Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
BMC Genom Data ; 25(1): 42, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711021

RESUMEN

BACKGROUND: Shallots are infected by various viruses like Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV), Shallot latent virus (SLV) and Shallot virus X (ShVX). In India, they have been found to be persistently infected by ShVX. ShVX also infects onion and garlic in combination with other carlaviruses and potyviruses. ShVX is a member of genus Allexivirus of family Alphaflexiviridae. ShVX has a monopartite genome, which is represented by positive sense single-stranded RNA. Globally, only six complete and 3 nearly complete genome sequences of ShV X are reported to date. This number is insufficient to measure a taxon's true molecular diversity. Moreover, the complete genome sequence of ShVX from Asia has not been reported as yet. Therefore, this study was undertaken to generate a complete genome sequence of ShVX from India. RESULTS: Shallot virus X (ShVX) is one of the significant threats to Allium crop production. In this study, we report the first complete genome sequence of the ShVX from India through Next-generation sequencing (NGS). The complete genome of the ShVX (Accession No. OK104171), from this study comprised 8911 nucleotides. In-silico analysis of the sequence revealed variability between this isolate and isolates from other countries. The dissimilarities are spread all over the genome specifically some non-coding intergenic regions. Statistical analysis of individual genes for site-specific selection indicates a positive selection in NABP region. The presence of a recombination event was detected in coat protein region. The sequence similarity percentage and phylogenetic analysis indicate ShVX Indian isolate is a distinctly different isolate. Recombination and site-specific selection may have a function in the evolution of this isolate. This is the first detailed study of the ShVX complete genome sequence from Southeast Asia. CONCLUSION: This study presents the first report of the entire genome sequence of an Indian isolate of ShVX along with an in-depth exploration of its evolutionary traits. The findings highlight the Indian variant as a naturally occurring recombinant, emphasizing the substantial role of recombination in the evolution of this viral species. This insight into the molecular diversity of strains within a specific geographical region holds immense significance for comprehending and forecasting potential epidemics. Consequently, the insights garnered from this research hold practical value for shaping ShVX management strategies and providing a foundation for forthcoming studies delving into its evolutionary trajectory.


Asunto(s)
Genoma Viral , Filogenia , Secuenciación Completa del Genoma , India/epidemiología , Genoma Viral/genética , Selección Genética , Recombinación Genética , Flexiviridae/genética , Flexiviridae/aislamiento & purificación , Enfermedades de las Plantas/virología
2.
Arch Virol ; 166(3): 983-986, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33439325

RESUMEN

The complete genome sequence of a novel foveavirus identified in garlic (Allium sativum L.) in China was determined using RNA-seq, reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) PCR. The entire genomic RNA (GenBank accession MT981417) is 8748 nucleotides long excluding the 3'-terminal poly(A) tail and contains five open reading frames (ORFs). These ORFs encode the viral replicase, a triple gene block, and a coat protein. The virus was tentatively named "garlic yellow stripe associated virus" (GarYSaV). Pairwise comparisons of protein sequences show that GarYSaV encodes proteins that share less than 47% identity with those of other foveaviruses, suggesting that it represents a new species in the genus. Phylogenetic analysis of amino acid sequences of the replicase and CP confirm that GarYSaV is a member of the genus Foveavirus. To our knowledge, this is the first report of a foveavirus in a monocot plant.


Asunto(s)
Flexiviridae/genética , Ajo/virología , Genoma Viral/genética , ARN Viral/genética , Secuencia de Aminoácidos , Proteínas de la Cápside/genética , China , Flexiviridae/clasificación , Flexiviridae/aislamiento & purificación , Sistemas de Lectura Abierta/genética , Filogenia , Enfermedades de las Plantas/virología , Secuenciación Completa del Genoma/métodos
3.
Arch Virol ; 165(12): 3003-3006, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33025198

RESUMEN

A significant number of new members of the genus Vitivirus have been identified recently, mainly due to the advent of high-throughput sequencing (HTS). Grapevine virus I (GVI), which was identified in New Zealand in 2018, is one of these viruses. RNAseq HTS analysis of a Greek grapevine (cv. Daphnia), revealed the presence of a GVI-like isolate (D2-1/19). Sequence analysis confirmed the classification of D2-1/19 as GVI. However, both sequence and phylogenetic data exhibited high levels of variability between D2-1/19 and the previously characterized GVI isolates. This study provides the full-length sequence of a divergent GVI isolate, adding knowledge to the limited information available about this recently identified virus.


Asunto(s)
Flexiviridae/genética , Genoma Viral , Filogenia , Vitis/virología , Flexiviridae/aislamiento & purificación , Grecia , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/virología , Secuenciación Completa del Genoma
4.
Viruses ; 12(10)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33050079

RESUMEN

Quebec is the third-largest wine grape producing province in Canada, and the industry is constantly expanding. Traditionally, 90% of the grapevine cultivars grown in Quebec were winter hardy and largely dominated by interspecific hybrid Vitis sp. cultivars. Over the years, the winter protection techniques adopted by growers and climate changes have offered an opportunity to establish V. vinifera L. cultivars (e.g., Pinot noir). We characterized the virome of leafroll-infected interspecific hybrid cultivar and compared it to the virome of V. vinifera cultivar to support and facilitate the transition of the industry. A dsRNA sequencing method was used to sequence symptomatic and asymptomatic grapevine leaves of different cultivars. The results suggested a complex virome in terms of composition, abundance, richness, and phylogenetic diversity. Three viruses, grapevine Rupestris stem pitting-associated virus, grapevine leafroll-associated virus (GLRaV) 3 and 2 and hop stunt viroid (HSVd) largely dominated the virome. However, their presence and abundance varied among grapevine cultivars. The symptomless grapevine cultivar Vidal was frequently infected by multiple virus and viroid species and different strains of the same virus, including GLRaV-3 and 2. Our data show that viruses and viroids associated with the highest number of grapevines expressing symptoms included HSVd, GLRaV-3 and GLRaV-2, in gradient order. However, co-occurrence analysis revealed that the presence of GLRaV species was randomly associated with the development of virus-like symptoms. These findings and their implications for grapevine leafroll disease management are discussed.


Asunto(s)
Closteroviridae/genética , Closterovirus/genética , Flexiviridae/genética , Vitis/virología , Canadá , Closteroviridae/aislamiento & purificación , Closterovirus/aislamiento & purificación , Flexiviridae/aislamiento & purificación , Variación Genética/genética , Genoma Viral/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , ARN Viral/genética , Viroma/fisiología , Vino
5.
Virus Genes ; 56(6): 792-795, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33026576

RESUMEN

In this work, a novel ssRNA (+) viral genomic sequence with gene organization typical of members of the subfamily Quinvirinae (family Betaflexiviridae) was identified using high- throughput sequencing data of date palm obtained from the Sequence Read Archive database. The viral genome sequence consists of 7860 nucleotides and contains five ORFs encoding for the replication protein (Rep), triple gene block proteins 1, 2, 3 (TGB 1, 2, and 3), and coat protein (CP). Phylogenetic analysis based on the Rep and the CP amino acid sequences showed the closest relationship to garlic yellow mosaic-associated virus (GYMaV). Based on the demarcation criteria of the family Betaflexiviridae, this new virus, provisionally named date palm virus A (DPVA), could constitute a member of a novel genus. However, considering that DPVA and GYMaV share the same genomic organization and that they cluster together on the Rep phylogenetic analysis, they could also constitute a novel genus together, highlighting the necessity of a revision of the taxonomic criteria of the family Betaflexiviridae.


Asunto(s)
Flexiviridae , Genoma Viral , Phoeniceae/virología , Enfermedades de las Plantas/virología , ARN Viral , Flexiviridae/clasificación , Flexiviridae/genética , Flexiviridae/aislamiento & purificación , Filogenia
6.
Arch Virol ; 165(12): 2999-3002, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32990843

RESUMEN

We report the genome sequence of a putative new foveavirus infecting non-cultivated Vitis vinifera, tentatively named "grapevine foveavirus A" (GFVA). This virus was identified by high-throughput sequencing analysis of a European wild Vitis collected in Switzerland. Phylogenetic analysis revealed that this virus clustered with known grapevine virus T (GVT) isolates but was clearly distinct from any of them. If considering the International Committee of Taxonomy of Viruses (ICTV)-suggested foveavirus species demarcation criterion based on sequence similarity in the replicase gene/protein, this virus should be considered a member of a new species closely related to GVT. On the other hand, comparison of capsid gene/protein sequences using the same criteria indicates that GFVA is at the border of species demarcation. Whether this virus represents a highly divergent GVT isolate or a member of a distinct but closely related species is discussed.


Asunto(s)
Flexiviridae/clasificación , Genoma Viral , Filogenia , Vitis/virología , Flexiviridae/aislamiento & purificación , Variación Genética , Enfermedades de las Plantas/virología , Suiza
7.
Genes (Basel) ; 11(9)2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971929

RESUMEN

Grapevine Pinot gris virus (GPGV) is a putative causal agent of grapevine leaf mottling and deformation disease that has been reported worldwide throughout the grapevine-growing regions. Fifty-four grapevines collected from five Algerian grapevine-growing regions were tested for the presence of GPGV in phloem tissues. Eight of the tested grapevines were infected by GPGV. Viromes of two selected Vitis vinifera cv. Sabel grapevines infected by GPGV and showing virus-like symptoms were analyzed by small RNA sequencing. Phylogenetic analyses of the partial coding sequence (cds) of the RNA-dependent RNA polymerase (RdRp) domain showed that all Algerian GPGV isolates were grouped with some already-described asymptomatic isolates. This study provides the first survey of the occurrence of GPGV in Algeria. Moreover, Grapevine fleck virus, Grapevine rupestris stem pitting-associated virus, Grapevine virus B, Grapevine rupestris vein feathering virus, Hop stunt viroid and Grapevine yellow speckle viroid 1 were detected in Algeria for the first time.


Asunto(s)
Flexiviridae/clasificación , Flexiviridae/aislamiento & purificación , Enfermedades de las Plantas/virología , ARN Pequeño no Traducido/genética , ARN Viral/genética , Proteínas Virales/genética , Vitis/virología , Flexiviridae/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , ARN Viral/análisis
8.
Virus Res ; 286: 198078, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32603671

RESUMEN

A novel plant virus was identified by high-throughput sequencing analysis from a raspberry plant showing slight mottling symptom. The complete genome sequence of this virus is 8645 nucleotides long, including the 5' and 3' UTRs. Its genome contains five ORFs and is very close to members of the genus Foveavirus (Quinvirinae, Betaflexiviridae) in terms of genome organization, TGB presence and the sizes of the RdRp and CP proteins. The novel virus shares 33.5-51.3 % and 23.3-41.3 % nucleotide identity to other genera of the Betaflexifiviridae family based on polymerase (RdRp) and CP genes, respectively. Compared to other foveavirus species, the RdRp protein showed the highest sequence identity (45.3 %) to the RdRp of peach chlorotic mottle virus (PCMV) while the maximal sequence identity for the CP protein was 33.9 % with grapevine rupestris stem pitting-associated virus (GRSPaV). The low nucleotide and amino acid sequence identity with known foveaviruses indicated that it was a novel virus, for which the provisional name "rubus virus 1 (RuV1)" is proposed. The phylogenetic analysis supports the assignment of this virus as a new species of the genus Foveavirus. A survey of 537 Rubus spp. samples grown in six provinces of Turkey, including some symptomatic samples, showed a RuV1 prevalence of 2.2 %, confirming its presence in both raspberry and blackberry plants in a single province, although no obvious association between virus infection and specific symptoms was found.


Asunto(s)
Flexiviridae/clasificación , Genoma Viral , Enfermedades de las Plantas/virología , Rubus/virología , Flexiviridae/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Turquía
9.
Virus Res ; 286: 197964, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32445873

RESUMEN

Camellia japonica plants manifesting a complex and variable spectrum of viral symptoms like chlorotic ringspots, necrotic rings, yellowing with necrotic rings, yellow mottle, leaves and petals deformations, and flower color-breaking have been studied since 1940, mainly by electron microscopic analyses; however, a strong correlation between the symptoms and one or more well-characterized viruses was never verified. In this work, samples collected from symptomatic plants were analyzed using the next-generation sequencing technique, and a complex virome composed of members of the Betaflexiviridae and Fimoviridae families was identified. In particular, the genomic fragments typical of the emaravirus group were organized in the genomes of two new emaraviruses species, tentatively named Camellia japonica-associated emaravirus 1 and 2. They are the first emaraviruses described in camellia plants and found in symptomatic plants. At the same time, in both symptomatic and asymptomatic plants, five betaflexivirus isolates were detected that, based on amino acid sequence comparisons, can be considered two new isolates of the recently characterized camellia ringspot-associated virus 1 and 2 (CRSaV-1/2). These recently identified betaflexiviruses associated with C. japonica disease show an unusual hyper-conservation of the coat protein at the amino acid level. The GenBank/EMBL/DDBJ accession numbers of the sequences reported in this paper are MN385581, MN532567, MN532565, MN385582, MN532566, MN385573, MN385577, MN385574, MN385578, MN385575, MN385579, MN385576, MN385580, MN557024, MN557025, MN557026, MN557027, and MN557028.


Asunto(s)
Camellia/virología , Flexiviridae/clasificación , Genoma Viral , Enfermedades de las Plantas/virología , Virus ARN/clasificación , Viroma , Flexiviridae/aislamiento & purificación , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Hojas de la Planta/virología , Virus ARN/aislamiento & purificación
10.
Arch Virol ; 165(7): 1711-1714, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409875

RESUMEN

Double-stranded RNA and total RNA purified from sour cherry leaves (Prunus cerasus, cv. Amarelka Chvalkovicka) was analyzed by high-throughput sequencing. BLAST annotation identified contigs with homology to several already known cherry-infecting viruses (prune dwarf virus, prunus necrotic ringspot virus, prunus virus F, little cherry virus 1) as well as contigs with sequences more distantly related to those of members of the family Betaflexiviridae and in particular to prunus virus T of the genus Tepovirus. The full genome sequence of a putative virus (6,847 nucleotides [nt]; GenBank no. MT090966) was assembled and completed at the genome ends. The genome has a typical tepovirus organization, containing three overlapping open reading frames (ORFs), encoding a replication-associated protein, a movement protein and a capsid protein, respectively. Both its genome organization and its phylogenetic relationships show that the virus belongs to the genus Tepovirus, but considering the species demarcation criteria for the family Betaflexiviridae, it appears to represent a novel virus species, and we propose the name "cherry virus T" (ChVT) for this virus.


Asunto(s)
Flexiviridae/genética , Flexiviridae/aislamiento & purificación , Genoma Viral , Enfermedades de las Plantas/virología , Prunus avium/virología , Secuencia de Bases , Flexiviridae/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Filogenia , Secuenciación Completa del Genoma
11.
Arch Virol ; 165(7): 1707-1710, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409876

RESUMEN

One large contig with high sequence similarity to Asian prunus virus 2 was identified by high-throughput sequencing from a camellia (Camellia japonica) tree with ringspot symptoms. The complete genome of this new virus was determined to be 8829 nucleotides long, excluding the 3' poly(A) tail. Its genome organization resembles that of known foveaviruses but contains an additional open reading frame in the 3'-terminal region. Phylogenetic analysis also places this virus with members of the genus Foveavirus in the family Betaflexiviridae in the same subgroup. The virus, which is provisionally named "camellia ringspot-associated virus 4″, shares 50-56% nucleotide sequence identity with other foveaviruses and should represent a new species in the genus.


Asunto(s)
Camellia/virología , Flexiviridae/aislamiento & purificación , Enfermedades de las Plantas/virología , Flexiviridae/clasificación , Flexiviridae/genética , Tamaño del Genoma , Genoma Viral , Sistemas de Lectura Abierta , Filogenia
12.
Arch Virol ; 165(6): 1463-1467, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32306146

RESUMEN

Senna rizzinii is a flowering shrub found mainly in the northeast region of Brazil. Here, we report the coding-complete genome sequence, particle morphology, mode of transmission, and the indicator host responses of an isolate of the putative allexivirus cassia mild mosaic virus (CaMMV) found in S. rizzinii. The virus was transmitted mechanically to Chenopodium amaranticolor, C. quinoa, Gomphrena globosa, which showed local lesions, and S. rizzinii, and S. occidentalis, which were infected systemically. It was also efficiently transmitted to S. rizzinii by grafting. Seed transmission was not observed. The near-complete genome sequence of the virus is 7829 nucleotides in length, containing six open reading frames (ORF), like other allexiviruses.


Asunto(s)
Flexiviridae/genética , Flexiviridae/aislamiento & purificación , Genoma Viral , Senna/virología , Brasil , Flexiviridae/clasificación , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/virología , ARN Viral/genética , Secuenciación Completa del Genoma
13.
Colloids Surf B Biointerfaces ; 191: 110999, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32289650

RESUMEN

In this research a whispering gallery mode (WGM) resonator based on vertically oriented ZnO nanorods, which were formed on silicon surface (silicon/ZnO-NRs), has been applied in the design of optical immunosensor that was dedicated for the determination of grapevine virus A-type (GVA) proteins. Vertically oriented ZnO-NRs were grown on silicon substrates by atmospheric pressure metal organic chemical vapor deposition (APMOCVD) and the silicon/ZnO-NRs structures formed were characterized by structural and optical methods. Optical characterization demonstrates that silicon/ZnO-NRs-based structures can act as 'whispering gallery mode' (WGM) resonator where quasi-whispering gallery modes (quasi-WGMs) are generated. These quasi-WGMs were experimentally observed in the visible and infrared ranges of the photoluminescence spectra. In order to design an immuno-sensing system the anti-GVA antibodies were immobilized on the surface of silicon/ZnO-NRs and in this way silicon/ZnO-NRs/anti-GVA structure was formed. The immobilization of anti-GVA antibodies and then the interaction of silicon/ZnO-NRs/anti-GVA structure with GVA proteins (GVA-antigens) resulted in an opposite shifts of the WGMs peaks in the visible range of the photoluminescence spectra observed as a defect-related photoluminescence emission of ZnO-NRs. Here designed silicon/ZnO-NRs/anti-GVA immuno-sensing structure demonstrates the sensitivity towards GVA-antigens in the concentration range of 1-200 ng/ml. Bioanalytical applicability of the silicon/ZnO-NRs-based structures in the WGMs registration mode is discussed.


Asunto(s)
Técnicas Biosensibles , Flexiviridae/aislamiento & purificación , Nanotubos/química , Óxido de Zinc/química , Óptica y Fotónica , Tamaño de la Partícula , Silicio/química , Propiedades de Superficie
14.
Arch Virol ; 165(5): 1231-1234, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32152787

RESUMEN

Severe mottling symptoms were observed on Carica papaya L. in Koyonzo, Kakamega County, Kenya. Total RNA was sequenced via an RNAtag-seq workflow. Assembled contigs indicated the presence of a divergent strain of Moroccan watermelon mosaic virus (genus Potyvirus) with a complete genome length of 9,733 nt (GenBank accession no. MN418119). Additionally, the complete genome sequence of a novel member of the viral genus Allexivirus was determined (GenBank accession no. MN418120). The genome contains six open reading frames (ORFs) that show varying degrees of sequence similarity to members of the genus Allexivirus; however, it appears to lack an ORF encoding a nucleic-acid-binding homolog. The tentative name "papaya virus A" (PaVA) has been proposed for this virus.


Asunto(s)
Carica/virología , Flexiviridae/clasificación , Flexiviridae/aislamiento & purificación , Metagenoma , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Potyvirus/aislamiento & purificación , Coinfección/virología , Flexiviridae/genética , Genoma Viral , Kenia , Sistemas de Lectura Abierta , Filogenia , Potyvirus/genética , ARN Viral/genética , Análisis de Secuencia de ADN , Homología de Secuencia
15.
Acta Virol ; 64(1): 28-35, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180416

RESUMEN

In this study, we identified the genome sequence of the novel virus Pistacia-associated flexivirus 1 (PAFV1), a putative member of the mycovirus family Gammaflexiviridae (the order Tymovirales), via analysis of a transcriptome dataset for the mastic tree (Pistacia lentiscus, the family Anacardiaceae). PAFV1 was predicted to have three open reading frames (ORFs): ORF1, encoding a replicase (REP) with RNA-dependent RNA polymerase activity; ORF2, a movement protein (MP); and ORF3, a hypothetical protein. The PAFV1 REP sequence showed high similarity to those of three known members of the family Gammaflexiviridae i.e., Entoleuca gammaflexivirus 1 (EnFV1), Entoleuca gammaflexivirus 2 (EnFV2), and Botrytis virus F (BVF). A genome contig of the fungus Monosporascus cannonballus also contained a sequence of an endogenous virus similar to that of PAFV1. Sequence comparison and phylogenetic analysis indicated that PAFV1, EnFV1, and the endogenous virus of M. cannonballus formed a distinct subgroup (apart from EnFV2 and BVF), and may be the founding members of a novel genus in the family Gammaflexiviridae. Notably, MP sequences of PAFV1/EnFV1 showed similarity to the MP sequences of the mycovirus group called tobamo-like mycoviruses (an unassigned taxon), implying that genomic recombination occurred between members of the family Gammaflexiviridae and tobamo-like mycoviruses. Since PAFV1 is phylogenetically related to mycoviruses, PAFV1 may also be a mycovirus that infected a fungus associated with the mastic tree sample, which is evidenced by the presence of fungal ribosomal RNA sequences in the mastic tree transcriptome. Thus, the PAFV1 genome sequence may be useful in elucidating the genome evolution of Gammaflexiviridae and tobamo-like mycoviruses. Keywords: Pistacia-associated flexivirus 1; Gammaflexiviridae; mycovirus, mastic tree.


Asunto(s)
Flexiviridae/clasificación , Virus Fúngicos/clasificación , Filogenia , Pistacia/virología , Flexiviridae/aislamiento & purificación , Virus Fúngicos/aislamiento & purificación , Genoma Viral , Sistemas de Lectura Abierta , Transcriptoma
16.
J Virol Methods ; 278: 113836, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32087190

RESUMEN

Latent fruit tree viruses present economic threat to the industry and nurseries as diseases they cause not only reduce fruit quality and production yield, but can also be spread inadvertently through propagation due to the lack of viral symptoms on an infected mother plant. As a result, these viruses require appropriate detection tools for effective management. In this study we developed RT-qPCR assays for the detection of three latent viruses of pome, apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), and apple mosaic virus (ApMV), using the alignment of representative sequences from the NCBI database. The optimized assays were shown to be specific by successfully amplifying the target from positive controls without showing any detectable amplification in negative and non-target controls, and revealed high sensitivity by reliably detecting as low as 101 copies per reaction. The results also demonstrated that both the choice of extraction method and the reagents used for RT-qPCRcould play a critical role in virus detection outcome. These assays were both reliable and robust compared to the extant RT-PCR methods, and they could be a viable tool for making informed management decisions.


Asunto(s)
Flexiviridae/aislamiento & purificación , Ilarvirus/aislamiento & purificación , Enfermedades de las Plantas/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Latencia del Virus/genética , Cartilla de ADN/genética , Flexiviridae/genética , Frutas/virología , Ilarvirus/genética , Malus/virología , Hojas de la Planta/virología , Sensibilidad y Especificidad
17.
J Virol Methods ; 275: 113753, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31639373

RESUMEN

Indian citrus ringspot virus (ICRSV) and Citrus yellow vein clearing virus (CYVCV) are the mandariviruses infecting various citrus cultivars in India and around the world. In the fields, it was observed that citrus plants infected by both the viruses and frequently expressed only ringspot symptoms. The ICRSV-specific polyclonal-antibody used in immuno-sorbent electron microscopy (ISEM) and enzyme linked immuno-sorbent assay (ELISA) could detect only ICRSV in mixed infections. Therefore, the conserved sequences of the RNA dependent RNA polymerase (RdRP) gene of the alphaflexiviruses were exploited for developing a RT-PCR based assay for detection of both the mandariviruses simultaneously, if present. A degenerate primer pair was designed to amplify a ∼435bp fragment by multiple alignments of the RdRP gene sequences of the members of genera Mandarivirus, Potexvirus and Allexivirus. The developed RT-PCR assay was validated for detecting both, CYVCV and ICRSV in mixed infections as well as in single virus-infected citrus plants. The presence of ICRSV or CYVCV or both of them together in such plants were confirmed by using primer pair specific to each of these viruses. Further, the identity of the amplicons was confirmed by sequencing and the virus species were determined with BLASTN analysis. The degenerate primers also amplified the corresponding target sequences of an allexivirus and a potexvirus from the respective infected garlic/ onion and tobacco plants. The use of the degenerate primers for the detection of these virus species of the genus Mandarivirus will be useful in citrus certification programmes.


Asunto(s)
Citrus/virología , Cartilla de ADN/genética , Flexiviridae/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Flexiviridae/genética , India , Filogenia , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología
18.
J Virol Methods ; 274: 113747, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31580840

RESUMEN

A molecular diagnostic assay for the rapid, sensitive and specific detection of Apple stem pitting virus (ASPV) in infected samples, utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 42 °C and the designed target-specific primers, was developed. The RT-RPA assay was able to be used in ASPV-infected leaves, rootstocks and fruits. Sensitivity tests, using ASPV transcripts, showed that the RT-RPA with the ASPV-specific primers was more sensitive than the conventional RT-PCR, with a detection limit of 1 fg/µL of RNA. In addition, the reaction time for the amplification of ASPV was shortened to as little as 1 min. The assay was highly specific and did not give a positive reaction to other viruses infecting pears. Moreover, the amplified genomic fragment of ASPV produced by the assay could be determined within 4 min using a portable capillary gel electrophoresis system. The entire process, excluding the extraction of total RNA, could be completed in 5 min using portable equipment in the field. This is the first report of utilizing an RT-RPA assay to detect a pear tree virus and the assay could be used both in the laboratory and in the field for ASPV detection.


Asunto(s)
Agricultura/métodos , Flexiviridae/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de las Plantas/virología , Pyrus/virología , Cartilla de ADN , Electroforesis , Frutas/virología , Hojas de la Planta/virología , Raíces de Plantas/virología , ARN Viral/aislamiento & purificación , Transcripción Reversa , Sensibilidad y Especificidad , Temperatura , Tiempo
19.
Arch Virol ; 164(12): 3145-3149, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31616995

RESUMEN

A novel virus with a (+) single-stranded RNA genome was detected by high-throughput sequencing (HTS) in a sample of grapevine (Vitis vinifera) cv. Kizil Sapak (sample/isolate 127) that originated from Turkmenistan. The complete genome of the virus, tentatively named "grapevine Kizil Sapak virus" (GKSV), is 7,604 nucleotides in length, excluding the poly(A) tail. The genome organization of GKSV, encoded genes, and sequence domains are typical for members of the family Betaflexiviridae, specifically those belonging to the subfamily Trivirinae. Phylogenetic analysis placed GKSV within the subfamily Trivirinae, in the same clade as fig latent virus 1 (FLV-1) but distinct from the clades formed by members of other genera. A comparative analysis of GKSV-127 with the HTS-derived sequences obtained from two additional isolates showed that they are genetic variants of the same virus species. Based on current ICTV species and genus demarcation criteria, and the results of the sequence and phylogenetic analyses, we propose that GKSV and FLV-1 represent a new genus within the subfamily Trivirinae.


Asunto(s)
Flexiviridae/genética , Flexiviridae/aislamiento & purificación , Enfermedades de las Plantas/virología , Vitis/virología , Flexiviridae/clasificación , Genoma Viral , Genómica , Sistemas de Lectura Abierta , Filogenia
20.
PLoS One ; 14(10): e0223958, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31622412

RESUMEN

Citrus tatter leaf virus (CTLV) threatens citrus production worldwide because it induces bud-union crease on the commercially important Citrange (Poncirus trifoliata × Citrus sinensis) rootstocks. However, little is known about its genomic diversity and how such diversity may influence virus detection. In this study, full-length genome sequences of 12 CTLV isolates from different geographical areas, intercepted and maintained for the past 60 years at the Citrus Clonal Protection Program (CCPP), University of California, Riverside, were characterized using next generation sequencing. Genome structure and sequence for all CTLV isolates were similar to Apple stem grooving virus (ASGV), the type species of Capillovirus genus of the Betaflexiviridae family. Phylogenetic analysis highlighted CTLV's point of origin in Asia, the virus spillover to different plant species and the bottleneck event of its introduction in the United States of America (USA). A reverse transcription quantitative polymerase chain reaction assay was designed at the most conserved genome area between the coat protein and the 3'-untranslated region (UTR), as identified by the full genome analysis. The assay was validated with different parameters (e.g. specificity, sensitivity, transferability and robustness) using multiple CTLV isolates from various citrus growing regions and it was compared with other published assays. This study proposes that in the era of powerful affordable sequencing platforms the presented approach of systematic full-genome sequence analysis of multiple virus isolates, and not only a small genome area of a small number of isolates, becomes a guideline for the design and validation of molecular virus detection assays, especially for use in high value germplasm programs.


Asunto(s)
Citrus sinensis/virología , Flexiviridae/clasificación , Poncirus/virología , Secuenciación Completa del Genoma/métodos , Citrus sinensis/fisiología , Secuencia Conservada , Evolución Molecular , Flexiviridae/genética , Flexiviridae/aislamiento & purificación , Tamaño del Genoma , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filogenia , Fitomejoramiento , Poncirus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...