Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Appl Biochem ; 68(3): 669-675, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32597499

RESUMEN

C-phycocyanin (C-Pc), a photosynthetic pigment for use as a fluorescent indicator or in pharmaceutical, food, and cosmetic products, exists in a phycobilisome complex with allophycocyanin (APC), phycoerythrin (PE), and linker polypeptides. This heterogeneity makes it difficult to quantify phycobilisome composition in an ultraviolet-visible (UV-vis) spectrum. In this study, derivative analysis of UV-vis spectra was successfully applied to display the distinct wavelengths at which C-Pc, APC, and PE have maximal peaks. In all samples, C-Pc of the largest portion had a "zero-crossing" first order, APC did not have a zero-crossing first order, and PE did not have first derivative for zero crossing or local minimum from the 500 and 700 nm, respectively. The results show that derivative analyses coupled with signal smoothing can be applied to elucidate the composition of phycobilisome under various conditions including purification and environment.


Asunto(s)
Ficobilisomas/análisis , Spirulina/química , Tamaño de la Partícula , Espectrofotometría Ultravioleta
2.
Biochemistry ; 58(28): 3109-3115, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31246439

RESUMEN

Photosynthesis starts with absorption of light energy by using light-harvesting antenna complexes (LHCs). Overexcitation of LHCs and subsequent photosystems, however, is damaging and can be lethal. The orange carotenoid protein (OCP) protects most cyanobacteria from photodamage by dissipating excessive excitation energy harvested by phycobilisomes (PBS, LHCs) as heat. OCP has two states: the orange, inactive OCP (OCPO) and the red, active OCP (OCPR), with the latter able to bind PBS at a ratio of 2:1 and execute photoprotection. Conversion of OCPO to OCPR is driven by blue light absorption. Previous work indicated that in the presence of Cu2+, photoactivation of OCP can result in it being locked in its red form OCPR. The molecular mechanism of such chemical conversion, however, remains unclear. Here, we demonstrated that Cu+ can convert OCPO to OCPR under anaerobic conditions independent of light illumination. Interestingly, in the presence of Cu2+ and ascorbic acid, a ubiquitous reductant in photosynthetic organisms, the conversion of OCPO to OCPR can also take place spontaneously in the dark, indicative of a locked OCPR-Cu+ complex. Furthermore, our functional and structural studies indicate that OCPR-Cu+ can interact with PBS and trigger PBS fluorescence quenching. We hypothesize that copper ion, a redox-active component, may synergistically play an important role in the regulation of nonphotochemical quenching in cyanobacteria under stress conditions.


Asunto(s)
Carotenoides/metabolismo , Cobre/metabolismo , Cianobacterias/metabolismo , Fotosíntesis/fisiología , Ficobilisomas/metabolismo , Carotenoides/análisis , Cobre/análisis , Cobre/farmacología , Cianobacterias/química , Cianobacterias/efectos de los fármacos , Fluorescencia , Fotosíntesis/efectos de los fármacos , Ficobilisomas/análisis
3.
Biochim Biophys Acta Bioenerg ; 1860(1): 78-88, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30414930

RESUMEN

Photosynthetic pigment-protein complexes are highly concentrated in thylakoid membranes of chloroplasts and cyanobacteria that emit strong autofluorescence (mainly 600-800 nm). In Raman scattering microscopy that enables imaging of pigment concentrations of thylakoid membranes, near infrared laser excitation at 1064 nm or visible laser excitation at 488-532 nm has been often employed in order to avoid the autofluorescence. Here we explored a new approach to Raman imaging of thylakoid membranes by using excitation wavelength of 976 nm. Two types of differentiated cells, heterocysts and vegetative cells, in two diazotrophic filamentous cyanobacteria, Anabaena variabilis, and Rivularia M-261, were characterized. Relative Raman scattering intensities of phycobilisomes of the heterocyst in comparison with the nearest vegetative cells of Rivularia remained at a significantly higher level than those of A. variabilis. It was also found that the 976 nm excitation induces photoluminescence around 1017-1175 nm from the two cyanobacteria, green alga (Parachlorella kessleri) and plant (Arabidopsis thaliana). We propose that this photoluminescence can be used as an index of concentration of chlorophyll a that has relatively small Raman scattering cross-sections. The Rivularia heterocysts that we analyzed were clearly classified into at least two subgroups based on the Chla-associated photoluminescence and carotenoid Raman bands, indicating two physiologically distinct states in the development or aging of the terminal heterocyst.


Asunto(s)
Técnicas Citológicas/métodos , Mediciones Luminiscentes , Espectrometría Raman , Arabidopsis/citología , Senescencia Celular , Clorofila A/análisis , Chlorophyta/citología , Cianobacterias/citología , Técnicas Citológicas/instrumentación , Ficobilisomas/análisis , Tilacoides
4.
Photosynth Res ; 114(1): 43-58, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22965313

RESUMEN

Tolypothrix PCC 7601 and Fremyella diplosiphon UTEX B590 can produce two alternative phycobilisome (PBS) rods. PE-PBSs with one phycocyanin (PC) disk and multiple phycoerythrin (PE) disks are found in cells grown under green light (GL). PC-PBSs with only PC disks are obtained from cells grown under red light (RL). In this manuscript, we show the localization of the linker proteins and ferredoxin-NADP(+) oxidoreductase (FNR) in the PC-PBS and of PE-PBS rods using visible spectroscopy and mass spectrometry. PE-PBSs with different [PE]/[PC] ratios and PC-PBSs with different [PC]/[AP] (AP, allophycocyanin) ratios were isolated. CpeC was the primary rod linker protein found in the PBSs with a [PE]/[PC] ratio of 1.1, which indicates that this is the rod linker at the interphase PC-PE. CpeC and CpeD were identified in the PBSs with a [PE]/[PC] ratio of 1.6, which indicates that CpcD is the linker between the first and the second PE hexamers. Finally, CpeC, CpeD, and CpeE were found in the PBSs with a [PE]/[PC] ratio of 2.9, indicating the position of CpeE between the second and third PE moieties. CpcI2 was identified in the two PC-PBSs obtained from cells grown under RL, which indicates that CpcI2 is the linker between the first and second PC hexamers. CpcH2 was identified only in the PC-PBSs from Tolypothrix with a high [PC]/[AP] ratio of 1.92, which indicates that CpcH2 is the linker between the second and third PC hexamers. The PC-PBSs contained the rod cap protein L(R)(10) (CpcD), but this protein was absent in the PE-PBSs. PE-PBSs (lacking L(R)(10)) incorporated exogenous rFNR in a stoichiometry of up to five FNRs per PBS. A maximum of two FNRs per PBS were found in PC-PBSs (with L(R)(10)). These observations support the hypothesis that FNR binds at the distal ends of the PBS rods in the vacant site of CpcD L(R)(10). Finally, the molecular mass of the core membrane linker (L(CM)) was determined to be 102 kDa from a mass spectrometry analysis.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas Algáceas/aislamiento & purificación , Cianobacterias/metabolismo , Ficobilisomas/metabolismo , Proteómica , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Western Blotting , Cianobacterias/fisiología , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Ficobilisomas/análisis , Estructura Terciaria de Proteína , Proteínas Recombinantes , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA