Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Genes (Basel) ; 15(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38674337

RESUMEN

Ebola virus (EBOV) is a highly pathogenic virus that causes a severe illness called Ebola virus disease (EVD). EVD has a high mortality rate and remains a significant threat to public health. Research on EVD pathogenesis has traditionally focused on host transcriptional responses. Limited recent studies, however, have revealed some information on the significance of cellular microRNAs (miRNAs) in EBOV infection and pathogenic mechanisms, but further studies are needed. Thus, this study aimed to identify and validate additional known and novel human miRNAs in EBOV-infected adult retinal pigment epithelial (ARPE) cells and predict their potential roles in EBOV infection and pathogenic mechanisms. We analyzed previously available small RNA-Seq data obtained from ARPE cells and identified 23 upregulated and seven downregulated miRNAs in the EBOV-infected cells; these included two novel miRNAs and 17 additional known miRNAs not previously identified in ARPE cells. In addition to pathways previously identified by others, these miRNAs are associated with pathways and biological processes that include WNT, FoxO, and phosphatidylinositol signaling; these pathways were not identified in the original study. This study thus confirms and expands on the previous study using the same datasets and demonstrates further the importance of human miRNAs in the host response and EVD pathogenesis during infection.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , MicroARNs , Epitelio Pigmentado de la Retina , Humanos , MicroARNs/genética , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Ebolavirus/genética , Ebolavirus/patogenicidad , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/virología , Epitelio Pigmentado de la Retina/patología , Línea Celular
2.
Biotechnol Lett ; 45(10): 1327-1337, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37526868

RESUMEN

PURPOSE: Viruses, such as Ebola virus (EBOV), evolve rapidly and threaten the human health. There is a great demand to exploit efficient gene-editing techniques for the identification of virus to probe virulence mechanism for drug development. METHODS: Based on lambda Red recombination in Escherichia coli (E. coli), counter-selection, and in vitro annealing, a high-efficiency genetic method was utilized here for precisely engineering viruses. EBOV trVLPs assay and dual luciferase reporter assay were used to further test the effect of mutations on virus replication. RESULTS: Considering the significance of matrix protein VP24 in EBOV replication, the types of mutations within vp24, including several single-base substitutions, one double-base substitution, two seamless deletions, and one targeted insertion, were generated on the multi-copy plasmid of E. coli. Further, the length of the homology arms for recombination and in vitro annealing, and the amount of DNA cassettes and linear plasmids were optimized to create a more elaborate and cost-efficient protocol than original approach. The effects of VP24 mutations on the expression of a reporter gene (luciferase) from the EBOV minigenome were determined, and results indicated that mutations of key sites within VP24 have significant impacts on EBOV replication. CONCLUSION: This precise mutagenesis method will facilitate effective and simple editing of viral genes in E. coli.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Virales/genética , Fiebre Hemorrágica Ebola/genética , Ebolavirus/genética , Ebolavirus/metabolismo , Ingeniería Genética , Recombinación Genética
3.
J Infect Dis ; 228(Suppl 7): S488-S497, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37551415

RESUMEN

The 3' untranslated regions (UTRs) of Ebola virus (EBOV) mRNAs are enriched in their AU content and therefore represent potential targets for RNA binding proteins targeting AU-rich elements (ARE-BPs). ARE-BPs are known to fine-tune RNA turnover and translational activity. We identified putative AREs within EBOV mRNA 3' UTRs and assessed whether they might modulate mRNA stability. Using mammalian and zebrafish embryo reporter assays, we show a conserved, ARE-BP-mediated stabilizing effect and increased reporter activity with the tested EBOV 3' UTRs. When coexpressed with the prototypic ARE-BP tristetraprolin (TTP, ZFP36) that mainly destabilizes its target mRNAs, the EBOV nucleoprotein (NP) 3' UTR resulted in decreased reporter gene activity. Coexpression of NP with TTP led to reduced NP protein expression and diminished EBOV minigenome activity. In conclusion, the enrichment of AU residues in EBOV 3' UTRs makes them possible targets for cellular ARE-BPs, leading to modulation of RNA stability and translational activity.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Regiones no Traducidas 3'/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ebolavirus/genética , Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/genética , Pez Cebra/metabolismo , Estabilidad del ARN/genética , Mamíferos
4.
Nat Commun ; 14(1): 3866, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391481

RESUMEN

Long non-coding RNAs (lncRNAs) are involved in numerous biological processes and are pivotal mediators of the immune response, yet little is known about their properties at the single-cell level. Here, we generate a multi-tissue bulk RNAseq dataset from Ebola virus (EBOV) infected and not-infected rhesus macaques and identified 3979 novel lncRNAs. To profile lncRNA expression dynamics in immune circulating single-cells during EBOV infection, we design a metric, Upsilon, to estimate cell-type specificity. Our analysis reveals that lncRNAs are expressed in fewer cells than protein-coding genes, but they are not expressed at lower levels nor are they more cell-type specific when expressed in the same number of cells. In addition, we observe that lncRNAs exhibit similar changes in expression patterns to those of protein-coding genes during EBOV infection, and are often co-expressed with known immune regulators. A few lncRNAs change expression specifically upon EBOV entry in the cell. This study sheds light on the differential features of lncRNAs and protein-coding genes and paves the way for future single-cell lncRNA studies.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , ARN Largo no Codificante , Animales , Fiebre Hemorrágica Ebola/genética , ARN Largo no Codificante/genética , Macaca mulatta , Ebolavirus/genética , Internalización del Virus
5.
J Infect Dis ; 228(Suppl 7): S498-S507, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37348869

RESUMEN

RNA editing has been discovered as an essential mechanism for the transcription of the glycoprotein (GP) gene of Ebola virus but not Marburg virus. We developed a rapid transcript quantification assay (RTQA) to analyze RNA transcripts generated through RNA editing and used immunoblotting with a pan-ebolavirus monoclonal antibody to confirm different GP gene-derived products. RTQA successfully quantified GP gene transcripts during infection with representative members of 5 ebolavirus species. Immunoblotting verified expression of the soluble GP and the transmembrane GP. Our results defined RNA editing as a general trait of ebolaviruses. The degree of editing, however, varies among ebolaviruses with Reston virus showing the lowest and Bundibugyo virus the highest degree of editing.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Ebolavirus/genética , Edición de ARN , Glicoproteínas , Anticuerpos Antivirales , Anticuerpos Monoclonales , Fiebre Hemorrágica Ebola/genética
6.
PLoS One ; 18(3): e0282812, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36930670

RESUMEN

Feature selection problem represents the field of study that requires approximate algorithms to identify discriminative and optimally combined features. The evaluation and suitability of these selected features are often analyzed using classifiers. These features are locked with data increasingly being generated from different sources such as social media, surveillance systems, network applications, and medical records. The high dimensionality of these datasets often impairs the quality of the optimal combination of these features selected. The use of the binary optimization method has been proposed in the literature to address this challenge. However, the underlying deficiency of the single binary optimizer is transferred to the quality of the features selected. Though hybrid methods have been proposed, most still suffer from the inherited design limitation of the single combined methods. To address this, we proposed a novel hybrid binary optimization capable of effectively selecting features from increasingly high-dimensional datasets. The approach used in this study designed a sub-population selective mechanism that dynamically assigns individuals to a 2-level optimization process. The level-1 method first mutates items in the population and then reassigns them to a level-2 optimizer. The selective mechanism determines what sub-population is assigned for the level-2 optimizer based on the exploration and exploitation phase of the level-1 optimizer. In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. The outcome of these are the HBEOSA-SA and HBEOSA-FFA, which are then investigated on the NT, and their corresponding variants HBEOSA-SA-NT and HBEOSA-FFA-NT with no NT applied. The hybrid methods were experimentally tested over high-dimensional datasets to address the challenge of feature selection. A comparative analysis was done on the methods to obtain performance variability with the low-dimensional datasets. Results obtained for classification accuracy for large, medium, and small-scale datasets are 0.995 using HBEOSA-FFA, 0.967 using HBEOSA-FFA-NT, and 0.953 using HBEOSA-FFA, respectively. Fitness and cost values relative to large, medium, and small-scale datasets are 0.066 and 0.934 using HBEOSA-FFA, 0.068 and 0.932 using HBEOSA-FFA, with 0.222 and 0.970 using HBEOSA-SA-NT, respectively. Findings from the study indicate that the HBEOSA-SA, HBEOSA-FFA, HBEOSA-SA-NT and HBEOSA-FFA-NT outperformed the BEOSA.


Asunto(s)
Fiebre Hemorrágica Ebola , Humanos , Fiebre Hemorrágica Ebola/genética , Algoritmos
7.
Int J Mol Sci ; 23(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35563619

RESUMEN

MicroRNAs (miRNAs) are important gene regulatory molecules involved in a broad range of cellular activities. Although the existence and functions of miRNAs are clearly defined and well established in eukaryotes, this is not always the case for those of viral origin. Indeed, the existence of viral miRNAs is the subject of intense controversy, especially those of RNA viruses. Here, we characterized the miRNA transcriptome of cultured human liver cells infected or not with either of the two Ebola virus (EBOV) variants: Mayinga or Makona; or with Reston virus (RESTV). Bioinformatic analyses revealed the presence of two EBOV-encoded miRNAs, miR-MAY-251 and miR-MAK-403, originating from the EBOV Mayinga and Makona variants, respectively. From the miRDB database, miR-MAY-251 and miR-MAK-403 displayed on average more than 700 potential human host target candidates, 25% of which had a confidence score higher than 80%. By RT-qPCR and dual luciferase assays, we assessed the potential regulatory effect of these two EBOV miRNAs on selected host mRNA targets. Further analysis of Panther pathways unveiled that these two EBOV miRNAs, in addition to general regulatory functions, can potentially target genes involved in the hemorrhagic phenotype, regulation of viral replication and modulation of host immune defense.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , MicroARNs , Ebolavirus/genética , Ebolavirus/metabolismo , Regulación de la Expresión Génica , Fiebre Hemorrágica Ebola/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Replicación Viral/genética
8.
Biosens Bioelectron ; 211: 114393, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35609450

RESUMEN

A fast and simple Cas13a-based assay approach for direct detecting Ebola RNA in unamplified samples is reported. The procedure (named Cas-Roller) is comprised of a 10-min Cas13a-mediated cleavage protocol, followed by a DNA roller running for 30 min. This involves Cas13a collateral cleaving a suitably designed substrate in the presence of Ebola virus RNA sequence, and the cleavage product is used for DNA roller to amplify and generate fluorescent signals. After optimization of the conditions, the assay is able to achieve a limit of detection as low as 291 aM (∼175 copies RNA/µL) along with excellent anti-interfering performance in human serum and blood detection, which is ∼310-fold improved compared with the direct CRISPR assay. The entire workflow can be completed in ∼40 min at 37 °C without any pre-amplification, transcription, or centrifugation steps, thus avoiding the generation of false-negative or positive results. In addition, the downstream roller reaction is independent of the target sequence, this method can be applied to detect any other RNA by merely redesigning the hybridization regions of the crRNA. Overall, this strategy gives a new idea for the construction of simple and accurate Cas13a-based assays for the direct detection of RNA.


Asunto(s)
Técnicas Biosensibles , Fiebre Hemorrágica Ebola , Sistemas CRISPR-Cas/genética , ADN , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/genética , Humanos , ARN
9.
mBio ; 13(1): e0337921, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012339

RESUMEN

The ongoing pandemic of coronavirus (CoV) disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome CoV 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single-dose, fast-acting vesicular stomatitis virus (VSV)-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (i.m.) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, intranasal (i.n.) vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to results for control animals. While both i.m. and i.n. vaccination induced neutralizing antibody titers, only i.m. vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of i.m. vaccinated animals only. Overall, the data demonstrate that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study. IMPORTANCE The vesicular stomatitis virus (VSV) vaccine platform rose to fame in 2019, when a VSV-based Ebola virus (EBOV) vaccine was approved by the European Medicines Agency and the U.S. Food and Drug Administration for human use against the deadly disease. Here, we demonstrate the protective efficacy of a VSV-EBOV-based COVID-19 vaccine against challenge in nonhuman primates (NHPs). When a single dose of the VSV-SARS2-EBOV vaccine was administered intramuscularly (i.m.), the NHPs were protected from COVID-19 within 10 days. In contrast, if the vaccine was administered intranasally, there was no benefit from the vaccine and the NHPs developed pneumonia. The i.m. vaccinated NHPs quickly developed antigen-specific IgG, including neutralizing antibodies. Transcriptional analysis highlighted the development of protective innate and adaptive immune responses in the i.m. vaccination group only.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas contra el Virus del Ébola , Ebolavirus , Macaca mulatta , Estomatitis Vesicular , Animales , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/uso terapéutico , Vacunas contra el Virus del Ébola/genética , Vacunas contra el Virus del Ébola/inmunología , Vacunas contra el Virus del Ébola/uso terapéutico , Ebolavirus/genética , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Macaca mulatta/inmunología , SARS-CoV-2 , Vacunación/métodos , Estomatitis Vesicular/genética , Estomatitis Vesicular/inmunología , Estomatitis Vesicular/prevención & control , Vesiculovirus/genética
10.
J Biomol Struct Dyn ; 40(11): 4815-4831, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33463407

RESUMEN

Ebola virus is the primary causative agent of viral hemorrhagic fever that is an epidemic disease and responsible for the massive premature deaths in humans. Despite knowing the molecular mechanism of its pathogenesis, to date, no commercial or FDA approved multiepitope vaccine is available against Ebola infection. The current study focuses on designing a multi-epitope subunit vaccine for Ebola using a novel immunoinformatic approach. The best predicted antigenic epitopes of Cytotoxic-T cell (CTL), Helper-T cells (HTL), and B-cell epitopes (BCL) joined by various linkers were selected for the multi-epitope vaccine designing. For the enhanced immune response, two adjuvants were also added to the construct. Further analysis showed the vaccine to be immunogenic and non-allergenic, forming a stable and energetically favorable structure. The stability of the unbound vaccine construct and vaccine/TLR4 was elucidated via atomistic molecular dynamics simulations. The binding free energy analysis (ΔGBind = -194.2 ± 0.5 kcal/mol) via the molecular mechanics Poisson-Boltzmann docking scheme revealed a strong association and thus can initiate the maximal immune response. Next, for the optimal expression of the vaccine construct, its gene construct was cloned in the pET28a + vector system. In summary, the Ebola viral proteome was screened to identify the most potential HTLs, CTLs, and BCL epitopes. Along with various linkers and adjuvants, a multi-epitope vaccine is constructed that showed a high binding affinity with the immune receptor, TLR4. Thus, the current study provides a highly immunogenic multi-epitope subunit vaccine construct that may induce humoral and cellular immune responses against the Ebola infection.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Biología Computacional , Ebolavirus/genética , Epítopos de Linfocito B , Epítopos de Linfocito T , Genoma Viral , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Simulación del Acoplamiento Molecular , Vacunas de Subunidad
11.
Emerg Microbes Infect ; 11(1): 195-207, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34919035

RESUMEN

Ebola virus disease (EVD) is a severe and frequently lethal disease caused by Ebola virus (EBOV). The latest occasional EVD outbreak (2013-2016) in Western African, which was accompanied by a high fatality rate, showed the great potential of epidemic and pandemic spread. Antiviral therapies against EBOV are very limited, strain-dependent (only antibody therapies are available) and mostly restricted to symptomatic treatment, illustrating the urgent need for novel antiviral strategies. Thus, we evaluated the effect of the clinically widely used antifungal itraconazole and the antidepressant fluoxetine for a repurposing against EBOV infection. While itraconazole, similar to U18666A, directly binds to and inhibits the endosomal membrane protein Niemann-Pick C1 (NPC1), fluoxetine, which belongs to the structurally unrelated group of weakly basic, amphiphile so-called "functional inhibitors of acid sphingomyelinase" (FIASMA) indirectly acts on the lysosome-residing acid sphingomyelinase via enzyme detachment leading to subsequent lysosomal degradation. Both, the drug-induced endolysosomal cholesterol accumulation and the altered endolysosomal pH, might interfere with the fusion of viral and endolysosomal membrane, preventing infection with EBOV. We further provide evidence that cholesterol imbalance is a conserved cross-species mechanism to hamper EBOV infection. Thus, exploring the endolysosomal host-pathogen interface as a suitable antiviral treatment may offer a general strategy to combat EBOV infection.


Asunto(s)
Antivirales/farmacología , Colesterol/metabolismo , Ebolavirus/efectos de los fármacos , Endosomas/metabolismo , Fluoxetina/farmacología , Fiebre Hemorrágica Ebola/metabolismo , Itraconazol/farmacología , Ebolavirus/genética , Ebolavirus/fisiología , Endosomas/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Proteína Niemann-Pick C1/genética , Proteína Niemann-Pick C1/metabolismo , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Internalización del Virus/efectos de los fármacos
12.
Viruses ; 13(10)2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34696439

RESUMEN

Biosafety, biosecurity, logistical, political, and technical considerations can delay or prevent the wide dissemination of source material containing viable virus from the geographic origin of an outbreak to laboratories involved in developing medical countermeasures (MCMs). However, once virus genome sequence information is available from clinical samples, reverse-genetics systems can be used to generate virus stocks de novo to initiate MCM development. In this study, we developed a reverse-genetics system for natural isolates of Ebola virus (EBOV) variants Makona, Tumba, and Ituri, which have been challenging to obtain. These systems were generated starting solely with in silico genome sequence information and have been used successfully to produce recombinant stocks of each of the viruses for use in MCM testing. The antiviral activity of MCMs targeting viral entry varied depending on the recombinant virus isolate used. Collectively, selecting and synthetically engineering emerging EBOV variants and demonstrating their efficacy against available MCMs will be crucial for answering pressing public health and biosecurity concerns during Ebola disease (EBOD) outbreaks.


Asunto(s)
Ebolavirus/genética , Fiebre Hemorrágica Ebola/genética , Genética Inversa/métodos , Línea Celular , Brotes de Enfermedades , Ebolavirus/inmunología , Ebolavirus/patogenicidad , Genoma Viral/genética , Genotipo , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Contramedidas Médicas , Fenotipo , Filogenia
13.
Front Immunol ; 12: 703986, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484200

RESUMEN

Ebola (EBOV), Marburg (MARV) and Sudan (SUDV) viruses are the three filoviruses which have caused the most fatalities in humans. Transmission from animals into the human population typically causes outbreaks of limited scale in endemic regions. In contrast, the 2013-16 outbreak in several West African countries claimed more than 11,000 lives revealing the true epidemic potential of filoviruses. This is further emphasized by the difficulty seen with controlling the 2018-2020 outbreak of EBOV in the Democratic Republic of Congo (DRC), despite the availability of two emergency use-approved vaccines and several experimental therapeutics targeting EBOV. Moreover, there are currently no vaccine options to protect against the other epidemic filoviruses. Protection of a monovalent EBOV vaccine against other filoviruses has never been demonstrated in primate challenge studies substantiating a significant void in capability should a MARV or SUDV outbreak of similar magnitude occur. Herein we show progress on developing vaccines based on recombinant filovirus glycoproteins (GP) from EBOV, MARV and SUDV produced using the Drosophila S2 platform. The highly purified recombinant subunit vaccines formulated with CoVaccine HT™ adjuvant have not caused any safety concerns (no adverse reactions or clinical chemistry abnormalities) in preclinical testing. Candidate formulations elicit potent immune responses in mice, guinea pigs and non-human primates (NHPs) and consistently produce high antigen-specific IgG titers. Three doses of an EBOV candidate vaccine elicit full protection against lethal EBOV infection in the cynomolgus challenge model while one of four animals infected after only two doses showed delayed onset of Ebola Virus Disease (EVD) and eventually succumbed to infection while the other three animals survived challenge. The monovalent MARV or SUDV vaccine candidates completely protected cynomolgus macaques from infection with lethal doses of MARV or SUDV. It was further demonstrated that combinations of MARV or SUDV with the EBOV vaccine can be formulated yielding bivalent vaccines retaining full efficacy. The recombinant subunit vaccine platform should therefore allow the development of a safe and efficacious multivalent vaccine candidate for protection against Ebola, Marburg and Sudan Virus Disease.


Asunto(s)
Vacunas contra el Virus del Ébola/farmacología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Enfermedad del Virus de Marburg/prevención & control , Marburgvirus/inmunología , Animales , Vacunas contra el Virus del Ébola/genética , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/genética , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/inmunología , Humanos , Macaca fascicularis , Enfermedad del Virus de Marburg/epidemiología , Enfermedad del Virus de Marburg/genética , Enfermedad del Virus de Marburg/inmunología , Marburgvirus/genética , Vacunas Sintéticas
14.
Cell Rep Med ; 2(8): 100351, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34467242

RESUMEN

Bundibugyo virus (BDBV) is one of four ebolaviruses known to cause disease in humans. Bundibugyo virus disease (BVD) outbreaks occurred in 2007-2008 in Bundibugyo District, Uganda, and in 2012 in Isiro, Province Orientale, Democratic Republic of the Congo. The 2012 BVD outbreak resulted in 38 laboratory-confirmed cases of human infection, 13 of whom died. However, only 4 BDBV specimens from the 2012 outbreak have been sequenced. Here, we provide BDBV sequences from seven additional patients. Analysis of the molecular epidemiology and evolutionary dynamics of the 2012 outbreak with these additional isolates challenges the current hypothesis that the outbreak was the result of a single spillover event. In addition, one patient record indicates that BDBV's initial emergence in Isiro occurred 50 days earlier than previously accepted. Collectively, this work demonstrates how retrospective sequencing can be used to elucidate outbreak origins and provide epidemiological contexts to a medically relevant pathogen.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/genética , Adolescente , Adulto , Anciano , Animales , Teorema de Bayes , Preescolar , Chlorocebus aethiops , Ebolavirus/genética , Femenino , Genoma Viral , Haplotipos/genética , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Polimorfismo de Nucleótido Simple/genética , Células Vero
15.
Viruses ; 13(8)2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34452514

RESUMEN

Viral interferon (IFN) antagonist proteins mediate evasion of IFN-mediated innate immunity and are often multifunctional, with distinct roles in viral replication. The Ebola virus IFN antagonist VP24 mediates nucleocapsid assembly, and inhibits IFN-activated signaling by preventing nuclear import of STAT1 via competitive binding to nuclear import receptors (karyopherins). Proteins of many viruses, including viruses with cytoplasmic replication cycles, interact with nuclear trafficking machinery to undergo nucleocytoplasmic transport, with key roles in pathogenesis; however, despite established karyopherin interaction, potential nuclear trafficking of VP24 has not been investigated. We find that inhibition of nuclear export pathways or overexpression of VP24-binding karyopherin results in nuclear localization of VP24. Molecular mapping indicates that cytoplasmic localization of VP24 depends on a CRM1-dependent nuclear export sequence at the VP24 C-terminus. Nuclear export is not required for STAT1 antagonism, consistent with competitive karyopherin binding being the principal antagonistic mechanism, while export mediates return of nuclear VP24 to the cytoplasm where replication/nucleocapsid assembly occurs.


Asunto(s)
Núcleo Celular/virología , Citoplasma/virología , Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/virología , Interferón Tipo I/metabolismo , Proteínas Virales/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ebolavirus/química , Ebolavirus/genética , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/metabolismo , Interacciones Huésped-Patógeno , Humanos , Interferón Tipo I/genética , Señales de Localización Nuclear , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Proteínas Virales/química , Proteínas Virales/genética
16.
J Virol ; 95(18): e0107321, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34232742

RESUMEN

Sudan virus (SUDV) is one of five filoviruses that compose the genus Ebolavirus that has been responsible for episodic outbreaks in Central Africa. While the SUDV glycoprotein (GP) structure has been solved, GP residues that affect SUDV entry have not been extensively examined; many of the entry characteristics of SUDV GP are inferred from studies with the Zaire Ebola virus (EBOV) GP. Here, we investigate the effect on virus entry of a naturally occurring polymorphism in SUDV GP. Two of the earliest SUDV isolates contain glutamine at residue 95 (Q95) within the base region of GP1, whereas more recent SUDV isolates and GPs from all other ebolaviruses carry lysine at this position (K95). A K95Q change dramatically decreased titers of pseudovirions bearing SUDV GP, whereas the K95Q substitution in EBOV GP had no effect on titer. We evaluated virus entry to identify SUDV GP Q95-specific entry defects. The presence of Q95 in either EBOV or SUDV GP resulted in enhanced sensitivity of GP to proteolytic processing, yet this could not account for the SUDV-specific decrease in GP Q95 infectivity. We found that SUDV GP Q95 pseudovirions were more sensitive to imipramine, a GP-destabilizing antiviral. In contrast, SUDV GP K95 was more stable, requiring elevated temperatures to inhibit virus infection. Thus, the residue present at GP 95 has a critical role in stabilizing the SUDV glycoprotein, whereas this polymorphism has no effect on EBOV GP stability. These results provide novel insights into filovirus species-specific GP structure that affects virus infectivity. IMPORTANCE Filovirus outbreaks are associated with significant morbidity and mortality. Understanding the structural constraints of filoviral GPs that control virus entry into cells is critical for rational development of novel antivirals to block infection. Here, we identify a naturally occurring glutamine (Q) to lysine (K) polymorphism at residue 95 as a critical determinant of Sudan virus GP stability but not Zaire Ebola virus GP stability. We propose that glutamine at residue 95 in Sudan virus GP mediates decreased virus entry, thereby reducing infectivity. Our findings highlight a unique structural characteristic of Sudan virus GP that affects GP-mediated functionality. Further, it provides a cautionary note for the development of future broad-spectrum filovirus antivirals.


Asunto(s)
Ebolavirus/fisiología , Glicoproteínas/química , Fiebre Hemorrágica Ebola/virología , Especificidad del Huésped , Polimorfismo Genético , Proteínas del Envoltorio Viral/química , Internalización del Virus , Secuencia de Aminoácidos , Animales , Células CHO , Chlorocebus aethiops , Cricetulus , Femenino , Glicoproteínas/genética , Fiebre Hemorrágica Ebola/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Estabilidad Proteica , Homología de Secuencia , Células Vero , Proteínas del Envoltorio Viral/genética
17.
Emerg Microbes Infect ; 10(1): 1320-1330, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34112056

RESUMEN

Ebola virus (EBOV) is a negative single-stranded RNA virus within the Filoviridae family and the causative agent of Ebola virus disease (EVD). Nonhuman primates (NHPs), including cynomolgus and rhesus macaques, are considered the gold standard animal model to interrogate mechanisms of EBOV pathogenesis. However, despite significant genetic similarity (>90%), NHP species display different clinical presentation following EBOV infection, notably a ∼1-2 days delay in disease progression. Consequently, evaluation of therapeutics is generally conducted in rhesus macaques, whereas cynomolgus macaques are utilized to determine efficacy of preventative treatments, notably vaccines. This observation is in line with reported differences in disease severity and host responses between these two NHP following infection with simian varicella virus, influenza A and SARS-CoV-2. However, the molecular underpinnings of these differential outcomes following viral infections remain poorly defined. In this study, we compared published transcriptional profiles obtained from cynomolgus and rhesus macaques infected with the EBOV-Makona Guinea C07 using bivariate and regression analyses to elucidate differences in host responses. We report the presence of a shared core of differentially expressed genes (DEGs) reflecting EVD pathology, including aberrant inflammation, lymphopenia, and coagulopathy. However, the magnitudes of change differed between the two macaque species. These findings suggest that the differential clinical presentation of EVD in these two species is mediated by altered transcriptional responses.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Fiebre Hemorrágica Ebola/veterinaria , Macaca fascicularis , Macaca mulatta , Enfermedades de los Monos/inmunología , Transcripción Genética/inmunología , Animales , COVID-19 , Ebolavirus , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/mortalidad , Humanos , Inmunidad , Enfermedades de los Monos/genética , Enfermedades de los Monos/mortalidad , ARN Viral/metabolismo , SARS-CoV-2 , Especificidad de la Especie
18.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917562

RESUMEN

Ebola virus (EBOV) is a virulent pathogen, notorious for inducing life-threatening hemorrhagic fever, that has been responsible for several outbreaks in Africa and remains a public health threat. Yet, its pathogenesis is still not completely understood. Although there have been numerous studies on host transcriptional response to EBOV, with an emphasis on the clinical features, the impact of EBOV infection on post-transcriptional regulatory elements, such as microRNAs (miRNAs), remains largely unexplored. MiRNAs are involved in inflammation and immunity and are believed to be important modulators of the host response to viral infection. Here, we have used small RNA sequencing (sRNA-Seq), qPCR and functional analyses to obtain the first comparative miRNA transcriptome (miRNome) of a human liver cell line (Huh7) infected with one of the following three EBOV strains: Mayinga (responsible for the first Zaire outbreak in 1976), Makona (responsible for the West Africa outbreak in 2013-2016) and the epizootic Reston (presumably innocuous to humans). Our results highlight specific miRNA-based immunity pathways and substantial differences between the strains beyond their clinical manifestation and pathogenicity. These analyses shed new light into the molecular signature of liver cells upon EBOV infection and reveal new insights into miRNA-based virus attack and host defense strategy.


Asunto(s)
Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/metabolismo , Hígado/metabolismo , MicroARNs/biosíntesis , RNA-Seq , Línea Celular Tumoral , Ebolavirus/genética , Fiebre Hemorrágica Ebola/genética , Humanos , Hígado/virología , MicroARNs/genética
19.
Nat Med ; 27(4): 710-716, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33846610

RESUMEN

On 1 August 2018, the Democratic Republic of the Congo (DRC) declared its tenth Ebola virus disease (EVD) outbreak. To aid the epidemiologic response, the Institut National de Recherche Biomédicale (INRB) implemented an end-to-end genomic surveillance system, including sequencing, bioinformatic analysis and dissemination of genomic epidemiologic results to frontline public health workers. We report 744 new genomes sampled between 27 July 2018 and 27 April 2020 generated by this surveillance effort. Together with previously available sequence data (n = 48 genomes), these data represent almost 24% of all laboratory-confirmed Ebola virus (EBOV) infections in DRC in the period analyzed. We inferred spatiotemporal transmission dynamics from the genomic data as new sequences were generated, and disseminated the results to support epidemiologic response efforts. Here we provide an overview of how this genomic surveillance system functioned, present a full phylodynamic analysis of 792 Ebola genomes from the Nord Kivu outbreak and discuss how the genomic surveillance data informed response efforts and public health decision making.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/genética , Genómica , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/genética , Análisis de Secuencia de ADN , Congo/epidemiología , Vacunas contra el Virus del Ébola/inmunología , Genoma Viral , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Filogenia , Recurrencia , Reinfección/virología , Análisis Espacio-Temporal
20.
Viruses ; 13(2)2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673144

RESUMEN

Filoviruses Ebola (EBOV) and Marburg (MARV) are devastating high-priority pathogens capable of causing explosive outbreaks with high human mortality rates. The matrix proteins of EBOV and MARV, as well as eVP40 and mVP40, respectively, are the key viral proteins that drive virus assembly and egress and can bud independently from cells in the form of virus-like particles (VLPs). The matrix proteins utilize proline-rich Late (L) domain motifs (e.g., PPxY) to hijack specific host proteins that contain WW domains, such as the HECT family E3 ligases, to facilitate the last step of virus-cell separation. We identified E3 ubiquitin ligase Smad Ubiquitin Regulatory Factor 2 (SMURF2) as a novel interactor with VP40 that positively regulates VP40 VLP release. Our results show that eVP40 and mVP40 interact with the three WW domains of SMURF2 via their PPxY motifs. We provide evidence that the eVP40-SMURF2 interaction is functional as the expression of SMURF2 positively regulates VLP egress, while siRNA knockdown of endogenous SMURF2 decreases VLP budding compared to controls. In sum, our identification of novel interactor SMURF2 adds to the growing list of identified host proteins that can regulate PPxY-mediated egress of VP40 VLPs. A more comprehensive understanding of the modular interplay between filovirus VP40 and host proteins may lead to the development of new therapies to combat these deadly infections.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/enzimología , Enfermedad del Virus de Marburg/enzimología , Marburgvirus/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de la Matriz Viral/metabolismo , Liberación del Virus , Secuencias de Aminoácidos , Animales , Ebolavirus/química , Ebolavirus/genética , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Enfermedad del Virus de Marburg/genética , Enfermedad del Virus de Marburg/virología , Marburgvirus/química , Marburgvirus/genética , Unión Proteica , Ubiquitina-Proteína Ligasas/genética , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Virión/genética , Virión/fisiología , Ensamble de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...