Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
2.
J Plant Physiol ; 269: 153594, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34953411

RESUMEN

Spatiotemporal cues orchestrate the development of organs and cellular differentiation in multicellular organisms. For instance, in the root apical meristem an auxin gradient patterns the transition from stem cell maintenance to transit amplification and eventual differentiation. Among the proximal tissues generated by this growth apex, the early, so-called protophloem, is the first tissue to differentiate. This observation has been linked to increased auxin activity in the developing protophloem sieve element cell files as compared to the neighboring tissues. Here we review recent progress in the characterization of the unique mechanism by which auxin canalizes its activity in the developing protophloem and fine-tunes its own transport to guide proper timing of protophloem sieve element differentiation.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Floema/crecimiento & desarrollo , Floema/metabolismo , Plantas/metabolismo , Transporte Biológico , Meristema/metabolismo
3.
Science ; 374(6575): eaba5531, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34941412

RESUMEN

In the plant meristem, tissue-wide maturation gradients are coordinated with specialized cell networks to establish various developmental phases required for indeterminate growth. Here, we used single-cell transcriptomics to reconstruct the protophloem developmental trajectory from the birth of cell progenitors to terminal differentiation in the Arabidopsis thaliana root. PHLOEM EARLY DNA-BINDING-WITH-ONE-FINGER (PEAR) transcription factors mediate lineage bifurcation by activating guanosine triphosphatase signaling and prime a transcriptional differentiation program. This program is initially repressed by a meristem-wide gradient of PLETHORA transcription factors. Only the dissipation of PLETHORA gradient permits activation of the differentiation program that involves mutual inhibition of early versus late meristem regulators. Thus, for phloem development, broad maturation gradients interface with cell-type-specific transcriptional regulators to stage cellular differentiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Floema/citología , Floema/crecimiento & desarrollo , Raíces de Plantas/citología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Diferenciación Celular , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Meristema/citología , Floema/genética , Floema/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , RNA-Seq , Transducción de Señal , Análisis de la Célula Individual , Factores de Transcripción/genética , Transcriptoma
4.
Genome Biol ; 22(1): 319, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809675

RESUMEN

BACKGROUND: Plant secondary growth depends on the activity of the vascular cambium, which produces xylem and phloem. Wood derived from xylem is the most abundant form of biomass globally and has played key socio-economic and subsistence roles throughout human history. However, despite intensive study of vascular development, the full diversity of cell types and the gene networks engaged are still poorly understood. RESULTS: Here, we have applied an optimized protoplast isolation protocol and RNA sequencing to characterize the high-resolution single-cell transcriptional landscape of highly lignified poplar stems. We identify 20 putative cell clusters with a series of novel cluster-specific marker genes and find that these cells are highly heterogeneous based on the transcriptome. Analysis of these marker genes' expression dynamics enables reconstruction of the cell differentiation trajectories involved in phloem and xylem development. We find that different cell clusters exhibit distinct patterns of phytohormone responses and emphasize the use of our data to predict potential gene redundancy and identify candidate genes related to vascular development in trees. CONCLUSIONS: These findings establish the transcriptional landscape of major cell types of poplar stems at single-cell resolution and provide a valuable resource for investigating basic principles of vascular cell specification and differentiation in trees.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Populus/genética , Populus/metabolismo , Biomasa , Cámbium/genética , Cámbium/crecimiento & desarrollo , Cámbium/metabolismo , Marcadores Genéticos , Familia de Multigenes , Floema/crecimiento & desarrollo , Floema/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , RNA-Seq , Análisis de la Célula Individual , Transcriptoma , Árboles , Xilema/crecimiento & desarrollo , Xilema/metabolismo
5.
BMC Plant Biol ; 21(1): 196, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892630

RESUMEN

BACKGROUND: The vascular system of plants consists of two main tissue types, xylem and phloem. These tissues are organized into vascular bundles that are arranged into a complex network running through the plant that is essential for the viability of land plants. Despite their obvious importance, the genes involved in the organization of vascular tissues remain poorly understood in grasses. RESULTS: We studied in detail the vascular network in stems from the model grass Brachypodium distachyon (Brachypodium) and identified a large set of genes differentially expressed in vascular bundles versus parenchyma tissues. To decipher the underlying molecular mechanisms of vascularization in grasses, we conducted a forward genetic screen for abnormal vasculature. We identified a mutation that severely affected the organization of vascular tissues. This mutant displayed defects in anastomosis of the vascular network and uncommon amphivasal vascular bundles. The causal mutation is a premature stop codon in ERECTA, a LRR receptor-like serine/threonine-protein kinase. Mutations in this gene are pleiotropic indicating that it serves multiple roles during plant development. This mutant also displayed changes in cell wall composition, gene expression and hormone homeostasis. CONCLUSION: In summary, ERECTA has a pleiotropic role in Brachypodium. We propose a major role of ERECTA in vasculature anastomosis and vascular tissue organization in Brachypodium.


Asunto(s)
Brachypodium/genética , Floema/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Xilema/crecimiento & desarrollo , Brachypodium/crecimiento & desarrollo , Brachypodium/metabolismo , Floema/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Xilema/genética
6.
Plant Sci ; 304: 110803, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33568302

RESUMEN

Grafting is widely used worldwide because of its obvious advantages, especially in solanaceous vegetable crops. However, the molecular mechanisms underlying graft formation are unknown. In this study, internode tissues from above and below the graft junction were harvested, and we performed weighted gene co-expression network analysis (WGCNA) to describe the temporal and spatial transcriptional dynamics that occur during graft formation in tomato. The wounding stress response involved in JA, ETH, and oxylipins mainly occurred at 1 h after grafting (HAG). From 3 to 12 HAG, the biological processes of snRNA and snoRNA modification and the gibberellin-mediated signaling pathway functioned both above and below the graft junction. However, auxin transport and signaling, DNA replication, and xylem and phloem pattern formation were restricted to the scion, whereas the cytokinin-activated signaling pathway and the cellular response to sucrose starvation was restricted to the rootstock. At 24-72 HAG, cell division occurred above the graft junction, and photosynthesis-related pathways were activated below the graft junction. The levels of auxin and cytokinin reached their maxima above and below the graft junction at 12 HAG, respectively. Exogenous application of certain concentrations of IAA and 6-BA will promote xylem and phloem transport capacity. The current work has analyzed the stage-specific events and hub genes during the developmental progression of tomato grafting. We found that auxin and cytokinin levels respond to grafting, above and below the graft junction, respectively, to promote the formation of xylem and phloem patterning. In addition, the accumulation of auxin above the graft junction induced cells to prepare for mitosis and promoted the formation of callus. In short, our work provides an important reference for theoretical research and production application of tomato grafting in the future.


Asunto(s)
Citocininas/fisiología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Microscopía , Floema/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma , Xilema/crecimiento & desarrollo
7.
PLoS One ; 16(2): e0245380, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539358

RESUMEN

Aphid feeding behavior and performance on a given host plant are influenced by the plants' physical and chemical traits, including structural characters such as trichomes and nutritional composition. In this study, we determined the feeding behavior and performance of soybean aphids (Aphis glycines) on the stem, the adaxial (upper), and the abaxial (lower) leaf surfaces during early vegetative growth of soybean plants. Using the electrical penetration graph technique, we found that aphids feeding on the stem took the longest time to begin probing. Once aphids began probing, the sieve elements were more conducive to feeding, as evidenced by less salivation on the stem than either leaf surface. In whole-plant assays, stems harbored higher aphid populations, and aphids had shorter development time on stems than the adaxial and the abaxial leaf surfaces. We compared trichome density and length on the stem, the adaxial, and the abaxial leaf surfaces to investigate whether plant trichomes affected aphid feeding and performance. There were higher density and longer trichomes on stems, which likely resulted in aphids taking a longer time to probe. Still a negative impact on aphid population growth was not observed. Analysis of phloem sap composition revealed that vascular sap-enriched exudates from stems had higher sugars and amino acids than exudates from leaves. In artificial diet feeding assays, the population of aphids reared on a diet supplemented with stem exudates was higher than on a diet supplemented with leaf petiole exudates which is in agreement with results of the whole-plant assays. In summary, our findings suggest that the performance of soybean aphids on a specific plant location is primarily driven by accessibility and the quality of phloem composition rather than structural traits.


Asunto(s)
Áfidos/crecimiento & desarrollo , Conducta Alimentaria/fisiología , Glycine max/metabolismo , Nutrientes , Floema/metabolismo , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Tricomas/metabolismo , Aminoácidos/metabolismo , Animales , Floema/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo , Azúcares/metabolismo , Tricomas/crecimiento & desarrollo
8.
Plant Sci ; 301: 110638, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33218618

RESUMEN

Allocation of more resources to growth but less to defense causing growth vigor of invasive alien plant populations contributes to successful invasion. However, few studies has addressed to relationship between vascular development variation and this mechanism. In this study, a common garden experimentwas established to compare the growth and vascular bundle development between native and introduced populations of Solidago canadensis, which is a wide-distributed invasive species in China. Our results suggested that the rapid growth of introduced populations could be explained by the well-developed and highly lignified xylem; while native populations present more developed and highly lignified phloem, which contributed more resistance to the infection of Sclerotiun rofsii compared with introduced populations. This difference was resulted from tissue-specific tradeoff distribution of lignification related gene expression between xylem and phloem, which is regulated by upstream MYB transcription factors. Our study gives a novel insight of mechanism that explain invasion success: lignin-related gene transcription-mediated tissue-specific lignification of vascular bundle contributes tradeoffs in resource allocation between growth and defence capacity during successful invasion of S. canadensis.


Asunto(s)
Lignina/metabolismo , Solidago/crecimiento & desarrollo , China , Especies Introducidas , Especificidad de Órganos , Floema/crecimiento & desarrollo , Floema/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/crecimiento & desarrollo , Haz Vascular de Plantas/fisiología , Solidago/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xilema/crecimiento & desarrollo , Xilema/fisiología
9.
Plant Sci ; 301: 110657, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33218627

RESUMEN

Secondary cell wall (SCW) has a strong impact on plant growth and adaptation to the environments. Previous studies have shown that NAC (NAM, ATAF1/2, and CUC2) transcription factors act as key regulators of SCW biosynthesis. However, the regulatory network triggered by NAC proteins is largely unknown, especially in cotton, a model plant for SCW development studies. Here, we show that several cotton NAC transcription factors are clustered in the same group with Arabidopsis secondary wall NACs (SWNs), including secondary wall-associated NAC domain protein1 (SND1) and NAC secondary wall thickening promoting factor1/2 (NST1/2), so we name these cotton orthologs as SND1s and NST1s. We found that simultaneous silencing of SND1s and NST1s led to severe xylem and phloem developmental defect in cotton stems, however silencing either SND1s or NST1s alone had no visible phenotype. Silencing both SND1s and NST1s but not one subgroup caused decreased expression of a set of SCW-associated genes, while over-expression of cotton SWNs in tobacco leaves resulted in SCW deposition. SWNs could bind the promoter of MYB46 and MYB83, which are highly expressed in SCW-rich tissues of cotton. In total, our data provide evidence that cotton SWNs positively and coordinately regulate SCW formation.


Asunto(s)
Gossypium/genética , Factores de Transcripción/metabolismo , Pared Celular/metabolismo , Gossypium/crecimiento & desarrollo , Gossypium/fisiología , Floema/genética , Floema/crecimiento & desarrollo , Floema/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/fisiología
10.
Science ; 370(6518)2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32943451

RESUMEN

Optimal plant growth is hampered by deficiency of the essential macronutrient phosphate in most soils. Plant roots can, however, increase their root hair density to efficiently forage the soil for this immobile nutrient. By generating and exploiting a high-resolution single-cell gene expression atlas of Arabidopsis roots, we show an enrichment of TARGET OF MONOPTEROS 5/LONESOME HIGHWAY (TMO5/LHW) target gene responses in root hair cells. The TMO5/LHW heterodimer triggers biosynthesis of mobile cytokinin in vascular cells and increases root hair density during low-phosphate conditions by modifying both the length and cell fate of epidermal cells. Moreover, root hair responses in phosphate-deprived conditions are TMO5- and cytokinin-dependent. Cytokinin signaling links root hair responses in the epidermis to perception of phosphate depletion in vascular cells.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Meristema/crecimiento & desarrollo , Floema/crecimiento & desarrollo , Fosfatos/deficiencia , Epidermis de la Planta/crecimiento & desarrollo , Transactivadores/fisiología , Xilema/crecimiento & desarrollo , Arabidopsis/citología , Arabidopsis/genética , Citocininas/biosíntesis , Citocininas/genética , Meristema/citología , Meristema/metabolismo , Floema/citología , Floema/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Xilema/citología , Xilema/metabolismo
11.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32727025

RESUMEN

The plant cell wall is a complex structure consisting of a polysaccharide network. The rearrangements of the cell wall during the various physiological reactions of plants, however, are still not fully characterized. Profound changes in cell wall organization are detected by microscopy in the phloem fibers of flax (Linum usitatissimum) during the restoration of the vertical position of the inclined stems. To characterize the underlying biochemical and structural changes in the major cell wall polysaccharides, we compared the fiber cell walls of non-inclined and gravistimulated plants by focusing mainly on differences in non-cellulosic polysaccharides and the fine cellulose structure. Biochemical analysis revealed a slight increase in the content of pectins in the fiber cell walls of gravistimulated plants as well as an increase in accessibility for labeling non-cellulosic polysaccharides. The presence of galactosylated xyloglucan in the gelatinous cell wall layer of flax fibers was demonstrated, and its labeling was more pronounced in the gravistimulated plants. Using solid state NMR, an increase in the crystallinity of the cellulose in gravistimulated plants, along with a decrease in cellulose mobility, was demonstrated. Thus, gravistimulation may affect the rearrangement of the cell wall, which can enable restoration in a vertical position of the plant stem.


Asunto(s)
Pared Celular/metabolismo , Celulosa/metabolismo , Lino/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Gravitropismo , Floema/crecimiento & desarrollo
12.
Nat Plants ; 6(5): 544-555, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32393878

RESUMEN

The 3-phosphoinositide-dependent protein kinase 1 (PDK1) is a conserved master regulator of AGC kinases in eukaryotic organisms. pdk1 loss of function causes a lethal phenotype in animals and yeasts, but only mild phenotypic defects in Arabidopsis thaliana (Arabidopsis). The Arabidopsis genome contains two PDK1-encoding genes, PDK1 and PDK2. Here, we used clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) to generate true loss-of-function pdk1 alleles, which, when combined with pdk2 alleles, showed severe developmental defects including fused cotyledons, a short primary root, dwarf stature and defects in male fertility. We obtained evidence that PDK1 is responsible for AGC1 kinase PROTEIN KINASE ASSOCIATED WITH BRX (PAX) activation by phosphorylation during vascular development, and that the PDK1 phospholipid-binding Pleckstrin Homology domain is not required for this process. Our data indicate that PDK1 regulates polar auxin transport by activating AGC1 clade kinases, resulting in PIN phosphorylation.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Floema/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Edición Génica , Fosforilación
13.
Cell Mol Life Sci ; 77(19): 3711-3728, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32193607

RESUMEN

Plant vascular development is a complex process culminating in the generation of xylem and phloem, the plant transporting conduits. Xylem and phloem arise from specialized stem cells collectively termed (pro)cambium. Once developed, xylem transports mainly water and mineral nutrients and phloem transports photoassimilates and signaling molecules. In the past few years, major advances have been made to characterize the molecular, genetic and physiological aspects that govern vascular development. However, less is known about how the environment re-shapes the process, which molecular mechanisms link environmental inputs with developmental outputs, which gene regulatory networks facilitate the genetic adaptation of vascular development to environmental niches, or how the first vascular cells appeared as an evolutionary innovation. In this review, we (1) summarize the current knowledge of the mechanisms involved in vascular development, focusing on the model species Arabidopsis thaliana, (2) describe the anatomical effect of specific environmental factors on the process, (3) speculate about the main entry points through which the molecular mechanisms controlling of the process might be altered by specific environmental factors, and (4) discuss future research which could identify the genetic factors underlying phenotypic plasticity of vascular development.


Asunto(s)
Arabidopsis/metabolismo , Floema/metabolismo , Xilema/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Floema/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas , Raíces de Plantas/metabolismo , Estrés Fisiológico , Xilema/crecimiento & desarrollo
14.
Plant Cell ; 32(5): 1519-1535, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32111671

RESUMEN

Asymmetric cell division (ACD) and positional signals play critical roles in the tissue patterning process. In the Arabidopsis (Arabidopsis thaliana) root meristem, two major phloem cell types arise via ACDs of distinct origins: one for companion cells (CCs) and the other for proto- and metaphloem sieve elements (SEs). The molecular mechanisms underlying each of these processes have been reported; however, how these are coordinated has remained elusive. Here, we report a new phloem development process coordinated via the SHORTROOT (SHR) transcription factor in Arabidopsis. The movement of SHR into the endodermis regulates the ACD for CC formation by activating microRNA165/6, while SHR moving into the phloem regulates the ACD generating the two phloem SEs. In the phloem, SHR sequentially activates NAC-REGULATED SEED MORPHOLOGY 1 (NARS1) and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN 2 (SND2), and these three together form a positive feedforward loop. Under this regulatory scheme, NARS1, generated in the CCs of the root differentiation zone, establishes a top-down signal that drives the ACD for phloem SEs in the meristem. SND2 appears to function downstream to amplify NARS1 via positive feedback. This new regulatory mechanism expands our understanding of the sophisticated vascular tissue patterning processes occurring during postembryonic root development.plantcell;32/5/1519/FX1F1fx1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Floema/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , División Celular Asimétrica , Diferenciación Celular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , MicroARNs/genética , MicroARNs/metabolismo , Floema/citología , Floema/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Factores de Transcripción/genética
15.
Curr Biol ; 30(5): 755-766.e4, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32037095

RESUMEN

Plant cells can change their identity based on positional information, a mechanism that confers developmental plasticity to plants. This ability, common to distinct multicellular organisms, is particularly relevant for plant phloem cells. Protophloem sieve elements (PSEs), one type of phloem conductive cells, act as the main organizers of the phloem pole, which comprises four distinct cell files organized in a conserved pattern. Here, we report how Arabidopsis roots generate a reservoir of meristematic phloem cells competent to swap their cell identities. Although PSE misspecification induces cell identity hybridism, the activity of RECEPTOR LIKE PROTEIN KINASE 2 (RPK2) by perceiving CLE45 peptide contributes to restrict PSE identity to the PSE position. By maintaining a spatiotemporal window when PSE and PSE-adjacent cells' identities are interchangeable, CLE45 signaling endows phloem cells with the competence to re-pattern a functional phloem pole when protophloem fails to form.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Floema/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Floema/metabolismo , Raíces de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
16.
Plant Cell Physiol ; 61(2): 255-264, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31922574

RESUMEN

Stem cells undergo cell division and differentiation to ensure organized tissue development. Because plant cells are immobile, plant stem cells ought to decide their cell fate prior to differentiation, to locate specialized cells in the correct position. In this study, based on a chemical screen, we isolated a novel secondary cell wall indicator BF-170, which binds to lignin and can be used to image in vitro and in situ xylem development. Use of BF-170 to observe the vascular differentiation pattern in the in vitro vascular cell induction system, VISUAL, revealed that adaxial mesophyll cells of cotyledons predominantly generate ectopic xylem cells. Moreover, phloem cells are abundantly produced on the abaxial layer, suggesting the involvement of leaf adaxial-abaxial polarity in determining vascular cell fate. Analysis of abaxial polarity mutants highlighted the role of YAB3, an abaxial cell fate regulator, in suppressing xylem and promoting phloem differentiation on the abaxial domains in VISUAL. Furthermore, YABBY family genes affected in vivo vascular development during the secondary growth. Our results denoted the possibility that such mediators of spatial information contribute to correctly determine the cell fate of vascular stem cells, to conserve the vascular pattern of land plants.


Asunto(s)
Diferenciación Celular/fisiología , Imagen Óptica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Células Madre/metabolismo , Compuestos de Anilina , Arabidopsis/citología , Arabidopsis/genética , Pared Celular , Cotiledón/citología , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Colorantes Fluorescentes , Genes de Plantas , Lignina/metabolismo , Floema/citología , Floema/genética , Floema/crecimiento & desarrollo , Hojas de la Planta/citología , Raíces de Plantas/citología , Quinolinas , Xilema/citología , Xilema/genética , Xilema/crecimiento & desarrollo
17.
Plant J ; 102(4): 797-808, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31883138

RESUMEN

Thick glistening cell walls occur in sieve tubes of all major land plant taxa. Historically, these 'nacreous walls' have been considered a diagnostic feature of sieve elements; they represent a conundrum, though, in the context of the widely accepted pressure-flow theory as they severely constrict sieve tubes. We employed the cucurbit Gerrardanthus macrorhizus as a model to study nacreous walls in sieve elements by standard and in situ confocal microscopy and electron microscopy, focusing on changes in functional sieve tubes that occur when prepared for microscopic observation. Over 90% of sieve elements in tissue sections processed for microscopy by standard methods exhibit nacreous walls. Sieve elements in whole, live plants that were actively transporting as shown by phloem-mobile tracers, lacked nacreous walls and exhibited open lumina of circular cross-sections instead, an appropriate structure for Münch-type mass flow of the cell contents. Puncturing of transporting sieve elements with micropipettes triggered the rapid (<1 min) development of nacreous walls that occluded the cell lumen almost completely. We conclude that nacreous walls are preparation artefacts rather than structural features of transporting sieve elements. Nacreous walls in land plants resemble the reversibly swellable walls found in various algae, suggesting that they may function in turgor buffering, the amelioration of osmotic stress, wounding-induced sieve tube occlusion, and possibly local defence responses of the phloem.


Asunto(s)
Cucurbitaceae/crecimiento & desarrollo , Transporte Biológico , Pared Celular/fisiología , Pared Celular/ultraestructura , Cucurbitaceae/fisiología , Cucurbitaceae/ultraestructura , Microscopía Confocal , Microscopía Electrónica , Presión Osmótica , Floema/crecimiento & desarrollo , Floema/fisiología , Floema/ultraestructura
18.
Proc Natl Acad Sci U S A ; 117(1): 733-740, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31874927

RESUMEN

Vascular plants provide most of the biomass, food, and feed on earth, yet the molecular innovations that led to the evolution of their conductive tissues are unknown. Here, we reveal the evolutionary trajectory for the heterodimeric TMO5/LHW transcription factor complex, which is rate-limiting for vascular cell proliferation in Arabidopsis thaliana Both regulators have origins predating vascular tissue emergence, and even terrestrialization. We further show that TMO5 evolved its modern function, including dimerization with LHW, at the origin of land plants. A second innovation in LHW, coinciding with vascular plant emergence, conditioned obligate heterodimerization and generated the critical function in vascular development in Arabidopsis In summary, our results suggest that the division potential of vascular cells may have been an important factor contributing to the evolution of vascular plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transactivadores/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular/genética , Floema/citología , Floema/crecimiento & desarrollo , Floema/metabolismo , Filogenia , Plantas Modificadas Genéticamente , Multimerización de Proteína/genética , Transactivadores/metabolismo , Xilema/citología , Xilema/crecimiento & desarrollo , Xilema/metabolismo
19.
Curr Biol ; 29(15): 2501-2508.e3, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31327718

RESUMEN

Plants continuously elaborate their bodies through post-embryonic, reiterative organ formation by apical meristems [1]. Meristems harbor stem cells, which produce daughter cells that divide repeatedly before they differentiate. How transitions between stemness, proliferation, and differentiation are precisely coordinated is not well understood, but it is known that phytohormones as well as peptide signals play important roles [2-7]. For example, in Arabidopsis thaliana root meristems, developing protophloem sieve elements (PPSEs) express the secreted CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 45 (CLE45) peptide and its cognate receptor, the leucine-rich repeat receptor kinase (LRR-RK) BARELY ANY MERISTEM 3 (BAM3). Exogenous CLE45 application or transgenically increased CLE45 dosage impairs protophloem formation, suggesting autocrine inhibition of PPSE differentiation by CLE45 signaling. Since CLE45 and BAM3 are expressed throughout PPSE development, it remains unclear how this inhibition is eventually overcome. The OCTOPUS (OPS) gene is required for proper PPSE differentiation and therefore the formation of continuous protophloem strands. OPS dosage increase can mend the phenotype of other mutants that display protophloem development defects in association with CLE45-BAM3 hyperactivity [8, 9]. Here, we provide evidence that OPS protein promotes differentiation of developing PPSEs by dampening CLE45 perception. This markedly quantitative antagonism is likely mediated through direct physical interference of OPS with CLE45 signaling component interactions. Moreover, hyperactive OPS confers resistance to other CLE peptides, and ectopic OPS overexpression triggers premature differentiation throughout the root. Our results thus reveal a novel mechanism in PPSE transition toward differentiation, wherein OPS acts as an "insulator" to antagonize CLE45 signaling.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de la Membrana/genética , Floema/crecimiento & desarrollo , Transducción de Señal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Proteínas de la Membrana/metabolismo , Floema/metabolismo
20.
Genes (Basel) ; 10(5)2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121827

RESUMEN

The phloem of the stem of ramie (Boehmeria nivea) is an important source of natural fiber for the textile industry. However, the lignin content in the phloem affects the quality of ramie phloem fiber. In this study, the lignin content and related key gene expression levels were analyzed in the phloem and xylem at different developmental periods. The results showed that the relative expression levels of lignin synthesis-related key genes in the xylem and phloem of the stem gradually decreased from the fast-growing period to the late maturation period, but the corresponding lignin content increased significantly. However, the relative expression levels of a few genes were the highest during the maturation period. During all three periods, the lignin content in ramie stems was positively correlated with the expression of genes, including PAL, C4H and 4CL1 in the phenylpropanoid pathway, F5H and CCoAOMT in the lignin-specific synthetic pathway, and CAD in the downstream pathway of lignin synthesis, but the lignin content was negatively correlated with the expression of genes including 4CL3 in the phenylpropanoid pathway and UDP-GT in the shunt pathway of lignin monomer synthesis. The ramie 4CL3 recombinant protein prefers cinnamic acid as a substrate during catalysis, and it negatively regulates lignin synthesis. It is speculated that ramie 4CL3 is mainly involved in the synthesis of ramie flavonoid compounds, and that 4CL1 is mainly involved in lignin synthesis.


Asunto(s)
Boehmeria/genética , Lignina/genética , Floema/genética , Boehmeria/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Lignina/biosíntesis , Anotación de Secuencia Molecular , Floema/crecimiento & desarrollo , Metabolismo Secundario/genética , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...