Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.405
Filtrar
1.
Int J Artif Organs ; 47(5): 338-346, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693724

RESUMEN

In the present study, porous silk fibroin sponges (SFS) were prepared using silk fibroin (SF), fish bone collagen (FBC), and olive oil (OO). The study investigates the potential use of using this sponge as skin tissue regeneration. The sponge was characterized for its physicochemical, mechanical, antimicrobial, and drug release properties. An in vitro study was carried out using human keratinocyte cell line (HaCaT). Biodegradation study using enzymatic method was carried out. The results showed that the mechanical properties such as tensile strength (23.40 ± 0.05 MPa), elongation at break (14.25 ± 0.02%), and water absorption (30.23 ± 0.01%) of the SFS were excellent, indicating promising performance. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays proved the biocompatible nature of the SFS. The SFS exhibited outstanding antibacterial properties against E. coli (4.72 ± 0.05 mm) and S. aureus (4.98 ± 0.07 mm). The developed SFS promote a promising solution for skin tissue regeneration and wound dressing.


Asunto(s)
Antibacterianos , Colágeno , Fibroínas , Regeneración , Piel , Staphylococcus aureus , Andamios del Tejido , Cicatrización de Heridas , Fibroínas/química , Fibroínas/farmacología , Cicatrización de Heridas/efectos de los fármacos , Humanos , Colágeno/metabolismo , Animales , Regeneración/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Piel/efectos de los fármacos , Piel/metabolismo , Staphylococcus aureus/efectos de los fármacos , Células HaCaT , Escherichia coli/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Aceite de Oliva , Huesos/efectos de los fármacos , Huesos/metabolismo , Peces , Resistencia a la Tracción , Porosidad , Materiales Biocompatibles , Línea Celular
2.
Sci Rep ; 14(1): 10508, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714808

RESUMEN

In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.


Asunto(s)
Agar , Fibroínas , Hidrogeles , Nanocompuestos , Tragacanto , Fibroínas/química , Humanos , Hidrogeles/química , Agar/química , Nanocompuestos/química , Tragacanto/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Células HEK293 , Zinc/química , Proliferación Celular/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Pruebas de Sensibilidad Microbiana , Células MCF-7 , Línea Celular Tumoral
3.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731513

RESUMEN

The various wastes generated by silkworm silk textiles that are no longer in use are increasing, which is causing considerable waste and contamination. This issue has attracted widespread attention in countries that use a lot of silk. Therefore, enhancing the mechanical properties of regenerated silk fibroin (RSF) and enriching the function of silk are important directions to expand the comprehensive utilization of silk products. In this paper, the preparation of RSF/Al2O3 nanoparticles (NPs) hybrid fiber with different Al2O3 NPs contents by wet spinning and its novel performance are reported. It was found that the RSF/Al2O3 NPs hybrid fiber was a multifunctional fiber material with thermal insulation and UV resistance. Natural light tests showed that the temperature rise rate of RSF/Al2O3 NPs hybrid fibers was slower than that of RSF fibers, and the average temperature rose from 29.1 °C to about 35.4 °C in 15 min, while RSF fibers could rise to about 40.1 °C. UV absorption tests showed that the hybrid fiber was resistant to UV radiation. Furthermore, the addition of Al2O3 NPs may improve the mechanical properties of the hybrid fibers. This was because the blending of Al2O3 NPs promoted the self-assembly of ß-sheets in the RSF reaction mixture in a dose-dependent manner, which was manifested as the RSF/Al2O3 NPs hybrid fibers had more ß-sheets, crystallinity, and a smaller crystal size. In addition, RSF/Al2O3 NPs hybrid fibers had good biocompatibility and durability in micro-alkaline sweat environments. The above performance makes the RSF/Al2O3 NPs hybrid fibers promising candidates for application in heat-insulating and UV-resistant fabrics as well as military clothing.


Asunto(s)
Óxido de Aluminio , Fibroínas , Nanopartículas , Rayos Ultravioleta , Fibroínas/química , Nanopartículas/química , Óxido de Aluminio/química , Animales , Bombyx , Calor , Humanos , Seda/química
4.
J Colloid Interface Sci ; 668: 646-657, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696992

RESUMEN

Severe spinal cord injury (SCI) leads to dysregulated neuroinflammation and cell apoptosis, resulting in axonal die-back and the loss of neuroelectric signal transmission. While biocompatible hydrogels are commonly used in SCI repair, they lack the capacity to support neuroelectric transmission. To overcome this limitation, we developed an injectable silk fibroin/ionic liquid (SFMA@IL) conductive hydrogel to assist neuroelectric signal transmission after SCI in this study. The hydrogel can form rapidly in situ under ultraviolet (UV) light. The mechanical supporting and neuro-regenerating properties are provided by silk fibroin (SF), while the conductive capability is provided by the designed ionic liquid (IL). SFMA@IL showed attractive features for SCI repair, such as anti-swelling, conductivity, and injectability. In vivo, SFMA@IL hydrogel used in rats with complete transection injuries was found to remodel the microenvironment, reduce inflammation, and facilitate neuro-fiber outgrowth. The hydrogel also led to a notable decrease in cell apoptosis and the achievement of scar-free wound healing, which saved 45.6 ± 10.8 % of spinal cord tissue in SFMA@IL grafting. Electrophysiological studies in rats with complete transection SCI confirmed SFMA@IL's ability to support sensory neuroelectric transmission, providing strong evidence for its signal transmission function. These findings provide new insights for the development of effective SCI treatments.


Asunto(s)
Conductividad Eléctrica , Fibroínas , Hidrogeles , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , Animales , Ratas , Hidrogeles/química , Hidrogeles/farmacología , Fibroínas/química , Fibroínas/farmacología , Inyecciones , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Tamaño de la Partícula
5.
PLoS One ; 19(5): e0303177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781182

RESUMEN

Silk fibroin nanoparticles (FNP) have been increasingly investigated in biomedical fields due to their biocompatibility and biodegradability properties. To widen the FNP versatility and applications, and to control the drug release from the FNP, this study developed the Eudragit S100-functionalized FNP (ES100-FNP) as a pH-responsive drug delivery system, by two distinct methods of co-condensation and adsorption, employing the zwitterionic furosemide as a model drug. The particles were characterized by sizes and zeta potentials (DLS method), morphology (electron microscopy), drug entrapment efficiency and release profiles (UV-Vis spectroscopy), and chemical structures (FT-IR, XRD, and DSC). The ES100-FNP possessed nano-sizes of ∼200-350 nm, zeta potentials of ∼ -20 mV, silk-II structures, enhanced thermo-stability, non-cytotoxic to the erythrocytes, and drug entrapment efficiencies of 30%-60%, dependent on the formulation processes. Interestingly, the co-condensation method yielded the smooth spherical particles, whereas the adsorption method resulted in durian-shaped ones due to furosemide re-crystallization. The ES100-FNP adsorbed furosemide via physical adsorption, followed Langmuir model and pseudo-second-order kinetics. In the simulated oral condition, the particles could protect the drug in the stomach (pH 1.2), and gradually released the drug in the intestine (pH 6.8). Remarkably, in different pH conditions of 6.8, 9.5, and 12, the ES100-FNP could control the furosemide release rates depending on the formulation methods. The ES100-FNP made by the co-condensation method was mainly controlled by the swelling and corrosion process of ES100, and followed the Korsmeyer-Peppas non-Fickian transport mechanism. Whereas, the ES100-FNP made by the adsorption method showed constant release rates, followed the zero-order kinetics, due to the gradual furosemide dissolution in the media. Conclusively, the ES100-FNP demonstrated high versatility as a pH-responsive drug delivery system for biomedical applications.


Asunto(s)
Fibroínas , Furosemida , Nanopartículas , Fibroínas/química , Concentración de Iones de Hidrógeno , Nanopartículas/química , Furosemida/química , Sistemas de Liberación de Medicamentos , Ácidos Polimetacrílicos/química , Liberación de Fármacos , Portadores de Fármacos/química , Tamaño de la Partícula , Animales , Humanos , Espectroscopía Infrarroja por Transformada de Fourier
6.
Nat Commun ; 15(1): 4160, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755128

RESUMEN

The regeneration of critical-size bone defects, especially those with irregular shapes, remains a clinical challenge. Various biomaterials have been developed to enhance bone regeneration, but the limitations on the shape-adaptive capacity, the complexity of clinical operation, and the unsatisfied osteogenic bioactivity have greatly restricted their clinical application. In this work, we construct a mechanically robust, tailorable and water-responsive shape-memory silk fibroin/magnesium (SF/MgO) composite scaffold, which is able to quickly match irregular defects by simple trimming, thus leading to good interface integration. We demonstrate that the SF/MgO scaffold exhibits excellent mechanical stability and structure retention during the degradative process with the potential for supporting ability in defective areas. This scaffold further promotes the proliferation, adhesion and migration of osteoblasts and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. With suitable MgO content, the scaffold exhibits good histocompatibility, low foreign-body reactions (FBRs), significant ectopic mineralisation and angiogenesis. Skull defect experiments on male rats demonstrate that the cell-free SF/MgO scaffold markedly enhances bone regeneration of cranial defects. Taken together, the mechanically robust, personalised and bioactive scaffold with water-responsive shape-memory may be a promising biomaterial for clinical-size and irregular bone defect regeneration.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Fibroínas , Magnesio , Células Madre Mesenquimatosas , Osteogénesis , Andamios del Tejido , Fibroínas/química , Fibroínas/farmacología , Regeneración Ósea/efectos de los fármacos , Animales , Andamios del Tejido/química , Masculino , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ratas , Magnesio/química , Magnesio/farmacología , Materiales Biocompatibles/química , Osteoblastos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ratas Sprague-Dawley , Agua/química , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Cráneo/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Bombyx
7.
BMC Genomics ; 25(1): 472, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745159

RESUMEN

Caddisfly larvae produce silk containing heavy and light fibroins, similar to the silk of Lepidoptera, for the construction of underwater structures. We analyzed the silk of Limnephilus lunatus belonging to the case-forming suborder Integripalpia. We analyzed the transcriptome, mapped the transcripts to a reference genome and identified over 80 proteins using proteomic methods, and checked the specificity of their expression. For comparison, we also analyzed the transcriptome and silk proteome of Limnephilus flavicornis. Our results show that fibroins and adhesives are produced together in the middle and posterior parts of the silk glands, while the anterior part produces enzymes and an unknown protein AT24. The number of silk proteins of L. lunatus far exceeds that of the web-spinning Plectrocnemia conspersa, a previously described species from the suborder Annulipalpia. Our results support the idea of increasing the structural complexity of silk in rigid case builders compared to trap web builders.


Asunto(s)
Seda , Animales , Seda/metabolismo , Seda/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Transcriptoma , Insectos/metabolismo , Insectos/genética , Fibroínas/genética , Fibroínas/metabolismo , Fibroínas/química , Proteómica/métodos , Proteoma , Perfilación de la Expresión Génica
8.
ACS Biomater Sci Eng ; 10(5): 2827-2840, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38690985

RESUMEN

Silk fibroin, extracted from the silk of the Bombyx mori silkworm, stands out as a biomaterial due to its nontoxic nature, excellent biocompatibility, and adjustable biodegradability. Porous scaffolds, a type of biomaterial, are crucial for creating an optimal microenvironment that supports cell adhesion and proliferation, thereby playing an essential role in tissue remodeling and repair. Therefore, this review focuses on 3D porous silk fibroin-based scaffolds, first summarizing their preparation methods and then detailing their regenerative effects on bone, cartilage, tendon, vascular, neural, skin, hepatic, and tracheal epithelial tissue engineering in recent years.


Asunto(s)
Fibroínas , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Porosidad , Animales , Humanos , Fibroínas/química , Bombyx , Materiales Biocompatibles/química , Seda/química
9.
Biosens Bioelectron ; 258: 116335, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710144

RESUMEN

The detection of antibiotics is crucial for safeguarding the environment, ensuring food safety, and promoting human health. However, developing a rapid, convenient, low-cost, and sensitive method for antibiotic detection presents significant challenges. Herein, an aptamer-free biosensor was successfully constructed using upconversion nanoparticles (UCNPs) coated with silk fibroin (SF), based on Förster resonance energy transfer (FRET) and the charge-transfer effect, for detecting roxithromycin (RXM). A synergistic FRET efficiency was achieved by utilizing alizarin red and RXM complexes as energy acceptors, with UCNP as the energy donor, and immobilizing an ultrathin SF protein corona within 10 nm. The biosensor detects RXM in deionized water with high sensitivity primarily through monolayer adsorption, with a detection range of 1.0 nM-141.6 nM and a detection limit as low as 0.68 nM. The performance of this biosensor was compared with the ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method for detecting antibiotics in river water separately and a strong correlation between the two methods was observed. The biosensor exhibited long-term stability in aqueous solutions (up to 60 d) with no attenuation of fluorescence intensity. Furthermore, the biosensor's applicability extended to the highly sensitive detection of other antibiotics, such as azithromycin. This study introduces a low-cost, eco-friendly, and highly sensitive method for antibiotic detection, with broad potential for future applications in environmental, healthcare, and food-related fields.


Asunto(s)
Antibacterianos , Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Límite de Detección , Nanopartículas , Técnicas Biosensibles/métodos , Antibacterianos/análisis , Nanopartículas/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Roxitromicina/análisis , Roxitromicina/química , Humanos , Contaminantes Químicos del Agua/análisis , Fibroínas/química
10.
Int J Biol Macromol ; 269(Pt 2): 131954, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697424

RESUMEN

Silk fibroin (SF) from the cocoon of silkworm has exceptional mechanical properties and biocompatibility and is used as a biomaterial in a variety of fields. Sustainable, affordable, and scalable manufacturing of SF would enable its large-scale use. We report for the first time the high-level secretory production of recombinant SF peptides in engineered Pichia pastoris cell factories and the processing thereof to nanomaterials. Two SF peptides (BmSPR3 and BmSPR4) were synthesized and secreted by P. pastoris using signal peptides and appropriate spacing between hydrophilic sequences. By strain engineering to reduce protein degradation, increase glycyl-tRNA supply, and improve protein secretion, we created the optimized P. pastoris chassis PPGSP-8 to produce BmSPR3 and BmSPR4. The SF fed-batch fermentation titers of the resulting two P. pastoris cell factories were 11.39 and 9.48 g/L, respectively. Protein self-assembly was inhibited by adding Tween 80 to the medium. Recombinant SF peptides were processed to nanoparticles (NPs) and nanofibrils. The physicochemical properties of nanoparticles R3NPs and R4NPs from the recombinant SFs synthesized in P. pastoris cell factories were similar or superior to those of RSFNPs (Regenerated Silk Fibroin NanoParticles) originating from commercially available SF. Our work will facilitate the production by microbial fermentation of functional SF for use as a biomaterial.


Asunto(s)
Fibroínas , Proteínas Recombinantes , Fibroínas/química , Fibroínas/biosíntesis , Fibroínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Nanoestructuras/química , Fermentación , Saccharomycetales/metabolismo , Saccharomycetales/genética , Seda/química , Seda/biosíntesis , Animales , Bombyx/metabolismo , Bombyx/genética
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124417, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38728850

RESUMEN

The use of fluorescent carbon dots (CDs) as highly precise biolabeling probes has been widespread in the fields of live cell imaging and protein labeling due to their small size and excellent photoluminescence ability to accurately target specific molecules with surface chemical properties. However, there was a lack of research on the interaction between CDs and labeled molecules. In this work, we presented a novel investigation strategy, the fluorescence microscopy-surface plasmon resonance (FM-SPR) system, which combined the use of fluorescence microscopy and wavelength modulation surface plasmon resonance to study the interaction between CDs and labeled molecules in real-time. Using this system, simultaneously recorded the SPR signals and the fluorescence images on the surface of the FM-SPR sensor chip. We observed the dynamic curve and fluorescence images of the interaction between green emissive nitrogen-doped carbon dots (N-CDs) and silk fibroin (SF) in real-time. The kinetic parameters, the quantitative analysis, and the investigation of the binding could be achieved. The results showed a strong linear relationship between the change in SPR signals and the concentration of N-CDs, with a linear coefficient of 0.99913. The linear detection range was 2.5 µg/mL-100 µg/mL, and the real lowest detection limit reached 0.5 µg/mL. Additionally, the green fluorescence points in the imaging region on the FM-SPR sensor chip increased with the concentration of N-CDs, which was consistent with the change in SPR signals. Using this system we also acquired the association rate and dissociation rate of N-CDs to SF which were 2.65 × 10-5/s and 1.52 × 10-5/s, respectively. This demonstrated the effectiveness of our method in quantitatively analyzing SF labeled with N-CDs.


Asunto(s)
Carbono , Fibroínas , Microscopía Fluorescente , Puntos Cuánticos , Resonancia por Plasmón de Superficie , Fibroínas/química , Resonancia por Plasmón de Superficie/métodos , Carbono/química , Puntos Cuánticos/química , Microscopía Fluorescente/métodos , Colorantes Fluorescentes/química , Animales , Límite de Detección , Cinética
12.
J Mol Model ; 30(5): 156, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693294

RESUMEN

CONTEXT: Due to their excellent biocompatibility and degradability, cellulose/spider silk protein composites hold a significant value in biomedical applications such as tissue engineering, drug delivery, and medical dressings. The interfacial interactions between cellulose and spider silk protein affect the properties of the composite. Therefore, it is important to understand the interfacial interactions between spider silk protein and cellulose to guide the design and optimization of composites. The study of the adsorption of protein on specific surfaces of cellulose crystal can be very complex using experimental methods. Molecular dynamics simulations allow the exploration of various physical and chemical changes at the atomic level of the material and enable an atomic description of the interactions between cellulose crystal planes and spider silk protein. In this study, molecular dynamics simulations were employed to investigate the interfacial interactions between spider silk protein (NTD) and cellulose surfaces. Findings of RMSD, RMSF, and secondary structure showed that the structure of NTD proteins remained unchanged during the adsorption process. Cellulose contact numbers and hydrogen bonding trends on different crystalline surfaces suggest that van der Waals forces and hydrogen bonding interactions drive the binding of proteins to cellulose. These findings reveal the interaction between cellulose and protein at the molecular level and provide theoretical guidance for the design and synthesis of cellulose/spider silk protein composites. METHODS: MD simulations were all performed using the GROMACS-5.1 software package and run with CHARMM36 carbohydrate force field. Molecular dynamics simulations were performed for 500 ns for the simulated system.


Asunto(s)
Celulosa , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Seda , Arañas , Celulosa/química , Arañas/química , Animales , Seda/química , Adsorción , Unión Proteica , Fibroínas/química
13.
AAPS PharmSciTech ; 25(5): 92, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684590

RESUMEN

PURPOSE: Dry eye syndrome (DES), arising from various etiologic factors, leads to tear film instability and ocular surface damage. Given its anti-inflammatory effects, cyclosporine A (CsA) has been widely used as a short-term treatment option for DES. However, poor bioavailability and solubility of CsA in aqueous phase make the development of a cyclosporine A-based eye drop for ocular topical application a huge challenge. METHODS: In this study, a novel strategy for preparing cyclosporine A-loaded silk fibroin nanoemulsion gel (CsA NBGs) was proposed to address these barriers. Additionally, the rheological properties, ocular irritation potential, tear elimination kinetics, and pharmacodynamics based on a rabbit dry eye model were investigated for the prepared CsA NBGs. Furthermore, the transcorneal mechanism across the ocular barrier was also investigated. RESULTS: The pharmacodynamics and pharmacokinetics of CsA NBGs exhibited superior performance compared to cyclosporine eye drops, leading to a significant enhancement in the bioavailability of CsA NBGs. Furthermore, our investigation into the transcorneal mechanism of CsA NBGs revealed their ability to be absorbed by corneal epithelial cells via the paracellular pathway. CONCLUSION: The CsA NBG formulation exhibits promising potential for intraocular drug delivery, enabling safe, effective, and controlled administration of hydrophobic drugs into the eye. Moreover, it enhances drug retention within the ocular tissues and improves systemic bioavailability, thereby demonstrating significant clinical translational prospects.


Asunto(s)
Disponibilidad Biológica , Ciclosporina , Síndromes de Ojo Seco , Fibroínas , Geles , Soluciones Oftálmicas , Conejos , Animales , Fibroínas/química , Ciclosporina/administración & dosificación , Ciclosporina/farmacocinética , Ciclosporina/química , Síndromes de Ojo Seco/tratamiento farmacológico , Soluciones Oftálmicas/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Administración Oftálmica , Solubilidad , Masculino , Emulsiones/química , Córnea/metabolismo , Córnea/efectos de los fármacos , Modelos Animales de Enfermedad
14.
Biomed Phys Eng Express ; 10(4)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640908

RESUMEN

Extracellular vesicles (EVs) have been recognized as one of the promising specific drugs for myocardial infarction (MI) prognosis. Nevertheless, low intramyocardial retention of EVs remains a major impediment to their clinical application. In this study, we developed a silk fibroin/hydroxypropyl cellulose (SF/HPC) composite hydrogel combined with AC16 cell-derived EVs targeted modification by folic acid for the treatment of acute myocardial infarction repair. EVs were functionalized by distearoylphosphatidyl ethanolamine-polyethylene glycol (DSPE-PEG-FA) via noncovalent interaction for targeting and accelerating myocardial infarction repair.In vitro, cytocompatibility analyses revealed that the as-prepared hydrogels had excellent cell viability by MTT assay and the functionalized EVs had higher cell migration by scratch assay.In vivo, the composite hydrogels can promote myocardial tissue repair effects by delaying the process of myocardial fibrosis and promoting angiogenesis of infarct area in MI rat model.


Asunto(s)
Celulosa , Celulosa/análogos & derivados , Vesículas Extracelulares , Fibroínas , Hidrogeles , Infarto del Miocardio , Infarto del Miocardio/tratamiento farmacológico , Animales , Vesículas Extracelulares/metabolismo , Fibroínas/química , Ratas , Celulosa/química , Hidrogeles/química , Ratas Sprague-Dawley , Supervivencia Celular/efectos de los fármacos , Masculino , Polietilenglicoles/química , Movimiento Celular/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Ácido Fólico/química , Humanos , Línea Celular
15.
ACS Biomater Sci Eng ; 10(5): 2784-2804, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38597279

RESUMEN

Flexible electronics, applicable to enlarged health, AI big data medications, etc., have been one of the most important technologies of this century. Due to its particular mechanical properties, biocompatibility, and biodegradability, cocoon silk (or SF, silk fibroin) plays a key role in flexible electronics/photonics. The review begins with an examination of the hierarchical meso network structures of SF materials and introduces the concepts of meso reconstruction, meso doping, and meso hybridization based on the correlation between the structure and performance of silk materials. The SF meso functionalization was developed according to intermolecular nuclear templating. By implementation of the techniques of meso reconstruction and functionalization in the refolding of SF materials, extraordinary performance can be achieved. Relying on this strategy, particularly designed flexible electronic and photonic components can be developed. This review covers the latest ideas and technologies of meso flexible electronics and photonics based on SF materials/meso functionalization. As silk materials are biocompatible and human skin-friendly, SF meso flexible electronic/photonic components can be applied to wearable or implanted devices. These devices are applicable in human physiological signals and activities sensing/monitoring. In the case of human-machine interaction, the devices can be applicable in in-body information transmission, computation, and storage, with the potential for the combination of artificial intelligence and human intelligence.


Asunto(s)
Electrónica , Humanos , Animales , Materiales Biocompatibles/química , Seda/química , Fibroínas/química , Dispositivos Electrónicos Vestibles , Óptica y Fotónica , Bombyx
16.
ACS Biomater Sci Eng ; 10(5): 2925-2934, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38587986

RESUMEN

Spider dragline (major ampullate) silk is one of the toughest known fibers in nature and exhibits an excellent combination of high tensile strength and elasticity. Increasing evidence has indicated that preassembly plays a crucial role in facilitating the proper assembly of silk fibers by bridging the mesoscale gap between spidroin molecules and the final strong fibers. However, it remains challenging to control the preassembly of spidroins and investigate its influence on fiber structural and mechanical properties. In this study, we explored to bridge this gap by modulating the polyalanine (polyA) motifs in repetitive region of spidroins to tune their preassemblies in aqueous dope solutions. Three biomimetic silk proteins with varying numbers of alanine residues in polyA motif and comparable molecular weights were designed and biosynthesized, termed as N16C-5A, N15C-8A, and N13C-12A, respectively. It was found that all three proteins could form nanofibril assemblies in the concentrated aqueous dopes, but the size and structural stability of the fibrils were distinct from each other. The silk protein N15C-8A with 8 alanine residues in polyA motif allowed for the formation of stable nanofibril assemblies with a length of approximately 200 nm, which were not prone to disassemble or aggregate as that of N16C-5A and N13C-12A. More interestingly, the stable fibril assembly of N15C-8A enabled spinning of simultaneously strong (623.3 MPa) and tough (107.1 MJ m-3) synthetic fibers with fine molecular orientation and close interface packing of fibril bundles. This work highlights that modulation of polyA motifs is a feasible way to tune the morphology and stability of the spidroin preassemblies in dope solutions, thus controlling the structural and mechanical properties of the resulting fibers.


Asunto(s)
Fibroínas , Péptidos , Resistencia a la Tracción , Fibroínas/química , Fibroínas/genética , Péptidos/química , Seda/química , Animales , Secuencias de Aminoácidos , Nanofibras/química , Arañas/química
17.
Int J Biol Macromol ; 267(Pt 2): 131519, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608985

RESUMEN

Hydrogel has attracted tremendous attentions due to its excellent biocompatibility and adaptability in biomedical field. However, it is challenging by the conflicts between inadequate mechanical properties and service requirements. Herein, a rapid and robust hydrogel was developed by interpenetrating networks between chitosan and silk fibroin macromolecules. Thanks to these unique networks, the chitosan-based hydrogel exhibited superior mechanical performances. The maximum breaking strength, Young's modulus and swelling ratio of the hydrogel were 1187.8 kPa, 383.1 MPa and 4.5 % respectively. The hydrogel also supported the proliferation of human umbilical vein endothelial cells for 7 days. Notably, the hydrogel was easily molded into bone screw, and demonstrated compressive strengths of 45.7 MPa, Young's modulus of 675.6 MPa, respectively. After 49-day biodegradation, the residual rate of the screw in collagenase I solution was up to 89.6 % of the initial weight. In vitro, the screws not only had high resistance to biodegradation, but also had outstanding biocompatibility of osteoblast. This study provided a promising physical-chemical double crosslinking strategy to build orthopedic materials, holding a great potential in biomedical devices.


Asunto(s)
Materiales Biocompatibles , Tornillos Óseos , Quitosano , Fibroínas , Células Endoteliales de la Vena Umbilical Humana , Ensayo de Materiales , Quitosano/química , Quitosano/farmacología , Fibroínas/química , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Hidrogeles/química , Proliferación Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Fuerza Compresiva , Módulo de Elasticidad
18.
Int J Biol Macromol ; 267(Pt 2): 131608, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621558

RESUMEN

Amidoxime-based fiber adsorbents hold significant promise for uranium extraction. However, a notable issue is that these adsorbents primarily originate from synthetic polymer materials, which, aside from providing good mechanical support, have no other functions. In recent study, we shifted our focus to silk fiber (SF), a natural protein fiber known for its unique core-shell structure and rich amino acids. The shell layer, due to its abundant functional groups, makes it easily modifiable, while the core layer provides excellent mechanical strength. Leveraging these inherent properties, an amidoxime-based fiber adsorbent was developed. This adsorbent utilizes amino and carboxyl groups for enhanced performance synergistically. This method involves establishing uranium affinity sites on the outer sericin layer of SF via chemical initiation of graft polymerization (CIGP) and amidoximation (SF-g-PAO). The water absorption ratio of SF-g-PAO is as high as 601.16 % (DG = 97.17 %). Besides, SF-g-PAO demonstrates an exceptional adsorption capacity of 15.69 mg/g in simulated seawater, achieving a remarkable removal rate of uranyl ions at 95.06 %. It can withstand a minimum of five adsorption-elution cycles. Over a 4-week period in natural seawater, SF-g-PAO displayed an adsorption capacity of 4.95 mg/g. Furthermore, SF-g-PAO also exhibits impressive uranium removal efficiency in real nuclear wastewater, with a removal rate of 63 % in just 15 min and a final removal rate of 90 %. It is hoped that this SF-g-PAO, prepared through this straightforward method and characterized by the synergistic action of amino and carboxyl groups, can offer innovative insights into the development of uranium extraction adsorbents.


Asunto(s)
Oximas , Seda , Uranio , Uranio/química , Adsorción , Oximas/química , Seda/química , Fibroínas/química
19.
Biofabrication ; 16(3)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38604157

RESUMEN

Scaffolds play a pivotal role in tissue engineering and serve as vital biological substitutes, providing structural support for cell adhesion and subsequent tissue development. An ideal scaffold must possess mechanical properties suitable for tissue function and exhibit biodegradability. Although synthetic polymer scaffolds offer high rigidity and elasticity owing to their reactive side groups, which facilitate tailored mechanical and rheological properties, they may lack biological cues and cause persistent side effects during degradation. To address these challenges, natural polymers have garnered attention owing to their inherent bioactivity and biocompatibility. However, natural polymers such as silk fibroin (SF) and tyramine-modified alginate (AT) have limitations, including uncontrolled mechanical properties and weak structural integrity. In this study, we developed a blend of SF and AT as a printable biomaterial for extrusion-based 3D printing. Using photocrosslinkable SF/AT inks facilitated the fabrication of complex scaffolds with high printability, thereby enhancing their structural stability. The incorporation of silver nitrate facilitated the tunability of mechanical and rheological behaviors. SF/AT scaffolds with varying stiffness in the physiologically relevant range for soft tissues (51-246 kPa) exhibited excellent biocompatibility, indicating their promising potential for diverse applications in tissue engineering.


Asunto(s)
Alginatos , Fibroínas , Impresión Tridimensional , Nitrato de Plata , Andamios del Tejido , Fibroínas/química , Alginatos/química , Andamios del Tejido/química , Nitrato de Plata/química , Animales , Reactivos de Enlaces Cruzados/química , Ingeniería de Tejidos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Reología , Humanos , Ratones , Procesos Fotoquímicos , Tiramina/química
20.
Nat Commun ; 15(1): 3289, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632231

RESUMEN

Endowing textiles with perceptual function, similar to human skin, is crucial for the development of next-generation smart wearables. To date, the creation of perceptual textiles capable of sensing potential dangers and accurately pinpointing finger touch remains elusive. In this study, we present the design and fabrication of intelligent perceptual textiles capable of electrically responding to external dangers and precisely detecting human touch, based on conductive silk fibroin-based ionic hydrogel (SIH) fibers. These fibers possess excellent fracture strength (55 MPa), extensibility (530%), stable and good conductivity (0.45 S·m-1) due to oriented structures and ionic incorporation. We fabricated SIH fiber-based protective textiles that can respond to fire, water, and sharp objects, protecting robots from potential injuries. Additionally, we designed perceptual textiles that can specifically pinpoint finger touch, serving as convenient human-machine interfaces. Our work sheds new light on the design of next-generation smart wearables and the reshaping of human-machine interfaces.


Asunto(s)
Fibroínas , Seda , Humanos , Seda/química , Textiles , Conductividad Eléctrica , Fibroínas/química , Tacto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...