Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.020
Filtrar
1.
Sci Rep ; 14(1): 10289, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704437

RESUMEN

Myocarditis is considered a fatal form of foot-and-mouth disease (FMD) in suckling calves. In the present study, a total of 17 calves under 4 months of age and suspected clinically for FMD were examined for clinical lesions, respiratory rate, heart rate, and heart rhythm. Lesion samples, saliva, nasal swabs, and whole blood were collected from suspected calves and subjected to Sandwich ELISA and reverse transcription multiplex polymerase chain reaction (RT-mPCR) for detection and serotyping of FMD virus (FMDV). The samples were found to be positive for FMDV serotype "O". Myocarditis was suspected in 6 calves based on tachypnoea, tachycardia, and gallop rhythm. Serum aspartate aminotransferase (AST), creatinine kinase myocardial band (CK-MB) and lactate dehydrogenase (LDH), and cardiac troponins (cTnI) were measured. Mean serum AST, cTn-I and LDH were significantly higher (P < 0.001) in < 2 months old FMD-infected calves showing clinical signs suggestive of myocarditis (264.833 ± 4.16; 11.650 ± 0.34 and 1213.33 ± 29.06) than those without myocarditis (< 2 months old: 110.00 ± 0.00, 0.06 ± 0.00, 1050.00 ± 0.00; > 2 months < 4 months: 83.00 ± 3.00, 0.05 ± 0.02, 1159.00 ± 27.63) and healthy control groups (< 2 months old: 67.50 ± 3.10, 0.047 ± 0.01, 1120.00 ± 31.62; > 2 months < 4 months: 72.83 ± 2.09, 0.47 ± 0.00, 1160.00 ± 18.44). However, mean serum CK-MB did not differ significantly amongst the groups. Four calves under 2 months old died and a necropsy revealed the presence of a pathognomic gross lesion of the myocardial form of FMD known as "tigroid heart". Histopathology confirmed myocarditis. This study also reports the relevance of clinical and histopathological findings and biochemical markers in diagnosing FMD-related myocarditis in suckling calves.


Asunto(s)
Fiebre Aftosa , Miocarditis , Animales , Bovinos , Miocarditis/veterinaria , Miocarditis/virología , Miocarditis/patología , Fiebre Aftosa/virología , Fiebre Aftosa/patología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/sangre , Enfermedades de los Bovinos/patología , Virus de la Fiebre Aftosa/patogenicidad , Virus de la Fiebre Aftosa/aislamiento & purificación , Animales Lactantes , Factores de Edad , Aspartato Aminotransferasas/sangre , Masculino , L-Lactato Deshidrogenasa/sangre
2.
Prev Vet Med ; 227: 106197, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613943

RESUMEN

The use of virus-neutralizing (VN) and nonstructural protein (NSP) antibody tests in a serosurveillance program for foot-and-mouth disease (FMD) can identify pig herds that are adequately vaccinated, with a high percentage of pigs with VN positive antibody titers; these tests can also help identify pigs with NSP-positivity that have previously been or are currently infected even in vaccinated herds. To identify infected herds and manage infection, the combination of VN and NSP antibody tests was used in Taiwan's serosurveillance program implemented simultaneously with the compulsory FMD vaccination program. The result was the eradication of FMD: Taiwan was recognized by the World Organization for Animal Health as an FMD-free country without vaccination in 2020. Evaluation of the compulsory vaccination program incorporated in the FMD control program in Taiwan revealed that the vaccine quality was satisfactory and the vaccination program was effective during the period of compulsory vaccination (2010-2017). Sound immunological coverage was achieved, with 89.1% of pigs having VN antibody titers exceeding 1:16 in 2016. This level of immunological coverage would be expected to substantially reduce or prevent FMD transmission, which was borne out by the results of the NSP tests. We identified farms having positive NSP reactors (very low annual prevalence) before the cessation of FMD vaccination in July 2018; however, detailed serological and clinical investigations of pigs of all ages in suspect herds demonstrated that no farms were harboring infected animals after the second half of 2013. Thus, the results revealed no evidence of FMD circulation in the field, and Taiwan regained FMD-free status.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus de la Fiebre Aftosa , Fiebre Aftosa , Enfermedades de los Porcinos , Proteínas no Estructurales Virales , Animales , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Taiwán/epidemiología , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Proteínas no Estructurales Virales/inmunología , Estudios Seroepidemiológicos , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/sangre , Virus de la Fiebre Aftosa/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunación/veterinaria
3.
Río de Janeiro; OPS; 2024-04.
en Español | PAHO-IRIS | ID: phr3-59571

RESUMEN

Resoluciones de la Resoluciones de la 50a COSALFA. Reunión ordinaria de la Comisión Sudamericana para la Lucha contra la Fiebre Aftosa. (Rio de Janeiro, Brasil - 25 y 26 de abril de 2024)


Asunto(s)
Fiebre Aftosa , Salud Pública Veterinaria , América del Sur , Resoluciones
4.
Rio de Janeiro; PAHO; 2024-04.
en Inglés | PAHO-IRIS | ID: phr3-59564

RESUMEN

It is acknowledged that the technical coordination and cooperation provided by PANAFTOSA/PAHO within the framework of the Hemispheric Program for the Eradication of Foot-and-Mouth Disease (PHEFA) has been decisive for the progress made and it is still necessary for the complete eradication of the disease in the continent, without jeopardizing the progress made. The PHEFA remains in effect although the region reflected its best historical record in 2023, consecutively, regarding areas recognized as free by the World Organization for Animal Health (WOAH). Additionally, the countries continue to be oriented toward the execution of the PHEFA Plan of Action 2021-2025 to complete the eradication of foot-and-mouth disease, while also seeking to strengthen prevention and the capacity of veterinary services of the countries of the continent to respond to a potential foot-and-mouth disease emergency. The funding modality of PANAFTOSA/PAHO’s technical cooperation for the PHEFA is based on PAHO’s contribution with international professionals responsible of the foot-and-mouth disease (FMD) area and the reference laboratory, as well as the resources obtained from the reference material supplied to the countries. Additionally, it includes a model of voluntary contributions linked to specific projects with the countries. Therefore, the aforementioned is reflected in the costs referred to for this Biennial Plan 2024-2025. The expected outcomes of the mentioned plan will contribute to the goals outlined in the PHEFA Plan of Action 2021-2025, with a priority vision from PANAFTOSA/PAHO that takes into account COSALFA resolutions, aiming to prepare the countries for the final stage of the PHEFA. Based on these guidelines, and considering the current situation, PANAFTOSA/PAHO has elaborated the present proposal of the Biennial Technical Cooperation Plan 2024-2025 to consolidate the PHEFA.


Asunto(s)
Salud Pública Veterinaria , Fiebre Aftosa , Erradicación de la Enfermedad
5.
Rio de Janeiro; OPS; 2024-04-25.
en Español | PAHO-IRIS | ID: phr3-59563

RESUMEN

[Introducción] El informe presenta un resumen de las acciones para la erradicación y prevención de la Fiebre Aftosa (FA) en Sudamérica y Panamá, que incluye una evaluación del cumplimiento de las resoluciones de la 49ª COSALFA, celebrada el 25 de agosto de 2022, por parte de los países y del Centro Panamericano de Fiebre Aftosa y Salud Pública Veterinaria de la Organización Panamericana de la Salud/Organización Mundial de la Salud (PANAFTOSA/SPV-OPS/OMS). Además, se informa sobre las actividades generales de cooperación técnica, los resultados de acuerdos y proyectos, y los esfuerzos interinstitucionales y de colaboración con otras agencias de cooperación llevados a cabo por PANAFTOSA-OPS para apoyar a los países.


Asunto(s)
Fiebre Aftosa , Salud Pública Veterinaria , América del Sur
6.
Rio de Janeiro; PAHO; 2024-04-25.
en Inglés | PAHO-IRIS | ID: phr3-59562

RESUMEN

[Introduction] The report of the ex officio Secretariat presents a summary of the actions taken for the eradication and prevention of foot-and-mouth disease (FMD) in South America and Panama during the period July 2022- December 2023. It includes an assessment of compliance with the resolutions of the 49th COSALFA, held on August 25, 2022, by the countries and the Pan American Center for Foot-and-Mouth Disease and Veterinary Public Health (PANAFTOSA/VPH-PAHO/WHO). Also, information is provided on general technical cooperation activities, the outcome of agreements and projects, and interinstitutional and collaborative efforts with other cooperation agencies undertaken by PANAFTOSA-PAHO in support of the countries. The regional situation of foot-and-mouth disease relies on the reports sent by the countries to PANAFTOSA-PAHO, and the information gathered by the Center, complemented by analyses of relevant data published in several media. The compliance with Resolutions is assessed based on the information gathered by the ex officio Secretariat within the framework of the commitments to the Hemispheric Program for the Eradication on Foot-and-Mouth Disease (PHEFA), and it can be improved with the contributions of delegates


Asunto(s)
Fiebre Aftosa , Salud Pública Veterinaria
7.
Rio de Janeiro; OPS; 2024-04.
en Español | PAHO-IRIS | ID: phr3-59561

RESUMEN

La modalidad de financiación para la cooperación técnica de PANAFTOSA/OPS para el PHEFA se basa en el aporte por parte de la OPS de los profesionales internacionales responsables del área de Fiebre Aftosa (FA) y del laboratorio de referencia y en los recursos obtenidos por el material de referencia suministrado a los países. Se incluye, además, un modelo de contribuciones voluntarias vinculadas a proyectos específicos con países. Por lo tanto, lo mencionado anteriormente se refleja en los costos referidos para este Plan Bienal 2024-2025. Los resultados esperados del mencionado plan contribuirán a las metas previstas en el Plan de Acción 2021-2025 del PHEFA, con una visión de prioridades por parte de PANAFTOSA/OPS que toma en cuenta las resoluciones de la COSALFA, que apunta a preparar a los países para la fase final del PHEFA. Con base en estas directrices, y considerando la situación actual, PANAFTOSA/OPS ha elaborado la presente propuesta de Plan Bienal 2024-2025 de cooperación técnica para consolidación del PHEFA.


Asunto(s)
Fiebre Aftosa , Erradicación de la Enfermedad , Centro Panamericano de Fiebre Aftosa
8.
Sci Rep ; 14(1): 8931, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637656

RESUMEN

Whether mice can be used as a foot-and-mouth disease (FMD) model has been debated for a long time. However, the major histocompatibility complex between pigs and mice is very different. In this study, the protective effects of FMD vaccines in different animal models were analyzed by a meta-analysis. The databases PubMed, China Knowledge Infrastructure, EMBASE, and Baidu Academic were searched. For this purpose, we evaluated evidence from 14 studies that included 869 animals with FMD vaccines. A random effects model was used to combine effects using Review Manager 5.4 software. A forest plot showed that the protective effects in pigs were statistically non-significant from those in mice [MH = 0.56, 90% CI (0.20, 1.53), P = 0.26]. The protective effects in pigs were also statistically non-significant from those in guinea pigs [MH = 0.67, 95% CI (0.37, 1.21), P = 0.18] and suckling mice [MH = 1.70, 95% CI (0.10, 28.08), P = 0.71]. Non-inferiority test could provide a hypothesis that the models (mice, suckling mice and guinea pigs) could replace pigs as FMDV vaccine models to test the protective effect of the vaccine. Strict standard procedures should be established to promote the assumption that mice and guinea pigs should replace pigs in vaccine evaluation.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Cobayas , Ratones , Fiebre Aftosa/prevención & control , Anticuerpos Antivirales , Modelos Animales
9.
Prev Vet Med ; 226: 106192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564991

RESUMEN

Foot-and-mouth disease is a controlled disease in accordance with the South African Animal Diseases Act (Act 35 of 1984). The country was classified by the World Organisation for Animal Health (WOAH) as having a FMD free zone without vaccination in 1996. However, this status was suspended in 2019 due to a FMD outbreak outside the controlled zones. FMD control in South Africa includes animal movement restrictions placed on cloven-hoofed species and products, prophylactic vaccination of cattle, clinical surveillance of susceptible species, and disease control fencing to separate livestock from wildlife reservoirs. The objectives of this study were to evaluate differences in identifying high-risk areas for FMD using risk factor and expert opinion elicitation analysis. Differences in risk between FMD introduction and FMD spread within the FMD protection zone with vaccination (PZV) of South Africa (2007-2016) were also investigated. The study was conducted in the communal farming area of the FMD PZV, which is adjacent to wildlife reserves and characterised by individual faming units. Eleven risk factors that were considered important for FMD occurrence and spread were used to build a weighted linear combination (WLC) score based on risk factor data and expert opinion elicitation. A multivariable conditional logistic regression model was also used to calculate predicted probabilities of a FMD outbreak for all dip-tanks within the study area. Smoothed Bayesian kriged maps were generated for 11 individual risk factors, overall WLC scores for FMD occurrence and spread and for predicted probabilities of a FMD outbreak based on the conditional logistic regression model. Descriptively, vaccine matching was believed to have a great influence on both FMD occurrence and spread. Expert opinion suggested that FMD occurrence was influenced predominantly by proximity to game reserves and cattle density. Cattle populations and vaccination practices were considered most important for FMD spread. Highly effective cattle inspections were observed within areas that previously reported FMD outbreaks, indicating the importance of cattle inspection (surveillance) as a necessary element of FMD outbreak detection. The multivariable conditional logistic regression analysis, which was consistent with expert opinion elicitation; identified three factors including cattle population density (OR 3.87, 95% CI 1.47-10.21) and proximities to game reserve fences (OR 0.82, 95% CI 0.73-0.92) and rivers (OR 1.04, 95% CI 1.01-1.07) as significant factors for reported FMD outbreaks. Regaining and maintaining an FMD-free status without vaccination requires frequent monitoring of high-risk areas and designing targeted surveillance.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Bovinos , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Sudáfrica/epidemiología , Teorema de Bayes , Testimonio de Experto , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/prevención & control , Animales Salvajes , Factores de Riesgo , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria
10.
Viruses ; 16(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38675855

RESUMEN

The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de la Cápside , Virus de la Fiebre Aftosa , Fiebre Aftosa , Tropismo Viral , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Fiebre Aftosa/virología , Receptores Virales/metabolismo , Receptores Virales/genética , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Técnicas de Cultivo de Célula
11.
Viruses ; 16(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675963

RESUMEN

Southern Africa Territories 2 (SAT2) foot-and-mouth disease (FMD) has crossed long-standing regional boundaries in recent years and entered the Middle East. However, the existing vaccines offer poor cross-protection against the circulating strains in the field. Therefore, there is an urgent need for an alternative design approach for vaccines in anticipation of a pandemic of SAT2 Foot-and-mouth disease virus (FMDV). The porcine parvovirus (PPV) VP2 protein can embed exogenous epitopes into the four loops on its surface, assemble into virus-like particles (VLPs), and induce antibodies and cytokines to PPV and the exogenous epitope. In this study, chimeric porcine parvovirus VP2 VLPs (chimeric PPV-SAT2-VLPs) expressing the T-and/or B-cell epitopes of the structural protein VP1 of FMDV SAT2 were produced using the recombinant pFastBac™ Dual vector of baculoviruses in Sf9 and HF cells We used the Bac-to-Bac system to construct the recombinant baculoviruses. The VP2-VLP--SAT2 chimeras displayed chimeric T-cell epitope (amino acids 21-40 of VP1) and/or the B-cell epitope (amino acids 135-174) of SAT FMDV VP1 by substitution of the corresponding regions at the N terminus (amino acids 2-23) and/or loop 2 and/or loop 4 of the PPV VP2 protein, respectively. In mice, the chimeric PPV-SAT2-VLPs induced specific antibodies against PPV and the VP1 protein of SAT2 FMDV. The VP2-VLP-SAT2 chimeras induced specific antibodies to PPV and the VP1 protein specific epitopes of FMDV SAT2. In this study, as a proof-of-concept, successfully generated chimeric PPV-VP2 VLPs expressing epitopes of the structural protein VP1 of FMDV SAT2 that has a potential to prevent FMDV SAT2 and PPV infection in pigs.


Asunto(s)
Anticuerpos Antivirales , Antígenos Virales , Proteínas de la Cápside , Virus de la Fiebre Aftosa , Fiebre Aftosa , Parvovirus Porcino , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Virus de la Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/genética , Ratones , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Fiebre Aftosa/virología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Parvovirus Porcino/inmunología , Parvovirus Porcino/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/genética , Porcinos , Inmunidad Humoral , Inmunidad Celular , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/genética , Serogrupo , Ratones Endogámicos BALB C , Femenino , Epítopos/inmunología , Epítopos/genética , Células Sf9 , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre
12.
Sci Rep ; 14(1): 7929, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575673

RESUMEN

Foot and mouth disease (FMD) is a highly contagious, endemic, and acute viral cattle ailment that causes major economic damage in Ethiopia. Although several serotypes of the FMD virus have been detected in Ethiopia, there is no documented information about the disease's current serostatus and serotypes circulating in the Wolaita zone. Thus, from March to December 2022, a cross-sectional study was conducted to evaluate FMDV seroprevalence, molecular detection, and serotype identification in three Wolaita Zone sites. A multistage sample procedure was used to choose three peasant associations from each study region, namely Wolaita Sodo, Offa district, and Boloso sore district. A systematic random sampling technique was employed to pick 384 cattle from the population for the seroprevalence research, and 10 epithelial tissue samples were purposefully taken from outbreak individuals for molecular detection of FMDV. The sera were examined using 3ABC FMD NSP Competition ELISA to find antibodies against FMDV non-structural proteins, whereas epithelial tissue samples were analyzed for molecular detection using real-time RT-PCR, and sandwich ELISA was used to determine the circulating serotypes. A multivariable logistic regression model was used to evaluate the associated risk variables. The total seroprevalence of FMD in cattle was 46.88% (95% CI 41.86-51.88), with Wolaita Sodo Town having the highest seroprevalence (63.28%). As a consequence, multivariable logistic regression analysis revealed that animal age, herd size, and interaction with wildlife were all substantially related to FMD seroprevalence (p < 0.05). During molecular detection, only SAT-2 serotypes were found in 10 tissue samples. Thus, investigating FMD outbreaks and identifying serotypes and risk factors for seropositivity are critical steps in developing effective control and prevention strategies based on the kind of circulating serotype. Moreover, further research for animal species other than cattle was encouraged.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Humanos , Bovinos , Animales , Virus de la Fiebre Aftosa/genética , Estudios Seroepidemiológicos , Estudios Transversales , Etiopía/epidemiología , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/epidemiología , Fiebre Aftosa/diagnóstico , Fiebre Aftosa/epidemiología , Serogrupo , Brotes de Enfermedades/veterinaria , Animales Salvajes , Anticuerpos Antivirales
13.
Microbiol Spectr ; 12(4): e0337223, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38466127

RESUMEN

Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/metabolismo , Péptido Hidrolasas/metabolismo , Serogrupo , Fiebre Aftosa/tratamiento farmacológico , Fiebre Aftosa/prevención & control , Endopeptidasas/metabolismo , Proteasas Virales 3C , Antivirales/farmacología
14.
Front Cell Infect Microbiol ; 14: 1331779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510965

RESUMEN

Background: Commercial foot-and-mouth disease (FMD) vaccines have limitations, such as local side effects, periodic vaccinations, and weak host defenses. To overcome these limitations, we developed a novel FMD vaccine by combining an inactivated FMD viral antigen with the small molecule isoprinosine, which served as an adjuvant (immunomodulator). Method: We evaluated the innate and adaptive immune responses elicited by the novel FMD vaccine involved both in vitro and in vivo using mice and pigs. Results: We demonstrated isoprinosine-mediated early, mid-term, and long-term immunity through in vitro and in vivo studies and complete host defense against FMD virus (FMDV) infection through challenge experiments in mice and pigs. We also elucidated that isoprinosine induces innate and adaptive (cellular and humoral) immunity via promoting the expression of immunoregulatory gene such as pattern recognition receptors [PRRs; retinoic acid-inducible gene (RIG)-I and toll like receptor (TLR)9], transcription factors [T-box transcription factor (TBX)21, eomesodermin (EOMES), and nuclear factor kappa B (NF-kB)], cytokines [interleukin (IL)-12p40, IL-23p19, IL-23R, and IL-17A)], and immune cell core receptors [cluster of differentiation (CD)80, CD86, CD28, CD19, CD21, and CD81] in pigs. Conclusion: These findings present an attractive strategy for constructing novel FMD vaccines and other difficult-to-control livestock virus vaccine formulations based on isoprinosine induced immunomodulatory functions.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Inosina Pranobex , Vacunas Virales , Animales , Ratones , Porcinos , Adyuvantes de Vacunas , Anticuerpos Antivirales , Adyuvantes Inmunológicos , Interleucinas , Inmunidad
15.
Viruses ; 16(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38543822

RESUMEN

Since the foot-and-mouth disease (FMD) outbreak in South Korea in 2010-2011, vaccination policies utilizing inactivated FMD vaccines composed of types O and A have been implemented nationwide. However, because type Asia1 occurred in North Korea in 2007 and intermittently in neighboring countries, the risk of type Asia1 introduction cannot be ruled out. This study evaluated the antigen yield and viral inactivation kinetics of the recombinant Asia1 Shamir vaccine strain (Asia1 Shamir-R). When Asia1 Shamir-R was proliferated in shaking flasks (1 L), a 2 L bioreactor (1 L), and a wave bioreactor (25 L), the antigen yields were 7.5 µg/mL, 5.2 µg/mL, and 3.8 µg/mL, respectively. The optimal FMDV inactivation conditions were 2 mM BEI at 26 °C and 1.0 mM BEI at 37 °C. There was no antigen loss due to BEI treatment, and only a decrease in antigen levels was observed during storage. The sera from pigs immunized with antigen derived from a bioreactor exhibited a neutralizing antibody titer of approximately 1/1000 against Asia1 Shamir and Asia1/MOG/05 viruses; therefore, Asia1 Shamir-R is expected to provide sufficient protection against both viruses. If an FMD vaccine production facility is established, this Asia1 Shamir-R can be employed for domestic antigen banks in South Korea.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Porcinos , Inactivación de Virus , Proteínas de la Cápside , Vacunas Sintéticas , Reactores Biológicos
16.
Epidemics ; 46: 100754, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38428358

RESUMEN

Hand, foot and mouth disease (HFMD) is highly prevalent in the Asia Pacific region, particularly in Vietnam. To develop effective interventions and efficient vaccination programs, we inferred the age-time-specific transmission patterns of HFMD serotypes enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6), coxsackievirus A10 (CV-A10), coxsackievirus A16 (CV-A16) in Ho Chi Minh City, Vietnam from a case data collected during 2013-2018 and a serological survey data collected in 2015 and 2017. We proposed a catalytic model framework with good adaptability to incorporate maternal immunity using various mathematical functions. Our results indicate the high-level transmission of CV-A6 and CV-A10 which is not obvious in the case data, due to the variation of disease severity across serotypes. Our results provide statistical evidence supporting the strong association between severe illness and CV-A6 and EV-A71 infections. The HFMD dynamic pattern presents a cyclical pattern with large outbreaks followed by a decline in subsequent years. Additionally, we identify the age group with highest risk of infection as 1-2 years and emphasise the risk of future outbreaks as over 50% of children aged 6-7 years were estimated to be susceptible to CV-A16 and EV-A71. Our study highlights the importance of multivalent vaccines and active surveillance for different serotypes, supports early vaccination prior to 1 year old, and points out the potential utility for vaccinating children older than 5 years old in Vietnam.


Asunto(s)
Bencenoacetamidas , Enterovirus , Fiebre Aftosa , Enfermedad de Boca, Mano y Pie , Piperidonas , Niño , Lactante , Animales , Humanos , Preescolar , Enfermedad de Boca, Mano y Pie/epidemiología , Vietnam/epidemiología , Serogrupo , China/epidemiología
17.
Cells ; 13(6)2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38534383

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious and economically important disease of cloven-hoofed animals that hampers trade and production. To ensure effective infection, the foot-and-mouth disease virus (FMDV) evades host antiviral pathways in different ways. Although the effect of histone deacetylase 5 (HDAC5) on the innate immune response has previously been documented, the precise molecular mechanism underlying HDAC5-mediated FMDV infection is not yet clearly understood. In this study, we found that silencing or knockout of HDAC5 promoted FMDV replication, whereas HDAC5 overexpression significantly inhibited FMDV propagation. IFN-ß and IFN-stimulated response element (ISRE) activity was strongly activated through the overexpression of HDAC5. The silencing and knockout of HDAC5 led to an increase in viral replication, which was evident by decreased IFN-ß, ISG15, and ISG56 production, as well as a noticeable reduction in IRF3 phosphorylation. Moreover, the results showed that the FMDV capsid protein VP1 targets HDAC5 and facilitates its degradation via the proteasomal pathway. In conclusion, this study highlights that HDAC5 acts as a positive modulator of IFN-ß production during viral infection, while FMDV capsid protein VP1 antagonizes the HDAC5-mediated antiviral immune response by degrading HDAC5 to facilitate viral replication.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Interferón Tipo I , Animales , Proteínas de la Cápside/metabolismo , Transducción de Señal , Fiebre Aftosa/metabolismo , Inmunidad Innata , Interferón Tipo I/metabolismo
18.
PLoS Pathog ; 20(3): e1012104, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38512977

RESUMEN

The interaction between foot-and-mouth disease virus (FMDV) and the host is extremely important for virus infection, but there are few researches on it, which is not conducive to vaccine development and FMD control. In this study, we designed a porcine genome-scale CRISPR/Cas9 knockout library containing 93,859 single guide RNAs targeting 16,886 protein-coding genes, 25 long ncRNAs, and 463 microRNAs. Using this library, several previously unreported genes required for FMDV infection are highly enriched post-FMDV selection in IBRS-2 cells. Follow-up studies confirmed the dependency of FMDV on these genes, and we identified a functional role for one of the FMDV-related host genes: TOB1 (Transducer of ERBB2.1). TOB1-knockout significantly inhibits FMDV infection by positively regulating the expression of RIG-I and MDA5. We further found that TOB1-knockout led to more accumulation of mRNA transcripts of transcription factor CEBPA, and thus its protein, which further enhanced transcription of RIG-I and MDA5 genes. In addition, TOB1-knockout was shown to inhibit FMDV adsorption and internalization mediated by EGFR/ERBB2 pathway. Finally, the FMDV lethal challenge on TOB1-knockout mice confirmed that the deletion of TOB1 inhibited FMDV infection in vivo. These results identify TOB1 as a key host factor involved in FMDV infection in pigs.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Ratones , Receptores ErbB/metabolismo , Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/genética , Regulación de la Expresión Génica , ARN Guía de Sistemas CRISPR-Cas , Porcinos
19.
PeerJ ; 12: e16998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38436010

RESUMEN

Total ring depopulation is sometimes used as a management strategy for emerging infectious diseases in livestock, which raises ethical concerns regarding the potential slaughter of large numbers of healthy animals. We evaluated a farm-density-based ring culling strategy to control foot-and-mouth disease (FMD) in the United Kingdom (UK), which may allow for some farms within rings around infected premises (IPs) to escape depopulation. We simulated this reduced farm density, or "target density", strategy using a spatially-explicit, stochastic, state-transition algorithm. We modeled FMD spread in four counties in the UK that have different farm demographics, using 740,000 simulations in a full-factorial analysis of epidemic impact measures (i.e., culled animals, culled farms, and epidemic length) and cull strategy parameters (i.e., target farm density, daily farm cull capacity, and cull radius). All of the cull strategy parameters listed above were drivers of epidemic impact. Our simulated target density strategy was usually more effective at combatting FMD compared with traditional total ring depopulation when considering mean culled animals and culled farms and was especially effective when daily farm cull capacity was low. The differences in epidemic impact measures among the counties are likely driven by farm demography, especially differences in cattle and farm density. To prevent over-culling and the associated economic, organizational, ethical, and psychological impacts, the target density strategy may be worth considering in decision-making processes for future control of FMD and other diseases.


Asunto(s)
Enfermedades Transmisibles Emergentes , Epidemias , Fiebre Aftosa , Animales , Bovinos , Fiebre Aftosa/epidemiología , Brotes de Enfermedades/prevención & control , Epidemias/prevención & control , Algoritmos
20.
J Virol Methods ; 326: 114906, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479084

RESUMEN

Foot-and-mouth disease (FMD) is a contagious viral disease of cloven-footed animals. Immunization with inactivated virus vaccine is effective to control the disease. Six-monthly vaccination regimen in endemic regions has proven to be effective. To enable the differentiation of infected animals from those vaccinated, non-structural proteins (NSPs) are excluded during vaccine production. While the antibodies to structural proteins (SPs) could be observed both in vaccinated and infected animals, NSP antibodies are detectable only in natural infection. Quality control assays that detect NSPs in vaccine antigen preparations, are thus vital in the FMD vaccine manufacturing process. In this study, we designed a chemiluminescence dot blot assay to detect the 3A and 3B NSPs of FMDV. It is sensitive enough to detect up to 20 ng of the NSP, and exhibited specificity as it does not react with the viral SPs. This cost-effective assay holds promise in quality control assessment in FMD vaccine manufacturing.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Fiebre Aftosa/diagnóstico , Fiebre Aftosa/prevención & control , Luminiscencia , Anticuerpos Antivirales , Proteínas no Estructurales Virales , Sensibilidad y Especificidad , Ensayo de Inmunoadsorción Enzimática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...