Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 208: 108458, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38408395

RESUMEN

This study investigated the effect of light intensity and signaling on the regulation of far-red (FR)-induced alteration in photosynthesis. The low (LL: 440 µmol m-2 s-1) and high (HL: 1135 µmol m-2 s-1) intensity of white light with or without FR (LLFR: 545 µmol m-2 s-1 including 115 µmol m-2 s-1; HLFR: 1254 µmol m-2 s-1 + 140 µmol m-2 s-1) was applied on the tomato cultivar (Solanum Lycopersicon cv. Moneymaker) and mutants of phytochrome A (phyA) and phytochrome B (phyB1, and phyB2). Both light intensity and FR affected plant morphological traits, leaf biomass, and flowering time. Irrespective of genotype, flowering was delayed by LLFR and accelerated by HLFR compared to the corresponding light intensity without FR. In LLFR, a reduced energy flux through the electron transfer chain along with a reduced energy dissipation per reaction center improved the maximum quantum yield of PSII, irrespective of genotype. HLFR increased net photosynthesis and gas exchange properties in a genotype-dependent manner. FR-dependent regulation of hormones was affected by light signaling. It appeared that PHYB affected the levels of abscisic acid and salicylic acid while PHYA took part in the regulation of CK in FR-exposed plants. Overall, light intensity and signaling of FR influenced plants' photosynthesis and growth by altering electron transport, gas exchange, and changes in the level of endogenous hormones.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Arabidopsis/metabolismo , Fitocromo B/genética , Fitocromo A/genética , Fitocromo A/metabolismo , Fotosíntesis , Hormonas
2.
Plant Cell Environ ; 47(5): 1513-1525, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251425

RESUMEN

The DNA damage response avoids mutations into dividing cells. Here, we analysed the role of photoreceptors on the restriction of root growth imposed by genotoxic agents and its relationship with cell viability and performance of meristems. Comparison of root growth of Arabidopsis WT, phyA-211, phyB-9, and phyA-211phyB-9 double mutants unveiled a critical role for phytochrome A (PhyA) in protecting roots from genotoxic stress, regeneration and cell replenishment in the meristematic zone. PhyA was located on primary root tips, where it influences genes related to the repair of DNA, including ERF115 and RAD51. Interestingly, phyA-211 mutants treated with zeocin failed to induce the expression of the repressor of cell cycle MYB3R3, which correlated with expression of the mitotic cyclin CycB1, suggesting that PhyA is required for safeguarding the DNA integrity during cell division. Moreover, the growth of the primary roots of PhyA downstream component HY5 and root growth analyses in darkness suggest that cell viability and DNA damage responses within root meristems may act independently from light and photomorphogenesis. These data support novel roles for PhyA as a key player for stem cell niche maintenance and DNA damage responses, which are critical for proper root growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , ADN/metabolismo , Reparación del ADN/genética , Luz , Meristema/genética , Meristema/metabolismo , Mutación , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/metabolismo
3.
Nat Plants ; 9(7): 1116-1129, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37291396

RESUMEN

Plants employ a divergent cohort of phytochrome (Phy) photoreceptors to govern many aspects of morphogenesis through reversible photointerconversion between inactive Pr and active Pfr conformers. The two most influential are PhyA whose retention of Pfr enables sensation of dim light, while the relative instability of Pfr for PhyB makes it better suited for detecting full sun and temperature. To better understand these contrasts, we solved, by cryo-electron microscopy, the three-dimensional structure of full-length PhyA as Pr. Like PhyB, PhyA dimerizes through head-to-head assembly of its C-terminal histidine kinase-related domains (HKRDs), while the remainder assembles as a head-to-tail light-responsive platform. Whereas the platform and HKRDs associate asymmetrically in PhyB dimers, these lopsided connections are absent in PhyA. Analysis of truncation and site-directed mutants revealed that this decoupling and altered platform assembly have functional consequences for Pfr stability of PhyA and highlights how plant Phy structural diversification has extended light and temperature perception.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Microscopía por Crioelectrón , Luz , Fotorreceptores de Plantas , Fitocromo A/genética , Fitocromo B/genética , Plantas , Isoformas de Proteínas
4.
PLoS Genet ; 19(5): e1010779, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216398

RESUMEN

Integration of light and phytohormones is essential for plant growth and development. FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT 1 (JAR1) participates in phytochrome A (phyA)-mediated far-red (FR) light signaling in Arabidopsis and is a jasmonate (JA)-conjugating enzyme for the generation of an active JA-isoleucine. Accumulating evidence indicates that FR and JA signaling integrate with each other. However, the molecular mechanisms underlying their interaction remain largely unknown. Here, the phyA mutant was hypersensitive to JA. The double mutant fin219-2phyA-211 showed a synergistic effect on seedling development under FR light. Further evidence revealed that FIN219 and phyA antagonized with each other in a mutually functional demand to modulate hypocotyl elongation and expression of light- and JA-responsive genes. Moreover, FIN219 interacted with phyA under prolonged FR light, and MeJA could enhance their interaction with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) in the dark and FR light. FIN219 and phyA interaction occurred mainly in the cytoplasm, and they regulated their mutual subcellular localization under FR light. Surprisingly, the fin219-2 mutant abolished the formation of phyA nuclear bodies under FR light. Overall, these data identified a vital mechanism of phyA-FIN219-COP1 association in response to FR light, and MeJA may allow the photoactivated phyA to trigger photomorphogenic responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo A/genética , Fitocromo A/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Fitocromo/genética , Mutación , Regulación de la Expresión Génica de las Plantas
5.
Int J Mol Sci ; 24(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37175844

RESUMEN

Phytochrome (phy) system in plants comprising a small number of phytochromes with phyA and phyB as major ones is responsible for acquiring light information in the red-far-red region of the solar spectrum. It provides optimal strategy for plant development under changing light conditions throughout all its life cycle beginning from seed germination and seedling establishment to fruiting and plant senescence. The phyA was shown to participate in the regulation of this cycle which is especially evident at its early stages. It mediates three modes of reactions-the very low and low fluence responses (VLFR and LFR) and the high irradiance responses (HIR). The phyA is the sole light receptor in the far-red spectral region responsible for plant's survival under a dense plant canopy where light is enriched with the far-red component. Its appearance is believed to be one of the main factors of plants' successful evolution. So far, it is widely accepted that one molecular phyA species is responsible for its complex functional manifestations. In this review, the evidence of the existence of two distinct phyA types-major, light-labile and soluble phyA' and minor, relatively light-stable and amphiphilic phyA″-is presented as what may account for the diverse modes of phyA action.


Asunto(s)
Proteínas de Arabidopsis , Fitocromo , Fitocromo A/genética , Fitocromo B/genética , Luz , Fitocromo/genética , Plantas/genética , Proteínas de Arabidopsis/genética , Mutación
6.
Plant Physiol ; 192(2): 1449-1465, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36869668

RESUMEN

Plants can sense the shade from neighboring plants by detecting a reduction of the red:far-red light (R:FR) ratio. Phytochrome B (phyB) is the primary photoreceptor that perceives shade light and regulates jasmonic acid (JA) signaling. However, the molecular mechanisms underlying phyB and JA signaling integration in shade responses remain largely unknown. Here, we show the interaction of phyB and FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT1 (JAR1) in a functional demand manner in Arabidopsis (Arabidopsis thaliana) seedling development. Genetic evidence and interaction studies indicated that phyB and FIN219 synergistically and negatively regulate shade-induced hypocotyl elongation. Moreover, phyB interacted with various isoforms of FIN219 under high and low R:FR light. Methyl jasmonate (MeJA) treatment, FIN219 mutation, and PHYBOE digalactosyldiacylglycerol synthase1-1 (dgd1-1) plants, which show increased levels of JA, altered the patterns of phyB-associated nuclear speckles under the same conditions. Surprisingly, PHYBOE dgd1-1 showed a shorter hypocotyl phenotype than its parental mutants under shade conditions. Microarray assays using PHYBOE and PHYBOE fin219-2 indicated that PHYB overexpression substantially affects defense response-related genes under shade light and coregulates expression of auxin-responsive genes with FIN219. Thus, our findings reveal that phyB substantially crosstalks with JA signaling through FIN219 to modulate seedling development under shade light.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Luz , Mutación/genética , Motas Nucleares , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo
7.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768431

RESUMEN

Extensive research has been conducted for decades to elucidate the molecular and regulatory mechanisms for phytochrome-mediated light signaling in plants. As a result, tens of downstream signaling components that physically interact with phytochromes are identified, among which negative transcription factors for photomorphogenesis, PHYTOCHROME-INTERACTING FACTORs (PIFs), are well known to be regulated by phytochromes. In addition, phytochromes are also shown to inactivate an important E3 ligase complex consisting of CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSORs OF phyA-105 (SPAs). This inactivation induces the accumulation of positive transcription factors for plant photomorphogenesis, such as ELONGATED HYPOCOTYL 5 (HY5). Although many downstream components of phytochrome signaling have been studied thus far, it is not fully elucidated which intrinsic activity of phytochromes is necessary for the regulation of these components. It should be noted that phytochromes are autophosphorylating protein kinases. Recently, the protein kinase activity of phytochrome A (phyA) has shown to be important for its function in plant light signaling using Avena sativa phyA mutants with reduced or increased kinase activity. In this review, we highlight the function of phyA as a protein kinase to explain the regulation of plant photoresponses by phyA.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo A/genética , Fitocromo A/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Plantas/genética , Plantas/metabolismo , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Luz , Regulación de la Expresión Génica de las Plantas
8.
Plant Physiol ; 191(4): 2353-2366, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36670526

RESUMEN

Phytochromes are red light and far-red light sensitive, plant-specific light receptors that allow plants to orient themselves in space and time. Tomato (Solanum lycopersicum) contains a small family of five phytochrome genes, for which to date stable knockout mutants are only available for three of them. Using CRISPR technology, we created multiple alleles of SlPHYTOCHROME F (phyF) mutants to determine the function of this understudied phytochrome. We report that SlphyF acts as a red/far-red light reversible low fluence sensor, likely through the formation of heterodimers with SlphyB1 and SlphyB2. During photomorphogenesis, phyF functions additively with phyB1 and phyB2. Our data further suggest that phyB2 requires the presence of either phyB1 or phyF during seedling de-etiolation in red light, probably via heterodimerization, while phyB1 homodimers are required and sufficient to suppress hypocotyl elongation in red light. During the end-of-day far-red response, phyF works additively with phyB1 and phyB2. In addition, phyF plays a redundant role with phyB1 in photoperiod detection and acts additively with phyA in root patterning. Taken together, our results demonstrate various roles for SlphyF during seedling establishment, sometimes acting additively, other times acting redundantly with the other phytochromes in tomato.


Asunto(s)
Fitocromo , Solanum lycopersicum , Fitocromo/genética , Solanum lycopersicum/genética , Plantones , Hipocótilo/genética , Luz , Fitocromo A/genética , Fitocromo B/genética , Mutación/genética
9.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675076

RESUMEN

Drought stress is a severe environmental issue that threatens agriculture at a large scale. PHYTOCHROMES (PHYs) are important photoreceptors in plants that control plant growth and development and are involved in plant stress response. The aim of this study was to identify the role of PHYs in the tomato cv. 'Moneymaker' under drought conditions. The tomato genome contains five PHYs, among which mutant lines in tomato PHYA and PHYB (B1 and B2) were used. Compared to the WT, phyA and phyB1B2 mutants exhibited drought tolerance and showed inhibition of electrolyte leakage and malondialdehyde accumulation, indicating decreased membrane damage in the leaves. Both phy mutants also inhibited oxidative damage by enhancing the expression of reactive oxygen species (ROS) scavenger genes, inhibiting hydrogen peroxide (H2O2) accumulation, and enhancing the percentage of antioxidant activities via DPPH test. Moreover, expression levels of several aquaporins were significantly higher in phyA and phyB1B2, and the relative water content (RWC) in leaves was higher than the RWC in the WT under drought stress, suggesting the enhancement of hydration status in the phy mutants. Therefore, inhibition of oxidative damage in phyA and phyB1B2 mutants may mitigate the harmful effects of drought by preventing membrane damage and conserving the plant hydrostatus.


Asunto(s)
Fitocromo , Solanum lycopersicum , Fitocromo A/genética , Fitocromo A/metabolismo , Solanum lycopersicum/genética , Resistencia a la Sequía , Peróxido de Hidrógeno/metabolismo , Fitocromo/metabolismo , Mutación , Regulación de la Expresión Génica de las Plantas , Fitocromo B/genética , Fitocromo B/metabolismo
10.
J Integr Plant Biol ; 65(4): 888-894, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36394421

RESUMEN

In Arabidopsis, although studies have demonstrated that phytochrome A (phyA) and phyB are involved in blue light signaling, how blue light-activated phytochromes modulate the activity of the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-SUPPRESSOR OF PHYA-105 (SPA1) E3 complex remains largely unknown. Here, we show that phyA responds to early and weak blue light, whereas phyB responds to sustainable and strong blue light. Activation of both phyA and phyB by blue light inhibits SPA1 activity. Specifically, blue light irradiation promoted the nuclear import of both phytochromes to stimulate their binding to SPA1, abolishing SPA1's interaction with LONG HYPOCOTYL 5 (HY5) to release HY5, which promoted seedling photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Fitocromo A/genética , Fitocromo A/metabolismo , Proteínas de Ciclo Celular/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(41): e2208708119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191205

RESUMEN

Photoperiod is an important environmental cue. Plants can distinguish the seasons and flower at the right time through sensing the photoperiod. Soybean is a sensitive short-day crop, and the timing of flowering varies greatly at different latitudes, thus affecting yields. Soybean cultivars in high latitudes adapt to the long day by the impairment of two phytochrome genes, PHYA3 and PHYA2, and the legume-specific flowering suppressor, E1. However, the regulating mechanism underlying phyA and E1 in soybean remains largely unknown. Here, we classified the regulation of the E1 family by phyA2 and phyA3 at the transcriptional and posttranscriptional levels, revealing that phyA2 and phyA3 regulate E1 by directly binding to LUX proteins, the critical component of the evening complex, to regulate the stability of LUX proteins. In addition, phyA2 and phyA3 can also directly associate with E1 and its homologs to stabilize the E1 proteins. Therefore, phyA homologs control the core flowering suppressor E1 at both the transcriptional and posttranscriptional levels, to double ensure the E1 activity. Thus, our results disclose a photoperiod flowering mechanism in plants by which the phytochrome A regulates LUX and E1 activity.


Asunto(s)
Fotoperiodo , Fitocromo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
12.
Plant Cell ; 34(8): 2907-2924, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35543486

RESUMEN

To enhance plant fitness under natural conditions, the circadian clock is synchronized and entrained by light via photoreceptors. In turn, the circadian clock exquisitely regulates the abundance and activity of photoreceptors via largely uncharacterized mechanisms. Here we show that the clock regulator TIME FOR COFFEE (TIC) controls the activity of the far-red light photoreceptor phytochrome A (phyA) at multiple levels in Arabidopsis thaliana. Null mutants of TIC displayed dramatically increased sensitivity to light irradiation with respect to hypocotyl growth, especially to far-red light. RNA-sequencing demonstrated that TIC and phyA play largely opposing roles in controlling light-regulated gene expression at dawn. Additionally, TIC physically interacts with the transcriptional repressor TOPLESS (TPL), which was associated with the significantly increased PHYA transcript levels in the tic-2 and tpl-1 mutants. Moreover, TIC interacts with phyA in the nucleus, thereby affecting phyA protein turnover and the formation of phyA nuclear speckles following light irradiation. Genetically, phyA was found to act downstream of TIC in regulating far red light-inhibited growth. Taken together, these findings indicate that TIC acts as a major negative regulator of phyA by integrating transcriptional and post-translational mechanisms at multiple levels.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Tics , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Hipocótilo , Luz , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo
13.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163602

RESUMEN

Heat stress (HS) is a prevalent negative factor affecting plant growth and development, as it is predominant worldwide and threatens agriculture on a large scale. PHYTOCHROMES (PHYs) are photoreceptors that control plant growth and development, and the stress signaling response partially interferes with their activity. PHYA, B1, and B2 are the most well-known PHY types in tomatoes. Our study aimed to identify the role of tomato 'Money Maker' phyA and phyB1B2 mutants in stable and fluctuating high temperatures at different growth stages. In the seed germination and vegetative growth stages, the phy mutants were HS tolerant, while during the flowering stage the phy mutants revealed two opposing roles depending on the HS exposure period. The response of the phy mutants to HS during the fruiting stage showed similarity to WT. The most obvious stage that demonstrated phy mutants' tolerance was the vegetative growth stage, in which a high degree of membrane stability and enhanced water preservation were achieved by the regulation of stomatal closure. In addition, both mutants upregulated the expression of heat-responsive genes related to heat tolerance. In addition to lower malondialdehyde accumulation, the phyA mutant enhanced proline levels. These results clarified the response of tomato phyA and phyB1B2 mutants to HS.


Asunto(s)
Respuesta al Choque Térmico , Mutación , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Fitocromo A/genética , Fitocromo B/genética
14.
Plant Cell ; 34(1): 633-654, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34741605

RESUMEN

Phytochrome A (phyA) is the far-red (FR) light photoreceptor in plants that is essential for seedling de-etiolation under FR-rich environments, such as canopy shade. TANDEM ZINC-FINGER/PLUS3 (TZP) was recently identified as a key component of phyA signal transduction in Arabidopsis thaliana; however, how TZP is integrated into the phyA signaling networks remains largely obscure. Here, we demonstrate that ELONGATED HYPOCOTYL5 (HY5), a well-characterized transcription factor promoting photomorphogenesis, mediates FR light induction of TZP expression by directly binding to a G-box motif in the TZP promoter. Furthermore, TZP physically interacts with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), an E3 ubiquitin ligase targeting HY5 for 26S proteasome-mediated degradation, and this interaction inhibits COP1 interaction with HY5. Consistent with those results, TZP post-translationally promotes HY5 protein stability in FR light, and in turn, TZP protein itself is destabilized by COP1 in both dark and FR light conditions. Moreover, tzp hy5 double mutants display an additive phenotype relative to their respective single mutants under high FR light intensities, indicating that TZP and HY5 also function in largely independent pathways. Together, our data demonstrate that HY5 and TZP mutually upregulate each other in transmitting the FR light signal, thus providing insights into the complicated but delicate control of phyA signaling networks.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Fitocromo A/genética , Transducción de Señal , Factores de Transcripción/genética , Regulación hacia Arriba , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitocromo A/metabolismo , Factores de Transcripción/metabolismo
15.
Nat Biotechnol ; 40(2): 262-272, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34608325

RESUMEN

Optogenetic technologies have transformed our ability to precisely control biological processes in time and space. Yet, current eukaryotic optogenetic systems are limited by large or complex optogenetic modules, long illumination times, low tissue penetration or slow activation and deactivation kinetics. Here, we report a red/far-red light-mediated and miniaturized Δphytochrome A (ΔPhyA)-based photoswitch (REDMAP) system based on the plant photoreceptor PhyA, which rapidly binds the shuttle protein far-red elongated hypocotyl 1 (FHY1) under illumination with 660-nm light with dissociation occurring at 730 nm. We demonstrate multiple applications of REDMAP, including dynamic on/off control of the endogenous Ras/Erk mitogen-activated protein kinase (MAPK) cascade and control of epigenetic remodeling using a REDMAP-mediated CRISPR-nuclease-deactivated Cas9 (CRISPR-dCas9) (REDMAPcas) system in mice. We also demonstrate the utility of REDMAP tools for in vivo applications by activating the expression of transgenes delivered by adeno-associated viruses (AAVs) or incorporated into cells in microcapsules implanted into mice, rats and rabbits illuminated by light-emitting diodes (LEDs). Further, we controlled glucose homeostasis in type 1 diabetic (T1D) mice and rats using REDMAP to trigger insulin expression. REDMAP is a compact and sensitive tool for the precise spatiotemporal control of biological activities in animals with applications in basic biology and potentially therapy.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Luz , Mamíferos , Ratones , Optogenética , Fitocromo A/genética , Fitocromo A/metabolismo , Conejos , Ratas
16.
Nat Commun ; 12(1): 5614, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556672

RESUMEN

Photoactivated phytochrome B (PHYB) binds to antagonistically acting PHYTOCHROME-INTERACTING transcription FACTORs (PIFs) to regulate hundreds of light responsive genes in Arabidopsis by promoting PIF degradation. However, whether PHYB directly controls the transactivation activity of PIFs remains ambiguous. Here we show that the prototypic PIF, PIF3, possesses a p53-like transcription activation domain (AD) consisting of a hydrophobic activator motif flanked by acidic residues. A PIF3mAD mutant, in which the activator motif is replaced with alanines, fails to activate PIF3 target genes in Arabidopsis, validating the functions of the PIF3 AD in vivo. Intriguingly, the N-terminal photosensory module of PHYB binds immediately adjacent to the PIF3 AD to repress PIF3's transactivation activity, demonstrating a novel PHYB signaling mechanism through direct interference of the transactivation activity of PIF3. Our findings indicate that PHYB, likely also PHYA, controls the stability and activity of PIFs via structurally separable dual signaling mechanisms.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Fitocromo B/genética , Activación Transcripcional/genética , Proteína p53 Supresora de Tumor/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Modelos Genéticos , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica/efectos de la radiación , Homología de Secuencia de Aminoácido , Activación Transcripcional/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34353905

RESUMEN

The circadian clock is an important adaptation to life on Earth. Here, we use machine learning to predict complex, temporal, and circadian gene expression patterns in Arabidopsis Most significantly, we classify circadian genes using DNA sequence features generated de novo from public, genomic resources, facilitating downstream application of our methods with no experimental work or prior knowledge needed. We use local model explanation that is transcript specific to rank DNA sequence features, providing a detailed profile of the potential circadian regulatory mechanisms for each transcript. Furthermore, we can discriminate the temporal phase of transcript expression using the local, explanation-derived, and ranked DNA sequence features, revealing hidden subclasses within the circadian class. Model interpretation/explanation provides the backbone of our methodological advances, giving insight into biological processes and experimental design. Next, we use model interpretation to optimize sampling strategies when we predict circadian transcripts using reduced numbers of transcriptomic timepoints. Finally, we predict the circadian time from a single, transcriptomic timepoint, deriving marker transcripts that are most impactful for accurate prediction; this could facilitate the identification of altered clock function from existing datasets.


Asunto(s)
Proteínas de Arabidopsis/genética , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Aprendizaje Automático , Modelos Biológicos , Apoproteínas/genética , Arabidopsis/genética , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ecotipo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fitocromo/genética , Fitocromo A/genética , Secuencias Reguladoras de Ácidos Nucleicos
18.
Biochim Biophys Acta Bioenerg ; 1862(8): 148445, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33940040

RESUMEN

The effects of high-intensity light (HIL, 4 and 24 h) and UV-B (1 h) on the net photosynthesis rate, activity of photosystem II (PSII), content of photosynthetic pigments, anthocyanin and UV-absorbing pigments as well as the expression of certain light-responsive genes (HY5,CAB1) chalcone synthase (CHS) and main antioxidants enzyme genes (APX1, GPX and GR) in the leaves of phyB and phyA mutant A. thaliana plants were studied. Both UV-B and 4 and 24 h HIL decreased the PSII maximum quantum yield (Fv/Fm), PSII performance index (PIABS), photosynthesis and respiration rates in plants. Moreover, all stress treatments increased the dissipation of the absorbed energy (DI0/RC) as well as the flux of absorbed energy per RC (ABS/RC). The maximal changes in photosynthesis and chlorophyll fluorescence parameters were observed in the phyB mutant. The WT and the phyA mutant showed similar responses. In addition, the phyB mutant exhibited decreases in the expression of genes encoding enzyme CHS, the transcription factor HY5 and the antioxidant enzymes APX1 and GPX. One of the possible mechanisms protecting the photosynthetic apparatus from light excess or UV radiation is the elevated content of various pigments that can act as antioxidants or optical filters. We assume that the greater decrease in photosynthetic activity in the phyB mutant under HIL and UV-B conditions was due to the decreased content of carotenoids and UV-absorbing pigments in this mutant.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fotosíntesis , Hojas de la Planta/metabolismo , Rayos Ultravioleta , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Luz , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación
19.
Sci Rep ; 11(1): 7540, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824368

RESUMEN

In plants, during growth and development, photoreceptors monitor fluctuations in their environment and adjust their metabolism as a strategy of surveillance. Phytochromes (Phys) play an essential role in plant growth and development, from germination to fruit development. FR-light (FR) insensitive mutant (fri) carries a recessive mutation in Phytochrome A and is characterized by the failure to de-etiolate in continuous FR. Here we used iTRAQ-based quantitative proteomics along with metabolomics to unravel the role of Phytochrome A in regulating central metabolism in tomato seedlings grown under FR. Our results indicate that Phytochrome A has a predominant role in FR-mediated establishment of the mature seedling proteome. Further, we observed temporal regulation in the expression of several of the late response proteins associated with central metabolism. The proteomics investigations identified a decreased abundance of enzymes involved in photosynthesis and carbon fixation in the mutant. Profound accumulation of storage proteins in the mutant ascertained the possible conversion of sugars into storage material instead of being used or the retention of an earlier profile associated with the mature embryo. The enhanced accumulation of organic sugars in the seedlings indicates the absence of photomorphogenesis in the mutant.


Asunto(s)
Fitocromo A/fisiología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Cotiledón/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Luz , Solanum lycopersicum/crecimiento & desarrollo , Metabolómica/métodos , Células Fotorreceptoras/metabolismo , Fotosíntesis , Fitocromo/genética , Fitocromo/fisiología , Fitocromo A/genética , Fitocromo B/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Plantones/genética , Plantones/crecimiento & desarrollo , Transcriptoma/genética
20.
Plant Cell ; 33(6): 1961-1979, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-33768238

RESUMEN

Light is a key environmental cue that fundamentally regulates plant growth and development, which is mediated by the multiple photoreceptors including the blue light (BL) photoreceptor cryptochrome 1 (CRY1). The signaling mechanism of Arabidopsis thaliana CRY1 involves direct interactions with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)/SUPPRESSOR OF PHYA-105 1 and stabilization of COP1 substrate ELONGATED HYPOCOTYL 5 (HY5). H2A.Z is an evolutionarily conserved histone variant, which plays a critical role in transcriptional regulation through its deposition in chromatin catalyzed by SWR1 complex. Here we show that CRY1 physically interacts with SWC6 and ARP6, the SWR1 complex core subunits that are essential for mediating H2A.Z deposition, in a BL-dependent manner, and that BL-activated CRY1 enhances the interaction of SWC6 with ARP6. Moreover, HY5 physically interacts with SWC6 and ARP6 to direct the recruitment of SWR1 complex to HY5 target loci. Based on previous studies and our findings, we propose that CRY1 promotes H2A.Z deposition to regulate HY5 target gene expression and photomorphogenesis in BL through the enhancement of both SWR1 complex activity and HY5 recruitment of SWR1 complex to HY5 target loci, which is likely mediated by interactions of CRY1 with SWC6 and ARP6, and CRY1 stabilization of HY5, respectively.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Criptocromos/metabolismo , Histonas/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Clorofila/biosíntesis , Clorofila/metabolismo , Proteínas Cromosómicas no Histona/genética , Criptocromos/genética , Regulación de la Expresión Génica de las Plantas , Histonas/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Luz , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Plantas Modificadas Genéticamente , Mapas de Interacción de Proteínas , Nicotiana/genética , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...