Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.971
Filtrar
1.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732567

RESUMEN

Imbalances in lipid uptake and efflux and inflammation are major contributors to foam cell formation, which is considered a therapeutic target to protect against atherosclerosis. Naringin, a citrus flavonoid abundant in citrus fruits, has been reported to exert an antiatherogenic function, but its pharmacological mechanism is unclear. Naringin treatment effectively inhibits foam cell formation in THP-1 and RAW264.7 macrophages. In this study, mechanically, naringin maintained lipid homeostasis within macrophages through downregulation of the key genes for lipid uptake (MSR1 and CD36) and the upregulation of ABCA1, ABCG1 and SR-B1, which are responsible for cholesterol efflux. Meanwhile, naringin significantly decreased the cholesterol synthesis-related genes and increased the genes involved in cholesterol metabolism. Subsequently, the results showed that ox-LDL-induced macrophage inflammatory responses were inhibited by naringin by reducing the proinflammatory cytokines IL-1ß, IL-6 and TNF-α, and increasing the anti- inflammatory cytokine IL-10, which was further verified by the downregulation of pro-inflammatory and chemokine-related genes. Additionally, we found that naringin reprogrammed the metabolic phenotypes of macrophages by suppressing glycolysis and promoting lipid oxidation metabolism to restore macrophage phenotypes and functions. These results suggest that naringin is a potential drug for the treatment of AS as it inhibits macrophage foam cell formation by regulating metabolic phenotypes and inflammation.


Asunto(s)
Flavanonas , Células Espumosas , Homeostasis , Metabolismo de los Lípidos , Fenotipo , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Flavanonas/farmacología , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Humanos , Homeostasis/efectos de los fármacos , Células RAW 264.7 , Citocinas/metabolismo , Colesterol/metabolismo , Células THP-1 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico
2.
CNS Neurosci Ther ; 30(5): e14740, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38715318

RESUMEN

AIMS: γ-aminobutyric acid (GABA) from reactive astrocytes is critical for the dysregulation of neuronal activity in various neuroinflammatory conditions. While Scutellaria baicalensis Georgi (S. baicalensis) is known for its efficacy in addressing neurological symptoms, its potential to reduce GABA synthesis in reactive astrocytes and the associated neuronal suppression remains unclear. This study focuses on the inhibitory action of monoamine oxidase B (MAO-B), the key enzyme for astrocytic GABA synthesis. METHODS: Using a lipopolysaccharide (LPS)-induced neuroinflammation mouse model, we conducted immunohistochemistry to assess the effect of S. baicalensis on astrocyte reactivity and its GABA synthesis. High-performance liquid chromatography was performed to reveal the major compounds of S. baicalensis, the effects of which on MAO-B inhibition, astrocyte reactivity, and tonic inhibition in hippocampal neurons were validated by MAO-B activity assay, qRT-PCR, and whole-cell patch-clamp. RESULTS: The ethanolic extract of S. baicalensis ameliorated astrocyte reactivity and reduced excessive astrocytic GABA content in the CA1 hippocampus. Baicalin and baicalein exhibited significant MAO-B inhibition potential. These two compounds downregulate the mRNA levels of genes associated with reactive astrogliosis or astrocytic GABA synthesis. Additionally, LPS-induced aberrant tonic inhibition was reversed by both S. baicalensis extract and its key compounds. CONCLUSIONS: In summary, baicalin and baicalein isolated from S. baicalensis reduce astrocyte reactivity and alleviate aberrant tonic inhibition of hippocampal neurons during neuroinflammation.


Asunto(s)
Astrocitos , Flavanonas , Flavonoides , Lipopolisacáridos , Neuronas , Extractos Vegetales , Scutellaria baicalensis , Ácido gamma-Aminobutírico , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Flavanonas/farmacología , Scutellaria baicalensis/química , Ratones , Ácido gamma-Aminobutírico/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Masculino , Flavonoides/farmacología , Extractos Vegetales/farmacología , Lipopolisacáridos/toxicidad , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Monoaminooxidasa/metabolismo , Inhibición Neural/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
3.
Sci Rep ; 14(1): 10114, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698063

RESUMEN

Wogonin is a natural flavone compound from the plant Scutellaria baicalensis, which has a variety of pharmacological activities such as anti-cancer, anti-virus, anti-inflammatory, and immune regulation. However, the potential mechanism of wogonin remains unknown. This study was to confirm the molecular mechanism of wogonin for acute monocytic leukemia treatment, known as AML-M5. The potential action targets between wogonin and acute monocytic leukemia were predicted from databases. The compound-target-pathway network and protein-protein interaction network (PPI) were constructed. The enrichment analysis of related targets and molecular docking were performed. The network pharmacological results of wogonin for AML-M5 treatment were verified using the THP-1 cell line. 71 target genes of wogonin associated with AML-M5 were found. The key genes TP53, SRC, AKT1, RELA, HSP90AA1, JUN, PIK3R1, and CCND1 were preliminarily found to be the potential central targets of wogonin for AML-M5 treatment. The PPI network analysis, GO analysis and KEGG pathway enrichment analysis demonstrated that the PI3K/AKT signaling pathway was the significant pathway in the wogonin for AML-M5 treatment. The antiproliferative effects of wogonin on THP-1 cells of AML-M5 presented a dose-dependent and time-dependent manner, inducing apoptosis, blocking the cell cycle at the G2/M phase, decreasing the expressions of CCND1, CDK2, and CyclinA2 mRNA, as well as AKT and p-AKT proteins. The mechanisms of wogonin on AML-M5 treatment may be associated with inhibiting cell proliferation and regulating the cell cycle via the PI3K/AKT signaling pathway.


Asunto(s)
Flavanonas , Leucemia Monocítica Aguda , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Flavanonas/farmacología , Humanos , Leucemia Monocítica Aguda/tratamiento farmacológico , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patología , Mapas de Interacción de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células THP-1 , Línea Celular Tumoral , Apoptosis/efectos de los fármacos
4.
BMC Vet Res ; 20(1): 204, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755662

RESUMEN

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.


Asunto(s)
Infecciones por Actinobacillus , Actinobacillus pleuropneumoniae , Lesión Pulmonar Aguda , Flavanonas , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , FN-kappa B , Animales , Actinobacillus pleuropneumoniae/efectos de los fármacos , Flavanonas/uso terapéutico , Flavanonas/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/prevención & control , Factor 2 Relacionado con NF-E2/metabolismo , Infecciones por Actinobacillus/veterinaria , Infecciones por Actinobacillus/tratamiento farmacológico , Ratones , FN-kappa B/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Transducción de Señal/efectos de los fármacos , Femenino , Proteínas de la Membrana , Hemo-Oxigenasa 1
5.
Mol Biol Rep ; 51(1): 643, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727775

RESUMEN

BACKGROUND: Baicalein is the main active flavonoid in Scutellariae Radix and is included in shosaikoto, a Kampo formula used for treating hepatitis and jaundice. However, little is known about its hepatoprotective effects against hepatic ischemia-reperfusion injury (HIRI), a severe clinical condition directly caused by interventional procedures. We aimed to investigate the hepatoprotective effects of baicalein against HIRI and partial hepatectomy (HIRI + PH) and its potential underlying mechanisms. METHODS AND RESULTS: Male Sprague-Dawley rats received either baicalein (5 mg/kg) or saline intraperitoneally and underwent a 70% hepatectomy 15 min after hepatic ischemia. After reperfusion, liver and blood samples were collected. Survival was monitored 30 min after hepatic ischemia and hepatectomy. In interleukin 1ß (IL-1ß)-treated primary cultured rat hepatocytes, the influence of baicalein on inflammatory mediator production and the associated signaling pathway was analyzed. Baicalein suppressed apoptosis and neutrophil infiltration, which are the features of HIRI + PH treatment-induced histological injury. Baicalein also reduced the mRNA expression of the proinflammatory cytokine tumor necrosis factor-α (TNF-α). In addition, HIRI + PH treatment induced liver enzyme deviations in the serum and hypertrophy of the remnant liver, which were suppressed by baicalein. In the lethal HIRI + PH treatment group, baicalein significantly reduced mortality. In IL-1ß-treated rat hepatocytes, baicalein suppressed TNF-α and chemokine mRNA expression as well as the activation of nuclear factor-kappa B (NF-κB) and Akt. CONCLUSIONS: Baicalein treatment attenuates HIRI + PH-induced liver injury and may promote survival. This potential hepatoprotection may be partly related to suppressing inflammatory gene induction through the inhibition of NF-κB activity and Akt signaling in hepatocytes.


Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Flavanonas , Hepatectomía , Hepatocitos , Interleucina-1beta , Hígado , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Flavanonas/farmacología , Flavanonas/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Hepatectomía/métodos , Masculino , Ratas , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Apoptosis/efectos de los fármacos , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Sustancias Protectoras/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
6.
J Biochem Mol Toxicol ; 38(5): e23717, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742857

RESUMEN

Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.


Asunto(s)
Cloruro de Aluminio , Flavanonas , Trastornos de la Memoria , Estrés Oxidativo , Animales , Flavanonas/farmacología , Flavanonas/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Ratones , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Cloruro de Aluminio/toxicidad , Masculino , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
7.
Neurotox Res ; 42(2): 23, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578482

RESUMEN

Alzheimer's disease (AD) involves a neurodegenerative process that has not yet been prevented, reversed, or stopped. Continuing with the search for natural pharmacological treatments, flavonoids are a family of compounds with proven neuroprotective effects and multi-targeting behavior. The American genus Dalea L. (Fabaceae) is an important source of bioactive flavonoids. In this opportunity, we tested the neuroprotective potential of three prenylated flavanones isolated from Dalea species in a new in vitro pre-clinical AD model previously developed by us. Our approach consisted in exposing neural cells to conditioned media (3xTg-AD ACM) from neurotoxic astrocytes derived from hippocampi and cortices of old 3xTg-AD mice, mimicking a local neurodegenerative microenvironment. Flavanone 1 and 3 showed a neuroprotective effect against 3xTg-AD ACM, being 1 more active than 3. The structural requirements to afford neuroprotective activity in this model are a 5'-dimethylallyl and 4'-hydroxy at the B ring. In order to search the mechanistic performance of the most active flavanone, we focus on the flavonoid-mediated regulation of GSK-3ß-mediated tau phosphorylation previously reported. Flavanone 1 treatment decreased the rise of hyperphosphorylated tau protein neuronal levels induced after 3xTg-AD ACM exposure and inhibited the activity of GSK-3ß. Finally, direct exposure of these neurotoxic 3xTg-AD astrocytes to flavanone 1 resulted in toxicity to these cells and reduced the neurotoxicity of 3xTg-AD ACM as well. Our results allow us to present compound 1 as a natural prenylated flavanone that could be used as a precursor to development and design of future drug therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Flavanonas , Fármacos Neuroprotectores , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones Transgénicos , Proteínas tau/metabolismo , Flavanonas/farmacología , Flavanonas/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad , Fosforilación , Péptidos beta-Amiloides/metabolismo
8.
Int J Biol Macromol ; 268(Pt 1): 131728, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649074

RESUMEN

Chitosan (CH) is natural abundant biopolymer present on earth after cellulose. CH can be functionalized by numerous functional groups such as amino and carboxyl groups, potential biologically active compounds. The functionalization of CH with polyphenols had a greater biological than non-grafted CH. In the present study, the polyphenolic compound liquiritigenin (LTG) is chemically functionalized on the low molecular weight chitosan (LMW-CH) (693.09 Da). This was extracted and irradiated with gamma radiation from the gladius of Sepioteuthis lessoniana. The grafted compound was to in vitro anti-oxidant employing physicochemical methods and characterization was made by spectroscopic methods. The degree of deacetylation (DDA) of the LMW-CH was detected in 74 % of the samples, and at higher concentrations (100 g/mL). LMW-CH grafted with LTG had improved water solubility (5 mg/mL), and was thermally stable upto 143.58 °C. Its molecular weight was 855.1 Da. In conclusion the in vitro antioxidant and the anti-tuberculosis (anti-TB) properties of the grafted samples were significantly (P < 0.001) increased compared to the unconjugated LMW-CH and LTG. Overall, functionalization of LTG with LMW-CH improved the anti-tuberculosis activity. Further studies are needed to explore the possibilities of its use in vivo models.


Asunto(s)
Antioxidantes , Antituberculosos , Quitosano , Flavanonas , Peso Molecular , Quitosano/química , Quitosano/farmacología , Flavanonas/química , Flavanonas/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Antituberculosos/química , Antituberculosos/farmacología , Solubilidad
9.
Endocr Res ; 49(2): 106-116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597376

RESUMEN

BACKGROUND: Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments. AIMS: To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17ß-estradiol (E2). METHODS: These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells. RESULTS: All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation. CONCLUSION: Natural estrogens were no less toxic than a synthetic one.


Asunto(s)
Proliferación Celular , Estradiol , Flavanonas , Tartrazina , Humanos , Animales , Ratas , Estradiol/farmacología , Flavanonas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Tartrazina/farmacología , Carcinoma Hepatocelular , Neoplasias Hepáticas/inducido químicamente , Células Hep G2 , Estrógenos/farmacología , Congéneres del Estradiol/farmacología , Fitoestrógenos/farmacología
10.
Hum Exp Toxicol ; 43: 9603271241249990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38664950

RESUMEN

The disruption of the immune system by viral attack is a major influencing factor in the lethality of COVID-19. Baicalein is one of the key effective compounds against COVID-19. The molecular mechanisms regarding the anti-inflammatory properties of Baicalein are still unclear. In this study, we established LPS-induced mice to elucidate the role of Baicalein in the treatment of acute lung injury (ALI) and its potential molecular mechanisms. In vivo experiments showed that Baicalein could significantly ameliorate LPS-induced acute lung injury and reduce proteinous edema in lung tissue. In addition, Baicalein inhibited M1 macrophage polarization, promote M2 macrophage polarization, and regulate inflammatory responses. Furthermore, Baicalein could inhibit the expression of protein molecules associated with pyroptosis and mitigate the lung tissue injury. In summary, we revealed the therapeutic effects of Baicalein in acute lung injury, providing the theoretical basis for its clinical application.


Asunto(s)
Lesión Pulmonar Aguda , Flavanonas , Lipopolisacáridos , Macrófagos , Piroptosis , Flavanonas/farmacología , Flavanonas/uso terapéutico , Animales , Piroptosis/efectos de los fármacos , Lipopolisacáridos/toxicidad , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Neumonía/tratamiento farmacológico , Neumonía/inducido químicamente , Pulmón/efectos de los fármacos , Pulmón/patología , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología
11.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673736

RESUMEN

Abundant in citrus fruits, naringin (NAR) is a flavonoid that has a wide spectrum of beneficial health effects, including its anti-inflammatory activity. However, its use in the clinic is limited due to extensive phase I and II first-pass metabolism, which limits its bioavailability. Thus, lipid nanoparticles (LNPs) were used to protect and concentrate NAR in inflamed issues, to enhance its anti-inflammatory effects. To target LNPs to the CD44 receptor, overexpressed in activated macrophages, functionalization with hyaluronic acid (HA) was performed. The formulation with NAR and HA on the surface (NAR@NPsHA) has a size below 200 nm, a polydispersity around 0.245, a loading capacity of nearly 10%, and a zeta potential of about 10 mV. In vitro studies show the controlled release of NAR along the gastrointestinal tract, high cytocompatibility (L929 and THP-1 cell lines), and low hemolytic activity. It was also shown that the developed LNPs can regulate inflammatory mediators. In fact, NAR@NPsHA were able to decrease TNF-α and CCL-3 markers expression by 80 and 90% and manage to inhibit the effects of LPS by around 66% for IL-1ß and around 45% for IL-6. Overall, the developed LNPs may represent an efficient drug delivery system with an enhanced anti-inflammatory effect.


Asunto(s)
Antiinflamatorios , Flavanonas , Liposomas , Nanopartículas , Flavanonas/farmacología , Flavanonas/química , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Nanopartículas/química , Animales , Células THP-1 , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Ratones , Línea Celular , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Receptores de Hialuranos/metabolismo , Composición de Medicamentos
12.
Urologiia ; (1): 162-167, 2024 Mar.
Artículo en Ruso | MEDLINE | ID: mdl-38650422

RESUMEN

Currently, the significance of the chronic prostatitis (CP) is undoubted. Oxidative stress is considered as one of the standard mechanisms of cellular damage that is associated with inflammatory diseases such as CP. When choosing the combination therapy for this group of patients, a correction of oxidative stress is pathogenetically justified. Literature data about the pathogenetic feasibility and prospects of using a biologically active complex containing flavonoids and carotenoids quercetin, lycopene and naringin as part of the combination treatment of patients with CP are presented in the article. Considering the various effects of the biologically active complex Querceprost, containing quercetin, lycopene and naringin, among which antioxidant, anti-inflammatory, antimicrobial and immunomodulatory are of greatest importance, as well as taking into account the synergistic effect of flavonoids and carotenoids, we suggest that Querceprost is promising component of combination treatment of patients with CP.


Asunto(s)
Antioxidantes , Prostatitis , Masculino , Humanos , Prostatitis/tratamiento farmacológico , Antioxidantes/administración & dosificación , Antioxidantes/uso terapéutico , Enfermedad Crónica , Quimioterapia Combinada , Quercetina/administración & dosificación , Quercetina/farmacología , Quercetina/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Carotenoides/administración & dosificación , Carotenoides/uso terapéutico , Licopeno/administración & dosificación , Licopeno/farmacología , Licopeno/uso terapéutico , Flavanonas/administración & dosificación , Flavanonas/farmacología , Flavanonas/uso terapéutico
13.
Biomed Pharmacother ; 174: 116581, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636394

RESUMEN

Naringenin is a flavonoid found in many fruits and herbs, most notably in grapefruits. In recent years, this compound and its derivatives have been of great interest due to their high biological activity, including fungicidal and bactericidal effects, also in relation to multidrug-resistant bacteria. Membrane interactions of naringenin oxime (NO) and its 7-O-alkyl (7-alkoxy) derivatives, such as methyl (7MENO), ethyl (7ETNO), isopropyl (7IPNO), n-butyl (7BUNO) and n-pentyl (7PENO) were studied. Thermotropic properties of model membranes were investigated via differential scanning calorimetry (DSC), the influence on lipid raft mimicking giant unilamellar vesicles (GUVs) via fluorescence microscopy, and membrane permeability via measuring calcein leakage from liposomes. Molecular calculations supplemented the study. The influence of naringenin oximes on two strains of multidrug resistant bacteria: Staphylococcus aureus KJ and Enterococcus faecalis 37VRE was also investigated. In DSC studies all compounds reduced the temperature and enthalpy of main phase transition and caused disappearing of the pretransition. NO was the least active. The reduction in the area of surface domains in GUVs was observed for NO. Compounds NO and 7BUNO resulted in very low secretion of calcein from liposomes (permeability < 3 %). The highest results were observed for 7MENO (88.4 %) and 7IPNO (78.5 %). When bacterial membrane permeability was investigated all compounds caused significant release of propidium iodide from S. aureus (31.6-87.0 % for concentration 128 µg/mL). In the case of E. faecalis, 7ETNO (75.7 %) and NO (28.8 %) were the most active. The rest of the tested compounds showed less activity (permeability < 13.9 %). The strong evidence was observed that antibacterial activity of the tested compounds may be associated with their interaction with bacterial membrane.


Asunto(s)
Membrana Celular , Flavanonas , Oximas , Staphylococcus aureus , Flavanonas/farmacología , Flavanonas/química , Oximas/farmacología , Oximas/química , Staphylococcus aureus/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Enterococcus faecalis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Liposomas Unilamelares/metabolismo , Liposomas Unilamelares/química , Rastreo Diferencial de Calorimetría , Permeabilidad de la Membrana Celular/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
14.
Eur J Pharmacol ; 973: 176566, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636801

RESUMEN

Wogonoside (WG) is a natural flavonoid extracted from Scutellariae Radix, recognized for its established anti-inflammatory properties. However, the role of WG in the context of neuroinflammation after spinal cord injury (SCI) remains inadequately elucidated. This study employed in silico, in vitro, and in vivo methodologies to investigate the impact of WG on microglia-mediated neuroinflammation after SCI. In the in silico experiment, we identified 15 potential target genes of WG associated with SCI. These genes were linked to the regulation of inflammatory response and immune defense. Molecular docking maps revealed toll-like receptor 4 as a molecular target for WG, demonstrating binding through a hydrogen bond (Lys263, Ser120). In lipopolysaccharide-stimulated BV2 cells and SCI mice, WG significantly attenuated microglial activation and facilitated a phenotype shift from M1 to M2. This was evidenced by the reversal of the increased expressions of Iba1, GFAP, and iNOS, as well as the decreased expression of Arg1. WG also suppressed the production of pro-inflammatory mediators (NO, TNF-α, IL-6, IL-1α, IL-1ß, C1q). WG exerted these effects by suppressing the TLR4/MyD88/NF-κB signaling axis in microglia. Furthermore, by reducing levels of TNF-α, IL-1α, and C1q in supernatant of LPS-induced microglia, WG indirectly induced astrocytes change to A2 phenotype, evidenced by transcriptome sequencing result of primary mouse astrocytes. All these events above collectively created a favorable microenvironment, contributing to a significant alleviation of weight loss and neuronal damage at the lesion site of SCI mice. Our findings substantiate the efficacy of WG in mitigating neuroinflammation after SCI, thereby warranting further exploration.


Asunto(s)
Flavanonas , Glucósidos , Microglía , Factor 88 de Diferenciación Mieloide , FN-kappa B , Enfermedades Neuroinflamatorias , Transducción de Señal , Traumatismos de la Médula Espinal , Receptor Toll-Like 4 , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/metabolismo , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Glucósidos/farmacología , Glucósidos/uso terapéutico , Flavanonas/farmacología , Flavanonas/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Línea Celular , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Mediadores de Inflamación/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
15.
Mol Nutr Food Res ; 68(8): e2300745, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581304

RESUMEN

SCOPE: Naringenin (NAR) possesses unique anti-inflammatory, antiapoptosis effects and various bioactivities; however, its role against radiation-induced intestinal injury (RIII) remains unclear. This study aims to investigate whether NAR has protective effects against radiation-induced intestinal injury and the underlying mechanisms. METHODS AND RESULTS: C57BL/6J mice are exposed to a single dose of 13 Gy X-ray total abdominal irradiation (TAI), then gavaged with NAR for 7 days. NAR treatment prolongs the survival rate, protects crypts and villi from damage, alleviates the level of radiation-induced inflammation, and mitigates intestinal barrier damage in the irradiated mice. Additionally, NAR reduces immune cell infiltration and intestinal epithelial cell apoptosis. NAR also shows radioprotective effects in human colon cancer cells (HCT116) and human intestinal epithelial cells (NCM460). It reduces cell damage by reducing intracellular calcium ion levels and reactive oxygen species (ROS) levels. NAR-mediated radioprotection is associated with the downregulation of transient receptor potential vanilloid 6 (TRPV6), and inhibition of apoptosis pathway. Notably, treatment with NAR fails to further increase the protective effects of the TRPV6 inhibitor 2-APB, indicating that TRPV6 inhibition is essential for NAR activity. CONCLUSION: NAR inhibits the apoptosis pathway by downregulating TRPV6 and reducing calcium ion level, thereby alleviating RIII. Therefore, NAR is a promising therapeutic drug for RIII.


Asunto(s)
Apoptosis , Flavanonas , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno , Canales Catiónicos TRPV , Animales , Flavanonas/farmacología , Humanos , Canales Catiónicos TRPV/metabolismo , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Masculino , Ratones , Protectores contra Radiación/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de la radiación , Mucosa Intestinal/metabolismo , Células HCT116 , Canales de Calcio/metabolismo , Intestinos/efectos de los fármacos , Intestinos/efectos de la radiación , Calcio/metabolismo , Traumatismos por Radiación/tratamiento farmacológico
16.
Int J Pharm ; 654: 123964, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38430948

RESUMEN

The purpose of this study was to develop a novel baicalein (BAI) loaded glycymicelle ophthalmic solution with small molecule phytochemical glycyrrhizin as nanocarriers and to explore this solution's potential as an antimicrobial agent against ocular infections. The optimized BAI glycymicelles had a high encapsulation efficiency (98.76 ±â€¯1.25 %), a small particle size (54.38 ±â€¯2.41 nm), a uniform size distribution (polydispersity index = 0.293 ±â€¯0.083), and a zeta potential of -28.3 ±â€¯1.17 mV. The BAI glycymicelle ophthalmic solution exhibited an excellent short-term storage stability. BAI glycymicelles significantly increased the apparent solubility and in vitro release capability of BAI. The BAI glycymicelle ophthalmic solution exhibited no hen's egg-chorioallantoic membrane' irritation and strong in vivo ocular tolerance in rabbits. The BAI glycymicelles noticeably enhanced the in vivo corneal permeation. The BAI glycymicelles also precipitated increased in vitro antioxidant activity and significantly improved in vitro antipathogen activities. Various antimicrobial mechanisms, including the destruction of the bacterial cell wall, damage to the bacterial cell membranes, interruptions to the biofilm structure, and the apoptosis of bacteria, were inflicted on BAI glycymicelles. These findings provided useful knowledge regarding the development of a novel ophthalmic solution and formulation of BAI.


Asunto(s)
Antiinfecciosos , Flavanonas , Animales , Conejos , Flavanonas/farmacología , Córnea/metabolismo , Antiinfecciosos/farmacología , Soluciones Oftálmicas/química , Administración Oftálmica , Tamaño de la Partícula
17.
Int J Pharm ; 654: 123967, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38438083

RESUMEN

Naringenin, a natural dihydrochalcone flavonoid, exhibits diverse pharmacological properties. This study investigates the hypolipidemic effects of Nar-NPs on obese mice. The characteristics of Nar-NPs, including morphology, particle size, zeta potential, UV-vis, and FT-IR spectra, were examined. The anti-obesity properties of Nar-NPs were evaluated in obese rats, considering LD50, 1/20 LD50, and 1/50 LD50 for treatment preparation. Results indicated that synthesized Nar-NPs were uniform, spherical, and well-dispersed, with a size of 130.06 ± 1.98 nm and with a zeta potential of -25.6 ± 0.8 mV. Nar-NPs exhibited enhancement in the cumulative release of naringenin (56.87 ± 2.45 %) as compared to pure naringenin suspension 87.83 ± 1.84 % in 24 h of the study. The LD50 of Nar-NPs was determined as 412.5 mg/kg.b.w. HFD induced elevated glycemic, oxidative stress, and inflammatory biomarkers while reducing HDL-C, GSH, and superoxide dismutase (SOD) levels. Administration of Nar-NPs significantly mitigated body weight, glucose, insulin, leptin, TC, TG, SREBP1c, pAMPK, PPAR-α, as well as vanin-1, MCP-1, and iNOS mRNA gene expression. Histological investigations supported the biochemical and PCR findings. In a nutshell, the study suggests that the Nar-NPs could serve as a promising and viable pharmacological strategy for the treatment of obesity-related disorders.


Asunto(s)
Flavanonas , Nanopartículas , Ratones , Ratas , Animales , Espectroscopía Infrarroja por Transformada de Fourier , Transducción de Señal , Flavanonas/farmacología , Flavanonas/química , Obesidad/tratamiento farmacológico , Nanopartículas/química
18.
Pharmacol Res ; 202: 107124, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428704

RESUMEN

Metabolic syndrome has become major health problems in recent decades, and natural compounds receive considerable attention in the management of metabolic syndrome. Among them, naringin is abundant in citrus fruits and tomatoes. Many studies have investigated the therapeutic effects of naringin in metabolic syndrome. This review discusses in vitro and in vivo studies on naringin and implications for clinical trials on metabolic syndrome such as diabetes mellitus, obesity, nonalcoholic fatty liver disease, dyslipidemia, and hypertension over the past decades, overviews the molecular mechanisms by which naringin targets metabolic syndrome, and analyzes possible correlations between the different mechanisms. This review provides a theoretical basis for the further application of naringin in the treatment of metabolic syndrome.


Asunto(s)
Flavanonas , Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Humanos , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Flavanonas/farmacología , Flavanonas/uso terapéutico , Obesidad/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
19.
Phytomedicine ; 128: 155423, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518646

RESUMEN

BACKGROUND: Polycystic ovary syndrome is a metabolic and hormonal disorder that is closely linked to oxidative stress. Within individuals diagnosed with PCOS, changes occur in the ovaries, resulting in an excessive buildup of iron and peroxidation of lipids, both of which may be associated with the occurrence of ferroptosis. Baicalein, a flavonoid found in the roots of Scutellaria baicalensis and widely known as Chinese skullcap, is known for its anti-inflammatory and anti-ferroptotic properties, which protect against various diseases. Nevertheless, there has been no investigation into the impact of baicalein on polycystic ovary syndrome. PURPOSE: This study aimed to correlate ferroptosis with polycystic ovary syndrome and to assess the effects of baicalein on ovarian dysfunction and placental development in pregnant patients. STUDY DESIGN AND METHODS: Polycystic ovary syndrome was induced in a rat model through the administration of dehydroepiandrosterone, and these rats were treated with baicalein. Oxidative stress and inflammation levels were assessed in serum and ovaries, and tissue samples were collected for histological and protein analyses. Furthermore, different groups of female rats were mated with male rats to observe pregnancy outcomes and tissue samples were obtained for histological, protein, and RNA sequencing. Then, RNA sequencing of the placenta was performed to determine the key genes involved in ferroptosis negative regulation (FNR) signatures. RESULTS: Baicalein was shown to reduce ovarian oxidative stress and pathology. Baicalein also ameliorated polycystic ovary syndrome by decreasing lipid peroxidation and chronic inflammation and modulating mitochondrial functions and ferroptosis in the ovaries. Specifically, glutathione peroxidase and ferritin heavy chain 1 were considerably downregulated in polycystic ovary syndrome gravid rats compared to their expression in the control group, and most of these differences were reversed after baicalein intervention. CONCLUSIONS: Our findings, initially, indicated that baicalein could potentially enhance the prognosis of individuals suffering from polycystic ovary syndrome by reducing oxidative stress and ferroptosis, thus potentially influencing the formulation of a therapeutic approach to address this condition.


Asunto(s)
Ferroptosis , Flavanonas , Ovario , Estrés Oxidativo , Placenta , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Femenino , Flavanonas/farmacología , Ferroptosis/efectos de los fármacos , Animales , Estrés Oxidativo/efectos de los fármacos , Embarazo , Placenta/efectos de los fármacos , Placenta/metabolismo , Ovario/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Scutellaria baicalensis/química , Modelos Animales de Enfermedad , Peroxidación de Lípido/efectos de los fármacos , Masculino
20.
Phytomedicine ; 128: 155425, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518634

RESUMEN

BACKGROUND: Intestinal barrier dysfunction caused by the disrupted balance of group 3 innate lymphoid cells (ILC3)/group 1 innate lymphoid cells (ILC1) is a significant feature in the pathogenesis of inflammatory bowel disease (IBD). Activation of aryl hydrocarbon receptor (AhR) signaling contributes to the maintenance of ILC3/ILC1 balance. Wogonin, a natural flavonoid from Scutellaria baicalensis Georgi, can repair intestinal mucosal damage of IBD. However, it remains unclear if wogonin can exert a therapeutic effect by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PURPOSE: In this study, we investigated the immunomodulatory effects of wogonin on IBD and its potential mechanisms in vitro and in vivo. STUDY DESIGN AND METHODS: Chronic colitis was induced by four cycles of 2 % DSS treatment in mice. 20 mg kg-1/day wogonin was administrated by oral gavage and mice were treated intraperitoneally with 10 mg kg-1/2 days CH223191 to block the AhR pathway. Colon tissues were processed for histopathological examination and evaluation of the epithelial barrier function by immunohistochemistry. The activation of the AhR pathway and the plasticity of ILC3/ILC1 were determined by western blot and flow cytometry. Then, we also detected the intestinal microflora and their metabolites by 16 s sequencing and non-targeted Metabolomics analysis. Furthermore, an in vitro culture system consisting of MNK3 cells and NCM460 cells, and a CETSA assay were performed to confirm the molecular mechanism. RESULTS: Wogonin ameliorated histological severity of the colon, decreased the secretion of inflammatory factors, and increased tight junction proteins in colitis mice. These effects are associated with the tendency of conversion from ILC3 to ILC1 prevented by wogonin, which was offset by AhR antagonist CH223191. In addition, wogonin exerted the curative effect by altering gut microbiota to produce metabolites such as Kynurenic acid, and 1H-Indole-3-carboxaldehyde as AhR endogenous ligands. In vitro data further verified that wogonin as an exogenous ligand directly binds to the structural domain of AhR by CETSA. Also, the supernatant of MNK-3 cells stimulated with wogonin enhanced expression of Occludin and Claudin1 in NCM460 cells induced by LPS. CONCLUSION: Cumulatively, our study illustrated that wogonin improved the outcomes of DSS-induced chronic colitis via regulating the plasticity of ILC3/ILC1. Its specific mechanism is to binding to AhR directly, and to activate the AhR pathway indirectly by altering the tryptophan metabolisms of gut microbiota.


Asunto(s)
Colitis , Flavanonas , Inmunidad Innata , Linfocitos , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril , Transducción de Señal , Flavanonas/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Ratones , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Linfocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Masculino , Scutellaria baicalensis/química , Mucosa Intestinal/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Sulfato de Dextran , Microbioma Gastrointestinal/efectos de los fármacos , Colon/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...