Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 660
Filtrar
1.
Nat Commun ; 15(1): 5824, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992009

RESUMEN

Access to clean water, hygiene, and sanitation is becoming an increasingly pressing global demand, particularly owing to rapid population growth and urbanization. Phytoremediation utilizes a highly conserved phytochelatin in plants, which captures hazardous heavy metal ions from aquatic environments and sequesters them in vacuoles. Herein, we report the design of phytochelatin-inspired copolymers containing carboxylate and thiolate moieties. Titration calorimetry results indicate that the coexistence of both moieties is essential for the excellent Cd2+ ion-capturing capacity of the copolymers. The obtained dissociation constant, KD ~ 1 nM for Cd2+ ion, is four-to-five orders of magnitude higher than that for peptides mimicking the sequence of endogenous phytochelatin. Furthermore, infrared and nuclear magnetic resonance spectroscopy results unravel the mechanism underlying complex formation at the molecular level. The grafting of 0.1 g bio-inspired copolymers onto silica microparticles and cellulose membranes helps concentrate the copolymer-coated microparticles in ≈3 mL volume to remove Cd2+ ions from 0.3 L of water within 1 h to the drinking water level (<0.03 µM). The obtained results suggest that hyperconfinement of bio-inspired polymers in flow-through systems can be applied for the highly selective removal of harmful contaminants from the environmental water.


Asunto(s)
Metales Pesados , Polímeros , Purificación del Agua , Polímeros/química , Purificación del Agua/métodos , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Biodegradación Ambiental , Contaminantes Químicos del Agua/química , Cadmio/química , Fitoquelatinas/metabolismo , Fitoquelatinas/química , Celulosa/química , Dióxido de Silicio/química , Iones/química
2.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999006

RESUMEN

Arsenic (As) speciation analysis is scientifically relevant due to the pivotal role the As chemical form plays in toxicity, which, in turn, directly influences the effect it has on the environment. The objective of this study was to develop and optimize a method tailored for studying As compounds in plant samples. Different extraction procedures and HPLC methods were explored to assess their efficiency, determine mass balance, and improve the resolution of compounds in the chromatograms. Conventionally applied anion-exchange chromatography facilitated the separation of well-documented As compounds in the extracts corresponding to 19 to 82% of As present in extracts. To gain insight into compounds which remain undetectable by anion chromatography (18 to 81% of As in the extracts), but still possibly metabolically relevant, we explored an alternative chromatographic approach. The procedure of sample purification and preconcentration through solid-phase extraction, facilitating the detection of those minor As compounds, was developed. The system was further refined to achieve an online 2D-RP-HPLC system, which was employed to analyze the extracts more comprehensively with ICP and ESI MS. Using this newly developed method, As(III)-phytochelatins, along with other arseno-thio-compounds, were detected and identified in extracts derived from the tree roots of seedlings grown in the presence of As(III) and As(V), and a group of arseno lipids was detected in the roots of plants exposed to As(V).


Asunto(s)
Arsénico , Espectrometría de Masa por Ionización de Electrospray , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Arsénico/análisis , Arsénico/aislamiento & purificación , Extracción en Fase Sólida/métodos , Arsenicales/análisis , Arsenicales/química , Arsenicales/aislamiento & purificación , Extractos Vegetales/química , Raíces de Plantas/química , Plantas/química , Fitoquelatinas/química , Fitoquelatinas/metabolismo
3.
J Mass Spectrom ; 59(7): e5063, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953332

RESUMEN

An unprecedented and direct PS-MS (paper spray ionization mass spectrometry) method was proposed for the detection of native peptides, that is, glutathiones (GSHs), homoglutathiones (hGSHs), and phytochelatins (PCs), in basil (Ocimum basilicum L.) roots before and after cadmium exposure. The roots were submitted to cold maceration followed by sonication with formic acid as the extractor solvent for sample preparation. PS-MS was used to analyze such extracts in the positive mode, and the results allowed for the detection of several GSHs, hGSHs, and PCs. Some of these PCs were not distinguished in the control samples, that is, basil roots not exposed to cadmium. Other PCs were noticed in both types of roots, uncontaminated and cadmium-contaminated, but the intensities were higher in the former samples. Moreover, long-time exposure to cadmium stimulated the formation of some of these PCs and their cadmium complexes. The results, therefore, provided some crucial insights into the defense mechanism of plants against an external stress condition due to exposure to a toxic heavy metal. The present study represents a promising alternative to investigate other crucial physiological processes in plants submitted to assorted stress conditions.


Asunto(s)
Cadmio , Ocimum basilicum , Fitoquelatinas , Raíces de Plantas , Fitoquelatinas/química , Fitoquelatinas/metabolismo , Raíces de Plantas/química , Cadmio/análisis , Ocimum basilicum/química , Espectrometría de Masas/métodos , Glutatión/análisis , Glutatión/metabolismo , Glutatión/química
4.
Inorg Chem ; 63(24): 10915-10931, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38845098

RESUMEN

Phytochelatins (PCs) are poly-Cys peptides containing a repeating γ-Glu-Cys motif synthesized in plants, algae, certain fungi, and worms by PC synthase from reduced glutathione. It has been shown that an excess of toxic metal ions induces their biosynthesis and that they are responsible for the detoxification process. Little is known about their participation in essential metal binding under nontoxic, basal conditions under which PC synthase is active. This study presents spectroscopic and thermodynamic interactions with the PC2-PC5 series, mainly focusing on the relations between Zn(II) complex stability and cellular Zn(II) availability. The investigations employed mass spectrometry, UV-vis spectroscopy, potentiometry, competition assays with zinc probes, and isothermal titration calorimetry (ITC). All peptides form ZnL complexes, while ZnL2 was found only for PC2, containing two to four sulfur donors in the coordination sphere. Binuclear species typical of Cd(II)-PC complexes are not formed in the case of Zn(II). Results demonstrate that the affinity for Zn(II) increases linearly from PC2 to PC4, ranging from micro- to low-picomolar. Further elongation does not significantly increase the stability. Stability elevation is driven mainly by entropic factors related to the chelate effect and conformational restriction rather than enthalpic factors related to the increasing number of sulfur donors. The affinity of the investigated PCs falls within the range of exchangeable Zn(II) concentrations (hundreds of pM) observed in plants, supporting for the first time a role of PCs both in buffering and in muffling cytosolic Zn(II) concentrations under normal conditions, not exposed to zinc excess, where short PCs have been identified in numerous studies. Furthermore, we found that Cd(II)-PC complexes demonstrate significantly higher metal capacities due to the formation of polynuclear species, which are lacking for Zn(II), supporting the role of PCs in Cd(II) storage (detoxification) and Zn(II) buffering and muffling. Our results on phytochelatins' coordination chemistry and thermodynamics are important for zinc biology and understanding the molecular basis of cadmium toxicity, leaving room for future studies.


Asunto(s)
Fitoquelatinas , Termodinámica , Zinc , Fitoquelatinas/metabolismo , Fitoquelatinas/química , Zinc/química , Zinc/metabolismo , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Complejos de Coordinación/síntesis química
5.
Plant Physiol Biochem ; 212: 108770, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823092

RESUMEN

Cadmium (Cd) and lead (Pb) are among the most toxic heavy metals affecting human health and crop yield. Suaeda maritima (L.) Dumort is an obligate halophyte that is well adapted to saline soil. The inbuilt salinity tolerance mechanisms of halophytes help them to survive in heavy metal-contaminated rhizospheric soil. In the present study, growth and ionomic responses, reactive oxygen species (ROS) accumulation, modulations of phytochelatins, antioxidative defense, and metabolomic responses were studied in S. maritima imposed to Cd and Pb stresses with an aim to elucidate Cd and Pb tolerance mechanisms and phytoremediation potential of this halophyte. Our results showed a reduction of biomass in S. maritima, which may serve as an energy conservation strategy for survival under heavy metal stress. The increased accumulation of ROS with concomitant higher expression of various antioxidative enzymes suggests the efficient scavenging of ROS. The metabolite profiling revealed significant up-regulation of sugars, sugar alcohols, amino acids, polyphenols, and organic acids under Cd and Pb stresses suggesting their possible role in osmotic balance, ionic homeostasis, ROS scavenging, and signal transduction for stress tolerance. In S. maritima, the translocation factors (Tf) are <1 in both Cd and Pb treatments, which indicates that this halophyte has high phytostabilization potential for Cd and Pb in roots and through restricted translocation of heavy metal ions to the aboveground part. The findings of this study offer comprehensive information on Cd and Pb tolerance mechanisms in S. maritima and suggest that this halophyte can detoxify the HMs through physiological, ionic, antioxidative, and metabolic regulations.


Asunto(s)
Biodegradación Ambiental , Cadmio , Chenopodiaceae , Plomo , Especies Reactivas de Oxígeno , Plantas Tolerantes a la Sal , Cadmio/metabolismo , Cadmio/toxicidad , Chenopodiaceae/metabolismo , Chenopodiaceae/efectos de los fármacos , Plantas Tolerantes a la Sal/metabolismo , Plomo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Metabolómica , Antioxidantes/metabolismo , Metaboloma/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Fitoquelatinas/metabolismo
6.
ACS Nano ; 18(27): 17694-17706, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38932609

RESUMEN

The pollution caused by heavy metals (HMs) represents a global concern due to their serious environmental threat. Photosynthetic cyanobacteria have a natural niche and the ability to remediate HMs such as cadmium. However, their practical application is hindered by a low tolerance to HMs and issues related to recycling. In response to these challenges, this study focuses on the development and evaluation of engineered cyanobacteria-based living materials for HMs bioremediation. Genes encoding phytochelatins (PCSs) and metallothioneins (MTs) were introduced into the model cyanobacterium Synechocystis sp. PCC 6803, creating PM/6803. The strain exhibited improved tolerance to multiple HMs and effectively removed a combination of Cd2+, Zn2+, and Cu2+. Using Cd2+ as a representative, PM/6803 achieved a bioremediation rate of approximately 21 µg of Cd2+/OD750 under the given test conditions. To facilitate its controllable application, PM/6803 was encapsulated using sodium alginate-based hydrogels (PM/6803@SA) to create "living materials" with different shapes. This system was feasible, biocompatible, and effective for removing Cd2+ under simulated conditions of zebrafish and mice models. Briefly, in vitro application of PM/6803@SA efficiently rescued zebrafish from polluted water containing Cd2+, while in vivo use of PM/6803@SA significantly decreased the Cd2+ content in mice bodies and restored their active behavior. The study offers feasible strategies for HMs bioremediation using the interesting biomaterials of engineered cyanobacteria both in vitro and in vivo.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Pez Cebra , Animales , Metales Pesados/metabolismo , Metales Pesados/química , Ratones , Synechocystis/metabolismo , Synechocystis/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Hidrogeles/química , Fitoquelatinas/metabolismo , Cadmio/metabolismo , Cadmio/química , Cianobacterias/metabolismo , Cianobacterias/genética , Alginatos/química , Alginatos/metabolismo
7.
Commun Biol ; 7(1): 672, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822018

RESUMEN

ATP-binding cassette transporter B6 (ABCB6), a protein essential for heme biosynthesis in mitochondria, also functions as a heavy metal efflux pump. Here, we present cryo-electron microscopy structures of human ABCB6 bound to a cadmium Cd(II) ion in the presence of antioxidant thiol peptides glutathione (GSH) and phytochelatin 2 (PC2) at resolutions of 3.2 and 3.1 Å, respectively. The overall folding of the two structures resembles the inward-facing apo state but with less separation between the two halves of the transporter. Two GSH molecules are symmetrically bound to the Cd(II) ion in a bent conformation, with the central cysteine protruding towards the metal. The N-terminal glutamate and C-terminal glycine of GSH do not directly interact with Cd(II) but contribute to neutralizing positive charges of the binding cavity by forming hydrogen bonds and van der Waals interactions with nearby residues. In the presence of PC2, Cd(II) binding to ABCB6 is similar to that observed with GSH, except that two cysteine residues of each PC2 molecule participate in Cd(II) coordination to form a tetrathiolate. Structural comparison of human ABCB6 and its homologous Atm-type transporters indicate that their distinct substrate specificity might be attributed to variations in the capping residues situated at the top of the substrate-binding cavity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Humanos , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/ultraestructura , Sitios de Unión , Cadmio/metabolismo , Cadmio/química , Microscopía por Crioelectrón , Glutatión/metabolismo , Glutatión/química , Modelos Moleculares , Fitoquelatinas/metabolismo , Fitoquelatinas/química , Unión Proteica , Conformación Proteica
8.
Cells ; 13(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38667301

RESUMEN

Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography-mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques.


Asunto(s)
Antioxidantes , Cadmio , Chlorophyta , Zeatina , Cadmio/toxicidad , Zeatina/metabolismo , Zeatina/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Chlorophyta/efectos de los fármacos , Chlorophyta/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Fitoquelatinas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo
9.
Sci Rep ; 14(1): 6176, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486015

RESUMEN

Arsenic (As) is a heavy metal that is toxic to both plants and animals. Silicon nanoparticles (SiNPs) can alleviate the detrimental effects of heavy metals on plants, but the underlying mechanisms remain unclear. The study aims to synthesize SiNPs and reveal how they promote plant health in Arsenic-polluted soil. 0 and 100% v/v SiNPs were applied to soil, and Arsenic 0 and 3.2 g/ml were applied twice. Maize growth was monitored until maturity. Small, irregular, spherical, smooth, and non-agglomerated SiNPs with a peak absorbance of 400 nm were synthesized from Pycreus polystachyos. The SiNPs (100%) assisted in the development of a deep, prolific root structure that aided hydraulic conductance and gave mechanical support to the maize plant under As stress. Thus, there was a 40-50% increase in growth, tripled yield weights, and accelerated flowering, fruiting, and senescence. SiNPs caused immobilization (As(III)=SiNPs) of As in the soil and induced root exudates Phytochelatins (PCs) (desGly-PC2 and Oxidized Glutathione) which may lead to formation of SiNPs=As(III)-PCs complexes and sequestration of As in the plant biomass. Moreover, SiNPs may alleviate Arsenic stress by serving as co-enzymes that activate the antioxidant-defensive mechanisms of the shoot and root. Thus, above 70%, most reactive ROS (OH) were scavenged, which was evident in the reduced MDA content that strengthened the plasma membrane to support selective ion absorption of SiNPs in place of Arsenic. We conclude that SiNPs can alleviate As stress through sequestration with PCs, improve root hydraulic conductance, antioxidant activity, and membrane stability in maize plants, and could be a potential tool to promote heavy metal stress resilience in the field.


Asunto(s)
Arsénico , Metales Pesados , Nanopartículas , Antioxidantes/metabolismo , Arsénico/metabolismo , Metales Pesados/metabolismo , Nanopartículas/química , Fitoquelatinas/metabolismo , Plantas/metabolismo , Silicio/farmacología , Suelo , Zea mays/metabolismo
10.
Environ Sci Pollut Res Int ; 31(11): 16375-16387, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38315336

RESUMEN

Intensive sulphur fertilisation has been reported to improve the nutrient balance and growth of Cd-exposed plants, but the reasons of this phenomenon and the role of sulphur compounds in the resistance to cadmium are unclear. We investigated sulphur supplementation-induced changes in the surface properties of roots and the level of thiol peptides (PCs) in Cd-stressed Triticum aestivum L. (monocots clade) and Lactuca sativa L. (dicots clade) grown in nutrient solution. The combination of three sulphur (2 mM S-basic level, 6 or 9 mM S-elevated levels) and four cadmium (0, 0.0002, 0.02 or 0.04 mM Cd) concentrations was used. The physicochemical parameters of the roots were determined based on the apparent surface area (Sr), total variable surface charge (Q), cation exchange capacity (CEC) and surface charge density (SCD). In Cd-exposed plants supplied with sulphur, a different character and trend in the physicochemical changes (adsorption and ion exchange) of roots were noted. At the increased sulphur levels, as a rule, the Sr, CEC, Q and SCD values clearly increased in the lettuce but decreased in the wheat in the entire range of the Cd concentrations, except the enhanced Sr of wheat supplied with 6 mM S together with elevated (0.0002 mM) and unchanged (0.02, 0.04 mM Cd) value of this parameter at 9 mM S. This indicates a clade-specific and/or species-specific plant reaction. The 6 mM S appears to be more effective than 9 mM S in alleviation of the cadmium's toxic effects on roots. It was found that at 0.02 and 0.04 mM Cd, the use of 6 mM S limits the Cd accumulation in the roots of both species in comparison with the basic S fertilisation. Moreover, PC accumulation was much more efficient in wheat than in lettuce, and intensive sulphur nutrition generally induced biosynthesis of these chelating compounds. Physicochemical parameters together with quantitative and qualitative assessment of thiol peptides can be important indicators of the efficiency of root system functioning under cadmium stress. The differences between the species and the multidirectional character of the changes are a result of the involvement of a number of multi-level mechanisms engaged in the defence against metal toxicity.


Asunto(s)
Fitoquelatinas , Contaminantes del Suelo , Cadmio/toxicidad , Lactuca , Triticum , Azufre/farmacología , Compuestos de Sulfhidrilo , Suplementos Dietéticos , Raíces de Plantas , Contaminantes del Suelo/farmacología
11.
Plant Physiol Biochem ; 207: 108327, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38271860

RESUMEN

Triclosan has been extensively used as a preservative in cosmetics and personal care products. However, its accumulation represents a real environmental threat. Thus, its phytotoxic impact needs more consideration. Our study was conducted to highlight the phytotoxic effect of triclosan on the growth, ROS homeostasis, and detoxification metabolism of two different plant species i.e., legumes (Glycine max) and grass (Avena sativa). Moreover, we investigated the potentiality of plant growth-promoting bacteria (ST-PGPB) in mitigating the phytotoxic effect of triclosan. Triclosan induced biomass (fresh and dry weights) reduction in both plants, but to a higher extent in oats. This decline was associated with a noticeable increment in the oxidative damage (e.g., MDA and H2O2) and detoxification metabolites such as metallothionein (MTC), phytochelatins (PCs), and glutathione-S-transferase (GST). This elevation was associated with a remarkable reduction in both enzymatic and non-enzymatic antioxidants. On the other hand, the bioactive strain of ST-PGPB, Salinicoccus sp. JzA1 significantly alleviated the harmful effect of triclosan on both soybean and oat plants by enhancing their biomass, photosynthesis, as well as levels of minerals (K, Ca, P, Mn, and Zn). In parallel, a striking quenching in oxidative damage and an obvious improvement in non-enzymatic (polyphenols, tocopherols, flavonoids) and enzymatic antioxidants were observed. Furthermore, Salinicoccus sp. JzA1 augmented the detoxification metabolism by enhancing the levels of phytochelatins, metallothionein, and glutathione-S-transferase (GST) activity in a species-specific manner which is more apparent in soybean rather than in oat plants. To this end, stress mitigating impact of Salinicoccus sp. JzA1 provides a basis to improve the resilience of crop species under cosmetics and personal care products toxicity.


Asunto(s)
Cosméticos , Triclosán , Avena/metabolismo , Triclosán/metabolismo , Triclosán/toxicidad , Glycine max , Especies Reactivas de Oxígeno/metabolismo , Fitoquelatinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Plantas/metabolismo , Homeostasis , Cosméticos/metabolismo , Cosméticos/farmacología , Metalotioneína/metabolismo , Transferasas/metabolismo
12.
J Agric Food Chem ; 72(1): 715-725, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123485

RESUMEN

Cd pollution-safe cultivar (Cd-PSC) is a feasible strategy to minimize Cd contamination in leafy vegetables. The shoot Cd concentrations of 23 Lactuca sativa cultivars under Cd stress ranged from 0.124 to 2.155 mg·kg-1 with a maximum cultivar difference of 8 folds. Typical Cd-PSC C16 (L) and high-Cd-accumulating cultivar C13 (H) were screened to investigate the mechanisms of Cd accumulations in L. sativa through determining Cd concentrations, Cd subcellular distributions, phytochelatin profiles, and phytochelatin biosynthesis-related genes' expressions. Higher Cd distribution in a heat stable fraction in C13 (H) indicated that the high Cd accumulation trait of C13 (H) mainly depended on the Cd-phytochelatin complexes. Root phytochelatin concentrations were significantly elevated in C13 (H) (5.83 folds) than in C16 (L) (2.69 folds) (p < 0.05) under Cd stress. Significantly downregulated expressions of glutathione S-transferase rather than the regulation of phytochelatin synthesis genes in the root of C13 (H) might be responsible for sufficient glutathione supply for phytochelatins synthesis. These findings suggested that phytochelatin elevation in C13 (H) would favor the Cd root to shoot transportation, which provides new insights into the phytochelatin-related cultivar-dependent Cd accumulating characteristic in L. sativa.


Asunto(s)
Fitoquelatinas , Contaminantes del Suelo , Fitoquelatinas/metabolismo , Cadmio/metabolismo , Lactuca/genética , Contaminantes del Suelo/metabolismo , Raíces de Plantas/química
13.
Environ Geochem Health ; 46(1): 2, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38071652

RESUMEN

The potential of arsenic (As) tolerant and sensitive varieties of wheat (Triticum aestivum L.) has yet to be explored despite of alarming situation of arsenic toxicity. To fill this gap, the study aimed to explore the role of antioxidants, phytochelatins, and ascorbate-glutathione for As tolerance in wheat. A total of eight varieties were exposed to different arsenate treatments (0, 1, 5, 10, 50, 100, 200, 500, 1000, 2000, and 10,000 µM) initially to screen effective treatment as well as contrasting varieties via Weibull distribution frequency for further analysis. The Weibull analysis found 200 µM as the most effective treatment in the present study. Selected varieties were analyzed for accumulation of total As and As speciation, oxidative stress (malondialdehyde, hydrogen peroxide), antioxidants (superoxide dismutase, catalase, peroxidase), phytochelatins, and ascorbate-glutathione cycle (glutathione-S-transferase, glutathione reductase, glutathione peroxidase, ascorbate peroxidase). Tolerant varieties showed less accumulation and translocation of total As, arsenate, and arsenite to the shoots compared with sensitive varieties under 200 µM treatment. Low concentration in tolerant varieties correlated with better growth and development response. Tolerant varieties showed higher induction of metabolites (glutathione, phytochelatins) compared to sensitive ones. Furthermore, tolerant varieties showed better performance of antioxidant and ascorbate-glutathione cycle enzymes in response to As exposure. The findings of the present study provided great insight into the wheat tolerance mechanism upon As exposure between contrasting varieties.


Asunto(s)
Arsénico , Arsénico/toxicidad , Arsénico/metabolismo , Triticum/genética , Triticum/metabolismo , Arseniatos , Fitoquelatinas/metabolismo , Fenómica , Plantones/metabolismo , Antioxidantes/metabolismo , Glutatión/metabolismo , Estrés Oxidativo , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Peróxido de Hidrógeno/metabolismo
14.
Environ Sci Pollut Res Int ; 30(51): 110970-110980, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37798526

RESUMEN

Two non-metallicolous and metallicolous populations of harmel plants were compared regarding the role of proline, cysteine, reducing sugars, hydrogen peroxide (H2O2), glutathione, thiol compounds, organic acids, total free amino acids, and lipid peroxidation in detoxification and tolerance of silver stress (0, 1, 2.5, 5, 10 ppm Ag). The results of the present research state that the effects of Ag were increased total free amino acids, glutathione, organic acids, proline, reducing sugars, thiol compounds, and cysteine, so the accumulation of these compounds was higher in metallicolous populations than non-metallicolous. On the other hand, non-metallicolous populations showed higher content of lipid peroxidation and H2O2 than metallicolous populations under Ag stresses. Also, the accumulation of phytochelatins (PC) was observed with increasing Ag concentration, which shows that compared to glutathione, non-protein thiols have a higher concentration. The number of organic acids (malic acids, fumaric, oxalic, and citric) except acetic acid increased in the leaves of harmel in both populations. According to the results of this research, the harmel metallophilic population has a crucial role in the tolerance and detoxification of Ag stress, so the antioxidant responses of the plant against Ag stress in the non-metallicolous population were lower than the metallicolous population. Based on the above results, it can be concluded that the harmel plant has a detoxification mechanism to deal with high concentrations of Ag.


Asunto(s)
Aminoácidos , Fitoquelatinas , Fitoquelatinas/metabolismo , Aminoácidos/metabolismo , Plata , Cisteína , Peróxido de Hidrógeno/metabolismo , Glutatión/metabolismo , Antioxidantes/metabolismo , Plantas/metabolismo , Prolina/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Azúcares
15.
Environ Pollut ; 337: 122526, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683757

RESUMEN

Selenium (Se) elevates the antioxidant ability of rice against cadmium (Cd) stress, but previous studies only focused on the variation in antioxidant enzymes or nonenzymatic substances induced by Se under Cd stress and ignored the relationships between different antioxidant parameters during the interaction. Here, hydroponic experiments with rice were performed by adding both Cd and Se at doses in the range of 0-50 µM to explore the physiological responses of rice and their relationships in the presence of different levels of Se and Cd. Exogenous Cd markedly promoted the activity of antioxidant enzymes with the exception of catalase (CAT) and the concentration of nonenzymatic substances in aerial parts. Se enhanced the antioxidant capacity by improving the activities of all the enzymes tested in this study and increasing the concentrations of nonenzymatic compounds. The couplings among different antioxidant substances within paddy rice were then determined based on cluster and linear fitting results and their metabolic process and physiological functions. The findings specifically highlight that couplings among the ascorbic acid (AsA)-glutathione (GSH) cycle, glutathione synthase (GS)-phytochelatin synthetase (PCS) coupling system and glutathione peroxidase (GPX)-superoxide dismutase (SOD) coupling system in aerial parts helps protect plants from Cd stress. These coupling systems form likely due to the fact that one enzyme generated a product that could be the substrate for another enzyme. Noticeably, such coupling systems do not emerge in roots because the stronger damage to roots than other organs activates the ascorbate peroxidase (APX)-GPX-CAT and PCS-GS-SOD systems with distinct functions and structures. This study provides new insights into the detoxification mechanisms of rice caused by the combined effect of Se and Cd.


Asunto(s)
Oryza , Selenio , Antioxidantes/metabolismo , Selenio/farmacología , Selenio/metabolismo , Cadmio/metabolismo , Oryza/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Fitoquelatinas/metabolismo , Glutatión Peroxidasa/metabolismo
16.
Environ Pollut ; 335: 122292, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37536477

RESUMEN

The study aimed to investigate the role of hydrogen sulfide (H2S) in regulating chromium stress (Cr-S) tolerance of tomato plants treated with citric acid (CA). Prior to the Cr treatment, tomato plants were foliar-fed with CA (100 µM) daily for 3 days. Subsequently, the plants were grown for another ten days in a hydroponic system in a 50 µM Cr (VI) solution. Chromium treatment reduced photosynthetic pigments and plant biomass, but boosted the levels of hydrogen peroxide (H2O2) malondialdehyde (MDA), H2S, phytochelatins (PCs), and glutathione (GSH), electrolyte leakage (EL), and antioxidant enzyme activity in tomato plants. However, the foliar spray of CA mitigated the levels of H2O2, MDA, and EL, promoted plant growth and chlorophyll content, enhanced antioxidant enzymes' activities, and increased H2S production in Cr-S-tomato plants. CA also increased the levels of GSH and PCs, potentially reducing the toxicity of Cr through regulated sequestration. Additionally, the application of sodium hydrogen sulfide (NaHS), a donor of H2S, improved CA-induced Cr stress tolerance. The addition of CA promoted Cr accumulation in root cell wall and leaf vacuoles to suppress its toxicity. To assess the involvement of H2S in CA-mediated Cr-S tolerance, 0.1 mM hypotaurine (HT), an H2S scavenger, was provided to the control and Cr-S-plants along with CA and CA + NaHS. HT reduced the beneficial effects of CA by decreasing H2S production in tomato plants. However, the NaHS addition with CA + HT inverted the adverse impacts of HT, indicating that H2S is required for CA-induced Cr-S tolerance in tomato plants.


Asunto(s)
Sulfuro de Hidrógeno , Solanum lycopersicum , Sulfuro de Hidrógeno/farmacología , Antioxidantes/metabolismo , Cromo/toxicidad , Ácido Cítrico/farmacología , Peróxido de Hidrógeno/farmacología , Glutatión/metabolismo , Fitoquelatinas , Plantones , Estrés Oxidativo
17.
J Hazard Mater ; 456: 131670, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37236109

RESUMEN

Cadmium (Cd) pollution is an increasingly serious problem in crop production. Although significant progress has been made to comprehend the molecular mechanism of phytochelatins (PCs)-mediated Cd detoxification, the information on the hormonal regulation of PCs is very fragmentary. In the present study, we constructed TRV-COMT, TRV-PCS, and TRV-COMT-PCS plants to further assess the function of CAFFEIC ACID O-METHYLTRANSFERASE (COMT) and PHYTOCHELATIN SYNTHASE (PCS) in melatonin-induced regulation of plant resistance to Cd stress in tomato. Cd stress significantly decreased chlorophyll content and CO2 assimilation rate, but increased Cd, H2O2 and MDA accumulation in the shoot, most profoundly in PCs deficient TRV-PCS and TRV-COMT-PCS plants. Notably, Cd stress and exogenous melatonin treatment significantly increased endogenous melatonin and PC contents in non-silenced plants. Results also explored that melatonin could alleviate oxidative stress and enhance antioxidant capacity and redox homeostasis by conserving improved GSH:GSSG and ASA:DHA ratios. Moreover, melatonin improves osmotic balance and nutrient absorption by regulating the synthesis of PCs. This study unveiled a crucial mechanism of melatonin-regulated PC synthesis, persuaded Cd stress tolerance and nutrient balance in tomato, which may have potential implications for the enhancement of plant resistance to toxic heavy metal stress.


Asunto(s)
Melatonina , Solanum lycopersicum , Cadmio/toxicidad , Melatonina/farmacología , Fitoquelatinas , Peróxido de Hidrógeno , Plantas , Homeostasis
18.
Ecotoxicol Environ Saf ; 259: 115023, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201425

RESUMEN

In highly intensive greenhouse vegetable production, soil acidification was caused by excessive fertilization, increasing cadmium (Cd) concentrations in the vegetables, which bears environmental hazards and is a negative influence on vegetables and humans. Transglutaminases (TGases), a central mediator for certain physiological effects of polyamines (PAs) in the plant kingdom, play important roles in plant development and stress response. Despite increased research on the crucial role of TGase in protecting against environmental stresses, relatively little is known about the mechanisms of Cd tolerance. In this study, we found, TGase activity and transcript level, which was upregulated by Cd, and TGase-induced Cd tolerance related to endogenous bound PAs increase and formation of nitric oxide (NO). Plant growth of tgase mutants was hypersensitive to Cd, chemical complementation by putrescine, sodium nitroprusside (SNP, nitric oxide donor) or gain of function TGase experiments restore Cd tolerance. α-diflouromethylornithine (DFMO, a selective ODC inhibitor) and 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, NO scavenger), were respectively found declined drastically endogenous bound PA and NO content in TGase overexpression plants. Likewise, we reported that TGase interacted with polyamine uptake protein 3 (Put3), and the silencing of Put3 largely reduced TGase-induced Cd tolerance and bound PAs formation. This salvage strategy depends on TGase-regulated synthesis of bound PAs and NO that is able to positively increase the concentration of thiol and phytochelatins, elevate Cd in the cell wall, as well as induce the levels of expression Cd uptake and transport genes. Collectively, these findings indicate that TGase-mediated enhanced levels of bound PA and NO acts as a vital mechanism to protect the plant from Cd-caused toxicity.


Asunto(s)
Óxido Nítrico , Solanum lycopersicum , Cadmio/toxicidad , Cadmio/metabolismo , Pared Celular/metabolismo , Óxido Nítrico/metabolismo , Fitoquelatinas , Plantas/metabolismo , Poliaminas/farmacología , Solanum lycopersicum/genética
19.
Environ Pollut ; 330: 121747, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37146870

RESUMEN

Aminolevulinic acid (ALA) is essential for chlorophyll and heme synthesis. However, whether heme interacts with ALA to elicit antioxidants in arsenic (As)-exposed plants is still unknown. ALA was applied daily to pepper plants for 3 days prior to beginning As stress (As-S). Then, As-S was initiated for 14 days by employing sodium hydrogen arsenate heptahydrate (0.1 mM AsV). Arsenic treatment decreased photosynthetic pigments (chl a by 38% and chl b by 28%), biomass by 24%, and heme by 47% content, but it elevated contents of malondialdehyde (MDA) by 3.3-fold, hydrogen peroxide (H2O2) by 2.3-fold, glutathione (GSH), methylglyoxal (MG), and phytochelatins (PCs) and electrolyte leakage (EL) by 2.3-fold along with enhanced subcellular As concentration in the pepper plant's roots and leaves. The supplementation of ALA to the As-S-pepper seedlings enhanced the amount of chlorophyll, heme content, and antioxidant enzyme activity as well as plant growth, while it reduced the levels of H2O2, MDA, and EL. ALA boosted GSH and phytochelates (PCs) in the As-S-seedlings by controlling As sequestration and rendering it harmless. The addition of ALA enhanced the amount of As that accumulated in the root vacuoles and reduced the poisonousness of the soluble As in the vacuoles. The ALA treatment facilitated the deposition and fixation of As in the vacuoles and cell walls, thereby reducing the transport of As to other cell organelles. This mechanism may have contributed to the observed decrease in As accumulation in the leaves. The administration of 0.5 mM hemin (H) (a source of heme) significantly enhanced ALA-induced arsenic stress tolerance. Hemopexin (Hx, 0.4 µg L-1), a heme scavenger, was treated with the As-S plants along with ALA and ALA + H to observe if heme was a factor in ALA's increased As-S tolerance. Heme synthesis/accumulation in the pepper plants was reduced by Hx, which counteracted the positive effects of ALA. Supplementation of H along with ALA + Hx reversed the negative effects of Hx, demonstrating that heme is required for ALA-induced seedling As-S tolerance.


Asunto(s)
Arsénico , Arsénico/farmacología , Ácido Aminolevulínico/farmacología , Peróxido de Hidrógeno/farmacología , Hemo/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Clorofila , Glutatión/metabolismo , Plantones , Fitoquelatinas , Orgánulos , Estrés Oxidativo
20.
Chemosphere ; 334: 139046, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37244555

RESUMEN

Phytoremediation using plants is an environmentally friendly and cost-effective strategy for removing cadmium (Cd) from soil. Plants used for phytoremediation must have a high Cd accumulation capacity and strong Cd tolerance. Therefore, understanding the molecular mechanism of Cd tolerance and accumulation in plants is of great interest. In response to Cd exposure, plants produce various thio-rich compounds, such as glutathione, phytochelatins, and metallothioneins, which play important roles in Cd immobilization, sequestration, and detoxification. Therefore, sulfur (S) metabolism is crucial for Cd tolerance and accumulation. In this study, we report that the overexpression of low-S responsive genes, LSU1 and LSU2, confers Cd tolerance in Arabidopsis. First, LSU1 and LSU2 promoted S assimilation under Cd stress. Second, LSU1 and LSU2 inhibited the biosynthesis and promoted the degradation of aliphatic glucosinolates, which could limit the consumption and enhance the release of S, thus, facilitating the production of the S-rich metabolites, glutathione, phytochelatins, and metallothioneins. We further demonstrated that the Cd tolerance mediated by LSU1 and LSU2 was dependent on the myrosinases BGLU28 and BGLU30, which catalyze the degradation of aliphatic glucosinolates. In addition, the overexpression of LSU1 and LSU2 improved Cd accumulation, which has great potential for the phytoremediation of Cd-contaminated soil.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Cadmio/metabolismo , Fitoquelatinas/metabolismo , Glucosinolatos/metabolismo , Glucosinolatos/farmacología , Glutatión/metabolismo , Plantas/metabolismo , Azufre/farmacología , Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...