Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 40(17): e108083, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34254350

RESUMEN

Mitochondria are essential organelles because of their function in energy conservation. Here, we show an involvement of mitochondria in phytochrome-dependent light sensing in fungi. Phytochrome photoreceptors are found in plants, bacteria, and fungi and contain a linear, heme-derived tetrapyrrole as chromophore. Linearization of heme requires heme oxygenases (HOs) which reside inside chloroplasts in planta. Despite the poor degree of conservation of HOs, we identified two candidates in the fungus Alternaria alternata. Deletion of either one phenocopied phytochrome deletion. The two enzymes had a cooperative effect and physically interacted with phytochrome, suggesting metabolon formation. The metabolon was attached to the surface of mitochondria with a C-terminal anchor (CTA) sequence in HoxA. The CTA was necessary and sufficient for mitochondrial targeting. The affinity of phytochrome apoprotein to HoxA was 57,000-fold higher than the affinity of the holoprotein, suggesting a "kiss-and-go" mechanism for chromophore loading and a function of mitochondria as assembly platforms for functional phytochrome. Hence, two alternative approaches for chromophore biosynthesis and insertion into phytochrome evolved in plants and fungi.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Mitocondrias/metabolismo , Fitocromo/biosíntesis , Alternaria , Proteínas Fúngicas/genética , Hemo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Fitocromo/genética , Transporte de Proteínas
2.
J Biol Chem ; 295(3): 771-782, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31822504

RESUMEN

Phytochromobilin (PΦB) is a red/far-red light sensory pigment in plant phytochrome. PΦB synthase is a ferredoxin-dependent bilin reductase (FDBR) that catalyzes the site-specific reduction of bilins, which are sensory and photosynthesis pigments, and produces PΦB from biliverdin, a heme-derived linear tetrapyrrole pigment. Here, we determined the crystal structure of tomato PΦB synthase in complex with biliverdin at 1.95 Å resolution. The overall structure of tomato PΦB synthase was similar to those of other FDBRs, except for the addition of a long C-terminal loop and short helices. The structure further revealed that the C-terminal loop is part of the biliverdin-binding pocket and that two basic residues in the C-terminal loop form salt bridges with the propionate groups of biliverdin. This suggested that the C-terminal loop is involved in the interaction with ferredoxin and biliverdin. The configuration of biliverdin bound to tomato PΦB synthase differed from that of biliverdin bound to other FDBRs, and its orientation in PΦB synthase was inverted relative to its orientation in the other FDBRs. Structural and enzymatic analyses disclosed that two aspartic acid residues, Asp-123 and Asp-263, form hydrogen bonds with water molecules and are essential for the site-specific A-ring reduction of biliverdin. On the basis of these observations and enzymatic assays with a V121A PΦB synthase variant, we propose the following mechanistic product release mechanism: PΦB synthase-catalyzed stereospecific reduction produces 2(R)-PΦB, which when bound to PΦB synthase collides with the side chain of Val-121, releasing 2(R)-PΦB from the synthase.


Asunto(s)
Biliverdina/química , Oxidorreductasas/química , Fitocromo/biosíntesis , Conformación Proteica , Aminoácidos/química , Aminoácidos/genética , Pigmentos Biliares/biosíntesis , Pigmentos Biliares/química , Biliverdina/genética , Catálisis , Cristalografía por Rayos X , Enlace de Hidrógeno , Solanum lycopersicum/enzimología , Oxidorreductasas/genética , Oxidorreductasas/ultraestructura , Fotosíntesis/genética , Fitocromo/química , Fitocromo/genética , Estructura Secundaria de Proteína
3.
Sci Rep ; 6: 18750, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26725513

RESUMEN

Fluorescent proteins (FPs) engineered from bacterial phytochromes attract attention as probes for in vivo imaging due to their near-infrared (NIR) spectra and use of available in mammalian cells biliverdin (BV) as chromophore. We studied spectral properties of the iRFP670, iRFP682 and iRFP713 proteins and their mutants having Cys residues able to bind BV either in both PAS (Cys15) and GAF (Cys256) domains, in one of these domains, or without these Cys residues. We show that the absorption and fluorescence spectra and the chromophore binding depend on the location of the Cys residues. Compared with NIR FPs in which BV covalently binds to Cys15 or those that incorporate BV noncovalently, the proteins with BV covalently bound to Cys256 have blue-shifted spectra and higher quantum yield. In dimeric NIR FPs without Cys15, the covalent binding of BV to Сys256 in one monomer allosterically inhibits the covalent binding of BV to the other monomer, whereas the presence of Cys15 allosterically promotes BV binding to Cys256 in both monomers. The NIR FPs with both Cys residues have the narrowest blue-shifted spectra and the highest quantum yield. Our analysis resulted in the iRFP713/Val256Cys protein with the highest brightness in mammalian cells among available NIR FPs.


Asunto(s)
Proteínas Bacterianas/química , Biliverdina/química , Proteínas Luminiscentes/química , Fitocromo/química , Regulación Alostérica , Sustitución de Aminoácidos , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Células HeLa , Humanos , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Fitocromo/biosíntesis , Fitocromo/genética , Unión Proteica , Estabilidad Proteica
4.
Tsitologiia ; 58(10): 744-54, 2016.
Artículo en Inglés, Ruso | MEDLINE | ID: mdl-30198695

RESUMEN

Fluorescent proteins (FPs) are widely used as genetically encoded markers for noninvasive and quantitative study of biological processes. Development of biomarkers that fluoresce in the near-infrared spectral range allows the study of animals at a deeper level due to high permeability of tissues to light in this wavelength range, compared to the visible light. For widespread use of FPs, such properties as low molecular weight and the monomer become important. In this paper, we developed a FP called the GAF-FP and based on the chromophore- binding domain of bacterial phytochrome from Rhodopseudomonas palustris (RpBphP1). GAF-FP has a molecular mass of ~ 19 kDa, 2 times lower than that of other FP based on BphPs and 1.4 times less than the commonly used GFP-like proteins. Unlike most other near-infrared FP, GAF-FP is a monomer, has high photostability and its structure can withstand the introduction of small peptide inserts. Moreover, GAF-FP can covalently bind two different tetrapyrrole chromophores: phycocyanobilin (PCB) and biliverdin (BV), which is found in mammalian tissues. GAF-FP with BV as a chromophore (GAF-FP­BV) has a main absorption band with a maximum at 635 nm and fluorescence maximum at 670 nm, whereby GAF-FP has a high signal to background ratio even if localized at a depth of several mm below the tissue surface. Apart from the near-infrared absorption band, GAF-FP­BV also has also an absorption band in the violet spectral range with a maximum at 378 nm. This property has been used by us to create a chimeric protein consisting of a modified luciferase from Renilla reniformis (RLuc8) and GAF-FP. We have shown that the chimeric protein is capable of resonance energy transfer from the substrate, which is oxidized by luciferase, to chromophore of GAF-FP­BV. In the absence of energy acceptor, RLuc8 catalyzes the cleavage of the substrate with light radiation having a peak of 400 nm. At the same time, as a part of GAF-FP­RLuc8 chimeric protein, the energy from the substrate is transferred to the chromophore of FP and then emitted in the near-infrared spectral range corresponding to GAF-FP fluorescence. These results open the way for the creation of new small near-infrared FPs based on various natural BphPs with a prospect of their wider use in cell and molecular biology.


Asunto(s)
Proteínas Bacterianas , Proteínas Luminiscentes , Fitocromo , Rhodopseudomonas , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Fitocromo/biosíntesis , Fitocromo/química , Fitocromo/genética , Rhodopseudomonas/química , Rhodopseudomonas/genética , Rhodopseudomonas/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(44): 15827-32, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25267653

RESUMEN

Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.


Asunto(s)
Arabidopsis , Chlorophyta , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/fisiología , Fitocromo , Transducción de Señal/fisiología , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlorophyta/genética , Chlorophyta/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Datos de Secuencia Molecular , Filogenia , Fitocromo/biosíntesis , Fitocromo/genética , Estructura Terciaria de Proteína , Transcriptoma/fisiología
6.
FEBS Lett ; 588(17): 2964-70, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-24911206

RESUMEN

We have successfully developed a system to produce full-length plant phytochrome assembled with phytochromobilin in Pichia pastoris by co-expressing apophytochromes and chromophore biosynthetic genes, heme oxygenase (HY1) and phytochromobilin synthase (HY2) from Arabidopsis. Affinity-purified phytochrome proteins from Pichia cells displayed zinc fluorescence indicating chromophore attachment. Spectroscopic analyses showed absorbance maximum peaks identical to in vitro reconstituted phytochromobilin-assembled phytochromes, suggesting that the co-expression system is effective to generate holo-phytochromes. Moreover, mitochondria localization of the phytochromobilin biosynthetic genes increased the efficiency of holophytochrome biosynthesis. Therefore, this system provides an excellent source of holophytochromes, including oat phytochrome A and Arabidopsis phytochrome B.


Asunto(s)
Biliverdina/análogos & derivados , Ingeniería Genética/métodos , Fitocromo/genética , Fitocromo/metabolismo , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Apoproteínas/biosíntesis , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Biliverdina/metabolismo , Expresión Génica , Hemo-Oxigenasa 1/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Fitocromo/biosíntesis , Fitocromo/química , Transporte de Proteínas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química
7.
PLoS One ; 8(11): e80107, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244620

RESUMEN

BACKGROUND: Etiolated seedlings initiate grana stacking and chlorophyll biosynthesis in parallel with the first exposure to light, during which phytochromes play an important role. Functional phytochromes are biosynthesized separately for two components. One phytochrome is biosynthesized for apoprotein and the other is biosynthesized for the chromophore that includes heme oxygenase (HO). METHODOLOGY/PRINCIPAL FINDING: We isolated a ho1 homolog by map-based cloning of a maize elongated mesocotyl2 (elm2) mutant. cDNA sequencing of the ho1 homolog in elm2 revealed a 31 bp deletion. De-etiolation responses to red and far-red light were disrupted in elm2 seedlings, with a pronounced elongation of the mesocotyl. The endogenous HO activity in the elm2 mutant decreased remarkably. Transgenic complementation further confirmed the dysfunction in the maize ho1 gene. Moreover, non-appressed thylakoids were specifically stacked at the seedling stage in the elm2 mutant. CONCLUSION: The 31 bp deletion in the ho1 gene resulted in a decrease in endogenous HO activity and disrupted the de-etiolation responses to red and far-red light. The specific stacking of non-appressed thylakoids suggested that the chlorophyll biosynthesis regulated by HO1 is achieved by coordinating the heme level with the regulation of grana stacking.


Asunto(s)
Secuencia de Bases , Clorofila/genética , Regulación de la Expresión Génica de las Plantas , Hemo Oxigenasa (Desciclizante)/genética , Proteínas de Plantas/genética , Eliminación de Secuencia , Zea mays/genética , Clorofila/deficiencia , Etiolado , Prueba de Complementación Genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Hipocótilo/metabolismo , Hipocótilo/ultraestructura , Luz , Microscopía Electrónica , Datos de Secuencia Molecular , Fitocromo/biosíntesis , Fitocromo/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Tilacoides/metabolismo , Tilacoides/ultraestructura , Zea mays/enzimología
8.
Photochem Photobiol Sci ; 11(6): 1026-31, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22415794

RESUMEN

The plant pathogen Pseudomonas syringae pv. tomato carries two genes encoding bacterial phytochromes. Sequence motifs identify both proteins (PstBphP1 and PstBphP2, respectively) as biliverdin IXα (BV)-binding phytochromes. PstbphP1 is arranged in an operon with a heme oxygenase (PstBphO)-encoding gene (PstbphO), whereas PstbphP2 is flanked downstream by a gene encoding a CheY-type response regulator. Expression of the heme oxygenase PstBphO yielded a green protein (λ(max) = 650 nm), indicative for bound BV. Heterologous expression of PstbphP1 and PstbphP2 and in vitro assembly with BV IXα yielded the apoproteins for both phytochromes, but only in the case of PstBphP1 a light-inducible chromoprotein. Attempts to express the endogenous heme oxygenase BphO and either of the two phytochromes from two plasmids yielded only holo-PstBphP1. Relatively small amounts of soluble holo-PstBphP2 were just obtained upon co-expression with BphO from P. aeruginosa. Expression of the operon containing PstbphO:PstbphP1 led to an improved yield and better photoreactivity for PstBphP1, whereas an identical construct, exchanging PstbphP1 for PstbphP2 (PstbphO:PstbphP2), again yielded only minute amounts of chromophore-loaded BphP2-holoprotein. The improved yield for PstBphP1 from the PstbphO:PstbphP1 operon expression is apparently caused by complex formation between both proteins during biosynthesis as affinity chromatography of either protein using two different tags always co-purified the reaction partner. These results support the importance of protein-protein interactions during tetrapyrrole metabolism and phytochrome assembly.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Hemo Oxigenasa (Desciclizante)/biosíntesis , Fitocromo/biosíntesis , Pseudomonas syringae/enzimología , Solanum lycopersicum/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Cromatografía de Afinidad , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/aislamiento & purificación , Luz , Fitocromo/genética , Fitocromo/aislamiento & purificación , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tetrapirroles/química , Tetrapirroles/metabolismo
9.
Theor Appl Genet ; 122(1): 109-18, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20700573

RESUMEN

In rice (Oryza sativa), a short-day plant, photoperiod is the most favorable external signal for floral induction because of the constant seasonal change throughout the years. Compared with Arabidopsis, however, a large part of the regulation mechanism of the photoperiodic response in rice still remains unclear due mainly to the lack of induced mutant genes. An induced mutant line X61 flowers 35 days earlier than its original variety Gimbozu under a natural photoperiod in Kyoto (35°01'N). We attempted to identify the mutant gene conferring early heading to X61. Experimental results showed that the early heading of X61 was conferred by a complete loss of photoperiodic response due to a novel single recessive mutant gene se13. This locus interacts with two crucial photoperiod sensitivity loci, Se1 and E1. Wild type alleles at these two loci do not function in coexistence with se13 in a homozygous state, suggesting that Se13 is an upstream locus of the Se1 and E1 loci. Linkage analysis showed that Se13 is located in a 110 kb region between the two markers, INDEL3735_1 and INDEL3735_3 on chromosome 1. A database search suggested that the Se13 gene is identical to AK101395 (=OsHY2), which encodes phytochromobilin synthase, a key enzyme in phytochrome chromophore biosynthesis. Subsequent sequence analysis revealed that X61 harbors a 1 bp insertion in exon 1 of OsHY2, which induces a frame-shift mutation producing a premature stop codon. It is therefore considered that the complete loss of photoperiodic response of X61 is caused by a loss of function of the Se13 (OsHY2) gene involved in phytochrome chromophore biosynthesis.


Asunto(s)
Genes de Plantas/genética , Mutación/genética , Oryza/genética , Fotoperiodo , Fitocromo/biosíntesis , Fitocromo/genética , Secuencia de Bases , Mapeo Cromosómico , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Marcadores Genéticos , Genotipo , Japón , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Estaciones del Año , Análisis de Secuencia de ADN
10.
J Vis Exp ; (39)2010 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-20517200

RESUMEN

Light mediates an array of developmental and adaptive processes throughout the life cycle of a plant. Plants utilize light-absorbing molecules called photoreceptors to sense and adapt to light. The red/far-red light-absorbing phytochrome photoreceptors have been studied extensively. Phytochromes exist as a family of proteins with distinct and overlapping functions in all higher plant systems in which they have been studied. Phytochrome-mediated light responses, which range from seed germination through flowering and senescence, are often localized to specific plant tissues or organs. Despite the discovery and elucidation of individual and redundant phytochrome functions through mutational analyses, conclusive reports on distinct sites of photoperception and the molecular mechanisms of localized pools of phytochromes that mediate spatial-specific phytochrome responses are limited. We designed experiments based on the hypotheses that specific sites of phytochrome photoperception regulate tissue- and organ-specific aspects of photomorphogenesis, and that localized phytochrome pools engage distinct subsets of downstream target genes in cell-to-cell signaling. We developed a biochemical approach to selectively reduce functional phytochromes in an organ- or tissue-specific manner within transgenic plants. Our studies are based on a bipartite enhancer-trap approach that results in transactivation of the expression of a gene under control of the Upstream Activation Sequence (UAS) element by the transcriptional activator GAL4. The biliverdin reductase (BVR) gene under the control of the UAS is silently maintained in the absence of GAL4 transactivation in the UAS-BVR parent. Genetic crosses between a UAS-BVR transgenic line and a GAL4-GFP enhancer trap line result in specific expression of the BVR gene in cells marked by GFP expression. BVR accumulation in Arabidopsis plants results in phytochrome chromophore deficiency in planta. Thus, transgenic plants that we have produced exhibit GAL4-dependent activation of the BVR gene, resulting in the biochemical inactivation of phytochrome, as well as GAL4-dependent GFP expression. Photobiological and molecular genetic analyses of BVR transgenic lines are yielding insight into tissue- and organ-specific phytochrome-mediated responses that have been associated with corresponding sites of photoperception. Fluorescence Activated Cell Sorting (FACS) of GFP-positive, enhancer-trap-induced BVR-expressing plant protoplasts coupled with cell-type-specific gene expression profiling through microarray analysis is being used to identify putative downstream target genes involved in mediating spatial-specific phytochrome responses. This research is expanding our understanding of sites of light perception, the mechanisms through which various tissues or organs cooperate in light-regulated plant growth and development, and advancing the molecular dissection of complex phytochrome-mediated cell-to-cell signaling cascades.


Asunto(s)
Arabidopsis/genética , Citometría de Flujo/métodos , Perfilación de la Expresión Génica/métodos , Fitocromo/genética , Arabidopsis/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Especificidad de Órganos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Fitocromo/biosíntesis , Plantas Modificadas Genéticamente , Activación Transcripcional
11.
J Biol Chem ; 285(7): 5056-65, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19996315

RESUMEN

In plants, phytochromobilin synthase (HY2) synthesize the open chain tetrapyrrole chromophore for light-sensing phytochromes. It catalyzes the double bond reduction of a heme-derived tetrapyrrole intermediate biliverdin IXalpha (BV) at the A-ring diene system. HY2 is a member of ferredoxin-dependent bilin reductases (FDBRs), which require ferredoxins (Fds) as the electron donors for double bond reductions. In this study, we investigated the interaction mechanism of FDBRs and Fds by using HY2 and Fd from Arabidopsis thaliana as model proteins. We found that one of the six Arabidopsis Fds, AtFd2, was the preferred electron donor for HY2. HY2 and AtFd2 formed a heterodimeric complex that was stabilized by chemical cross-linking. Surface-charged residues on HY2 and AtFd2 were important in the protein-protein interaction as well as BV reduction activity of HY2. These surface residues are close to the iron-sulfur center of Fd and the HY2 active site, implying that the interaction promotes direct electron transfer from the Fd to HY2-bound BV. In addition, the C12 propionate group of BV is important for HY2-catalyzed BV reduction. A possible role for this functional group is to mediate the electron transfer by interacting directly with AtFd2. Together, our biochemical data suggest a docking mechanism for HY2:BV and AtFd2.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Fitocromo/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Biliverdina/metabolismo , Cromatografía Líquida de Alta Presión , Simulación por Computador , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica/genética , Unión Proteica/fisiología , Multimerización de Proteína , Estructura Secundaria de Proteína , Homología Estructural de Proteína
12.
Biochem J ; 425(2): 425-34, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19860740

RESUMEN

HOs (haem oxygenases) catalyse the oxidative cleavage of haem to BV (biliverdin), iron and carbon monoxide. In plants, the product of the reaction is BV IXalpha, the precursor of the PHY (phytochrome) chromophore and is thus essential for proper photomorphogenesis. Arabidopsis thaliana contains one major biochemically characterized HO (HY1) and three additional putative HOs (HO2, HO3 and HO4). All four proteins are encoded in the nucleus but contain chloroplast translocation sequences at their N-termini. The transit peptides of all four proteins are sufficient for chloroplast translocalization as shown by GFP (green fluorescent protein) reporter gene fusions. Overall, all four proteins can be divided into two subfamilies: HO1 and HO2. Here we show that all members of the HO1 subfamily (HY1, HO3 and HO4) are active monomeric HOs and can convert haem to BV IXalpha using spinach Fd (ferredoxin) as an electron donor. Addition of a second electron donor, such as ascorbate, led to a 10-fold increase in the haem conversion rate. Furthermore, haem turnover is also promoted by light when spinach thylakoids are present. All HO1 family members displayed similar kinetic parameters indicating they all have a possible involvement in PHY chromophore biosynthesis. HO2 did not yield sufficient amounts of soluble protein and therefore required the construction of a synthetic gene adapted to the codon usage of Escherichia coli. HO2 is unable to bind or degrade haem and therefore it is not a haem oxygenase. However, HO2 shows strong binding of proto IX (protoporphyrin IX), a precursor for both haem and chlorophyll biosynthesis. A possible function of HO2 in the regulation of tetrapyrrole metabolism is discussed.


Asunto(s)
Arabidopsis/enzimología , Hemo Oxigenasa (Desciclizante)/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Hemo/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Cinética , Luz , Fitocromo/biosíntesis , Spinacia oleracea , Tilacoides
13.
J Am Chem Soc ; 131(1): 69-71, 2009 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-19128172

RESUMEN

Low temperature single-molecule fluorescence emission spectroscopy on individual phytochromes from Agrobacterium tumefaciens corroborates findings from ensemble spectroscopy concerning intercomplex heterogeneity. Furthermore, time-dependent intracomplex heterogeneity has been observed.


Asunto(s)
Proteínas Bacterianas/química , Fitocromo/química , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/biosíntesis , Frío , Modelos Moleculares , Fitocromo/biosíntesis , Espectrometría de Fluorescencia/métodos
14.
FEBS Lett ; 580(5): 1333-8, 2006 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-16458890

RESUMEN

By co-expression of heme oxygenase and various bilin reductase(s) in a single operon in conjunction with apophytochrome using two compatible plasmids, we developed a system to produce phytochromes with various chromophores in Escherichia coli. Through the selection of different bilin reductases, apophytochromes were assembled with phytochromobilin, phycocyanobilin, and phycoerythrobilin. The blue-shifted difference spectra of truncated phytochromes were observed with a phycocyanobilin chromophore compared to a phytochromobilin chromophore. When the phycoerythrobilin biosynthetic enzymes were co-expressed, E. coli cells accumulated orange-fluorescent phytochrome. The metabolic engineering of bacteria for the production of various bilins for assembly into phytochromes will facilitate the molecular analysis of photoreceptors.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli/metabolismo , Fitocromo/biosíntesis , Ingeniería de Proteínas/métodos , Tetrapirroles/biosíntesis , Bacterias/metabolismo , Pigmentos Biliares/biosíntesis , Biliverdina/análogos & derivados , Colorantes Fluorescentes/síntesis química , Hemo Oxigenasa (Desciclizante)/metabolismo , Ficobilinas , Ficocianina , Ficoeritrina
15.
Plant Physiol ; 140(3): 856-68, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16428602

RESUMEN

The oxidative cleavage of heme by heme oxygenases (HOs) to form biliverdin IXalpha (BV) is the committed step in the biosynthesis of the phytochrome (phy) chromophore and thus essential for proper photomorphogenesis in plants. Arabidopsis (Arabidopsis thaliana) contains four possible HO genes (HY1, HO2-4). Genetic analysis of the HY1 locus showed previously that it is the major source of BV with hy1 mutant plants displaying long hypocotyls and decreased chlorophyll accumulation consistent with a substantial deficiency in photochemically active phys. More recent analysis of HO2 suggested that it also plays a role in phy assembly and photomorphogenesis but the ho2 mutant phenotype is more subtle than that of hy1 mutants. Here, we define the functions of HO3 and HO4 in Arabidopsis. Like HY1, the HO3 and HO4 proteins have the capacity to synthesize BV from heme. Through a phenotypic analysis of T-DNA insertion mutants affecting HO3 and HO4 in combination with mutants affecting HY1 or HO2, we demonstrate that both of the encoded proteins also have roles in photomorphogenesis, especially in the absence of HY1. Disruption of HO3 and HO4 in the hy1 background further desensitizes seedlings to red and far-red light and accelerates flowering time, with the triple mutant strongly resembling seedlings deficient in the synthesis of multiple phy apoproteins. The hy1/ho3/ho4 mutant can be rescued phenotypically and for the accumulation of holo-phy by feeding seedlings BV. Taken together, we conclude that multiple members of the Arabidopsis HO family are important for synthesizing the bilin chromophore used to assemble photochemically active phys.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Hemo Oxigenasa (Desciclizante)/fisiología , Fitocromo/biosíntesis , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biliverdina/metabolismo , ADN Bacteriano/genética , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Luz , Mutagénesis Insercional , Mutación , Fenotipo
16.
Planta ; 221(5): 675-89, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15891901

RESUMEN

Phytochromes are a family of red/far-red light perceiving photoreceptors. The monocot phytochrome family is represented by three members, PHYA, PHYB and PHYC. We have isolated and characterized the first PHY gene member (TaPHYC) from common wheat, Triticum aestivum var. CPAN1676. It codes for a species of the photoreceptor, phyC, which is known to be light-stable in all plants analyzed so far. A sequence of 7.2 kb has been determined, which includes 3.42 kb of coding region. This is the second full-length PHYC gene sequenced from a monocot (first was from rice). TaPHYC gene shares structural similarities with the rice PHYC containing four exons and three introns in the coding region. The 5' UTR is 1.0-kb-long and harbors an upstream open reading frame (URF) encoding 28 aa. Southern blot analysis of TaPHYC indicates that it represents single locus in the wheat genome, although the possibility of additional loci cannot be completely ruled out. Chromosomal localization using nullisomic-tetrasomic lines of Triticum aestivum var. Chinese Spring places TaPHYC on chromosome 4B. PHYC represents a constitutively expressed gene in all the organs tested and under light/dark conditions. However, PHYC was found to be developmentally regulated showing maximal expression in 3-day-old dark-grown seedlings, which declined thereafter. In silico analysis has also been done to compare TaPHYC gene with the partial sequences known from other wheat species and cultivars. The presence of a topoisomerase gene immediately downstream of the PHYC gene, both in rice and wheat genomes, presents yet another example of synteny in cereals and its possible significance has been discussed.


Asunto(s)
Fitocromo/genética , Triticum/genética , Secuencia de Aminoácidos , Secuencia de Bases , Mapeo Cromosómico , Cromosomas de las Plantas , Secuencia Conservada , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Datos de Secuencia Molecular , Filogenia , Fitocromo/biosíntesis , Fitocromo/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sintenía , Triticum/metabolismo
17.
Cell ; 120(3): 290-2, 2005 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-15707886

RESUMEN

Phytochromes are photoreceptors that regulate various aspects of plant growth and development. In this issue of Cell, Ryu et al. (2005) show that PAPP5, a type 5 protein phosphatase, acts on a biologically active phytochrome, increasing its stability and affinity for a downstream signal transducer and thus enhancing plant photoresponses.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Fotosíntesis/fisiología , Fitocromo/biosíntesis , Plantas/metabolismo , Transducción de Señal/fisiología , Proteínas de Arabidopsis/metabolismo , Fosforilación/efectos de la radiación , Fotosíntesis/efectos de la radiación , Plantas/efectos de la radiación , Transducción de Señal/efectos de la radiación
18.
Planta ; 220(2): 318-30, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15290294

RESUMEN

We have cloned and characterized the phytochrome C ( PHYC) gene from Stellaria longipes. The PHYC gene is composed of a 110-bp 5'-untranslated leader sequence, a 3,342-bp coding region, and a 351-bp 3'-untranslated sequence. The Stellaria PHYC contains three long introns within the coding region at conserved locations as in most angiosperm PHY genes. DNA blot analysis indicates that the Stellaria genome contains a single copy of PHYC. Stellaria PHYC shares 60%, 58%, and 57% deduced amino acid identities with rice, Sorghum, and Arabidopsis PHYC, respectively. Phylogenetic analysis indicates that Stellaria PHYC is located in the dicot branch, but is divergent from Arabidopsis PHYC. The Stellaria PHYC is constitutively expressed in different plant organs, though the level of PHYC gene transcript in roots is slightly higher than in flowers, leaves, and stems. When 2-week old seedlings grown in the dark were exposed to constant white light, PHYC mRNA quickly accumulates within 1-12 h. When plants grown in darkness for 7 days were exposed to different red/far-red light (R/FR) ratios, the levels of PHYC mRNA at R/FR = 0.7 are much lower than under R/FR = 3.5. The levels of PHYC mRNA under short-day (SD) photoperiod are higher than under long-day (LD) photoperiod. Plants under SD conditions do not elongate, and are only about 1.7 cm tall at 19 days. In contrast, plants under LD conditions elongate with an average height of 21.2 cm at 19 days. The plants do not flower under SD conditions, but do so at 18-19 days under LD conditions. These results indicate that under SD conditions the high level of PHYC mRNA may inhibit stem elongation and flower initiation. In contrast, under LD conditions the high level of PHYC mRNA may promote stem elongation and flowering.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/efectos de la radiación , Fitocromo/genética , Stellaria/genética , Secuencia de Aminoácidos , Luz , Datos de Secuencia Molecular , Fotoperiodo , Filogenia , Fitocromo/biosíntesis , Fitocromo/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Stellaria/metabolismo
20.
Plant Physiol ; 134(2): 790-800, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14739347

RESUMEN

Phototropins and phytochromes are the major photosensory receptors in plants and they regulate distinct photomorphogenic responses. The molecular mechanisms underlying functional interactions of phototropins and phytochromes remain largely unclear. We show that the tomato (Lycopersicon esculentum) phytochrome A deficient mutant fri lacks phototropic curvature to low fluence blue light, indicating requirement for phytochrome A for expression of phototropic response. The hp1 mutant that exhibits hypersensitive responses to blue light and red light reverses the impairment of second-positive phototropic response in tomato in phytochrome A-deficient background. Physiological analyses indicate that HP1 functions as a negative regulator of phototropic signal transduction pathway, which is removed via action of phytochrome A. The loss of HP1 gene product in frihp1 double mutant allows the unhindered operation of phototropic signal transduction chain, obviating the need for the phytochrome action. Our results also indicate that the role of phytochrome in regulating phototropism is restricted to low fluence blue light only, and at high fluence blue light, the phytochrome A-deficient fri mutant shows the normal phototropic response.


Asunto(s)
Fototropismo/fisiología , Fitocromo/biosíntesis , Transducción de Señal/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Cloroplastos/fisiología , Cloroplastos/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Luz , Solanum lycopersicum/genética , Solanum lycopersicum/efectos de la radiación , Mutación , Fototropismo/genética , Fototropismo/efectos de la radiación , Fitocromo/efectos de la radiación , Fitocromo A , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...