding of contextual memory, we examined synaptic transmission at these synapses using ex vivo electrophysiological recordings. We found that Ntf3-cKO mice had impaired basal synaptic transmission due to deficits in excitatory postsynaptic currents mediated by AMPA receptors but normal presynaptic function and intrinsic excitability of CA3 pyramidal neurons. Consistent with this selective postsynaptic deficit, Ntf3-cKO mice had fewer and smaller thorny excrescences on proximal apical dendrites of CA3 neurons and lower GluR1 levels in the stratum lucidum area where MF-CA3 synapses reside but normal MF terminals, compared with control mice. Thus, our study indicates that NT3 expressed in the dentate gyrus is crucial for the postsynaptic structure and function of MF-CA3 synapses and hippocampal-dependent memory.


Asunto(s)
Región CA3 Hipocampal , Giro Dentado , Ratones Noqueados , Fibras Musgosas del Hipocampo , Neurotrofina 3 , Sinapsis , Animales , Giro Dentado/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Sinapsis/metabolismo , Ratones , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Masculino , Femenino , Región CA3 Hipocampal/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Transmisión Sináptica/fisiología , Cognición/fisiología , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Memoria/fisiología , Receptores AMPA/metabolismo
5.
Cells ; 13(2)2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38247806

RESUMEN

Neurological diseases can lead to the denervation of brain regions caused by demyelination, traumatic injury or cell death. The molecular and structural mechanisms underlying lesion-induced reorganization of denervated brain regions, however, are a matter of ongoing investigation. In order to address this issue, we performed an entorhinal cortex lesion (ECL) in mouse organotypic entorhino-hippocampal tissue cultures of both sexes and studied denervation-induced plasticity of mossy fiber synapses, which connect dentate granule cells (dGCs) with CA3 pyramidal cells (CA3-PCs) and play important roles in learning and memory formation. Partial denervation caused a strengthening of excitatory neurotransmission in dGCs, CA3-PCs and their direct synaptic connections, as revealed by paired recordings (dGC-to-CA3-PC). These functional changes were accompanied by ultrastructural reorganization of mossy fiber synapses, which regularly contain the plasticity-regulating protein synaptopodin and the spine apparatus organelle. We demonstrate that the spine apparatus organelle and synaptopodin are related to ribosomes in close proximity to synaptic sites and reveal a synaptopodin-related transcriptome. Notably, synaptopodin-deficient tissue preparations that lack the spine apparatus organelle failed to express lesion-induced synaptic adjustments. Hence, synaptopodin and the spine apparatus organelle play a crucial role in regulating lesion-induced synaptic plasticity at hippocampal mossy fiber synapses.


Asunto(s)
Fibras Musgosas del Hipocampo , Plasticidad Neuronal , Sinapsis , Animales , Femenino , Masculino , Ratones , Muerte Celular , Desnervación , Hipocampo , Fibras Musgosas del Hipocampo/metabolismo , Sinapsis/metabolismo , Plasticidad Neuronal/genética
6.
Biol. Res ; 47: 1-6, 2014. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-950769

RESUMEN

BACKGROUND: The hippocampal CA3 area contains large amounts of vesicular zinc in the mossy fiber terminals which is released during synaptic activity, depending on presynaptic calcium. Another characteristic of these synapses is the presynaptic localization of high concentrations of group II metabotropic glutamate receptors, specifically activated by DCG-IV. Previous work has shown that DCG-IV affects only mossy fiber-evoked responses but not the signals from associational-commissural afferents, blocking mossy fiber synaptic transmission. Since zinc is released from mossy fibers even for single stimuli and it is generally assumed to be co-released with glutamate, the aim of the work was to investigate the effect of DCG-IV on mossy fiber zinc signals. RESULTS: Studies were performed using the membrane-permeant fluorescent zinc probe TSQ, and indicate that DCG-IV almost completely abolishes mossy fiber zinc changes as it does with synaptic transmission. CONCLUSIONS: Zinc signaling is regulated by the activation of type II metabotropic receptors, as it has been previously shown for glutamate, further supporting the corelease of glutamate and zinc from mossy fibers.


Asunto(s)
Animales , Ratas , Zinc/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Fibras Musgosas del Hipocampo/efectos de los fármacos , Ciclopropanos/farmacología , Glicina/análogos & derivados , Anticonvulsivantes/farmacología , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas Wistar , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Transmisión Sináptica/efectos de los fármacos , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Estadísticas no Paramétricas , Ácido Glutámico/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Fibras Musgosas del Hipocampo/metabolismo , Glicina/farmacología , Hipocampo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA