Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.129
Filtrar
1.
Malar J ; 23(1): 125, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685044

RESUMEN

BACKGROUND: Despite efforts made to reduce morbidity and mortality associated with malaria, especially in sub-Saharan Africa, malaria continues to be a public health concern that requires innovative efforts to reach the WHO-set zero malaria agenda. Among the innovations is the use of artemisinin-based combination therapy (ACT) that is effective against Plasmodium falciparum. Generic artemether-lumefantrine (AL) is used to treat uncomplicated malaria after appropriate diagnosis. AL is metabolized by the cytochrome P450 family of enzymes, such as CYP2B6, CYP3A4 and CYP3A5, which can be under pharmacogenetic influence. Pharmacogenetics affecting AL metabolism, significantly influence the overall anti-malarial activity leading to variable therapeutic efficacy. This study focused on generic AL drugs used in malarial treatment as prescribed at health facilities and evaluated pharmacogenomic influences on their efficacy. METHODS: Patients who have been diagnosed with malaria and confirmed through RDT and microscopy were recruited in this study. Blood samples were taken on days 1, 2, 3 and 7 for parasite count and blood levels of lumefantrine, artemisinin, desbutyl-lumefantrine (DBL), and dihydroartemisinin (DHA), the active metabolites of lumefantrine and artemether, respectively, were analysed using established methods. Pharmacogene variation analysis was undertaken using iPLEX microarray and PCR-RFLP. RESULTS: A total of 52 patients completed the study. Median parasite density from day 1 to 7 ranged from 0-2666/µL of blood, with days 3 and 7 recording 0 parasite density. Highest median plasma concentration for lumefantrine and desbutyl lumefantrine, which are the long-acting components of artemisinin-based combinations, was 4123.75 ng/mL and 35.87 ng/mL, respectively. Day 7 plasma lumefantrine concentration across all generic ACT brands was ≥ 200 ng/mL which potentially accounted for the parasitaemia profile observed. Monomorphism was observed for CYP3A4 variants, while there were observed variations in CYP2B6 and CYP3A5 alleles. Among the CYP3A5 genotypes, significant differences in genotypes and plasma concentration for DBL were seen on day 3 between 1/*1 versus *1/*6 (p = 0.002), *1/*3 versus *1/*6 (p = 0.006) and *1/*7 versus *1/*6 (p = 0.008). Day 7 plasma DBL concentrations showed a significant difference between *1/*6 and *1/*3 (p = 0.026) expressors. CONCLUSIONS: The study findings show that CYP2B6 and CYP3A5 pharmacogenetic variations may lead to higher plasma exposure of AL metabolites.


Asunto(s)
Antimaláricos , Combinación Arteméter y Lumefantrina , Artemisininas , Combinación de Medicamentos , Etanolaminas , Fluorenos , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/farmacocinética , Combinación Arteméter y Lumefantrina/uso terapéutico , Femenino , Etanolaminas/uso terapéutico , Etanolaminas/farmacocinética , Adolescente , Fluorenos/uso terapéutico , Fluorenos/farmacocinética , Fluorenos/farmacología , Artemisininas/uso terapéutico , Artemisininas/farmacocinética , Masculino , Ghana , Adulto , Adulto Joven , Niño , Preescolar , Persona de Mediana Edad , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Medicamentos Genéricos/uso terapéutico , Resultado del Tratamiento , Farmacogenética , Anciano , Lactante
2.
J Nat Prod ; 87(4): 810-819, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38427823

RESUMEN

Eight new decahydrofluorene-class alkaloids, microascones A and B (1 and 2), 2,3-epoxyphomapyrrolidone C (3), 14,16-epiascomylactam B (4), 24-hydroxyphomapyrrolidone A (5), and microascones C-E (6-8), along with five known analogs (9-13) were isolated from the marine-derived fungus Microascus sp. SCSIO 41821. Compounds 1 and 2 have an unprecedented complex macrocyclic alkaloid skeleton with a 6/5/6/5/6/5/13 polycyclic system. Their structures and absolute configurations were determined by spectroscopic analysis, quantum chemical calculations of ECD spectra, and 13C NMR chemical shifts. Compounds 10-13 showed selective enzyme inhibitory activity against PTPSig, PTP1B, and CDC25B, and 4, 9, and 10 exhibited strong antibacterial activity against seven tested pathogens. Their structure-bioactivity relationship was discussed, and a plausible biosynthetic pathway for 1-8 was also proposed.


Asunto(s)
Alcaloides , Antibacterianos , Pruebas de Sensibilidad Microbiana , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Estructura Molecular , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Relación Estructura-Actividad , Biología Marina , Ascomicetos/química , Fluorenos/farmacología , Fluorenos/química , Fluorenos/aislamiento & purificación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores
3.
Food Chem Toxicol ; 184: 114385, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123054

RESUMEN

Fluorene-9-bisphenol (BHPF) is an emerging global endocrine-disrupting chemical found in numerous household products as a substitute of bisphenol A. Many studies have reported various toxicities associated with BHPF. However, the effect of BHPF on male reproduction, particularly on the structural integrity of the blood testis barrier (BTB) in mice, has not yet been extensively studied. Ferroptosis, a newly identified form of cell death, occurs in the testicular tissue following exposure to BPA, affecting male fertility. We investigated whether ferroptosis plays a role in BHPF-induced testicular damage. The findings indicated that BHPF exposure led decreases in serum testosterone (T) concentration and sperm concentration and motility in mice. Furthermore, BHPF disrupted the BTB by interfering with key BTB-related proteins, including Cx43, ß-catenin, and ZO-1. Moreover, BHPF induced ferroptosis through the induction of lipid peroxidation, iron overload, oxidative stress, and mitochondrial dysfunction in the testicular tissue. Inhibition of ferroptosis using Fer-1 mitigated the BHPF-induced damage to the BTB and ferroptosis in TM4 cells. Overall, our findings indicated the detrimental effects of BHPF on male reproductive function in mice, suggesting ferroptosis as a mechanism underlying testicular damage.


Asunto(s)
Compuestos de Bencidrilo , Ferroptosis , Fenoles , Testículo , Masculino , Animales , Ratones , Semen , Fluorenos/química , Fluorenos/farmacología
4.
Life Sci ; 329: 121835, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295712

RESUMEN

Fluorene was previously reported to have anticancer activity against human cancer cells. In this study, we examined the in vitro function of 9-methanesulfonylmethylene-2, 3-dimethoxy-9 H -fluorene (MSDF), a novel fluorene derivative, its anticancer potential in human hepatocellular carcinoma (HCC) cells and its underlying molecular mechanism. The disruption of cellular homeostasis caused by MSDF was found to promote reactive oxygen species (ROS) generation, leading to the activation of cellular apoptosis. As a survival strategy, cells undergo autophagy during oxidative stress. MSDF-induced apoptosis occurred through both receptor-mediated extrinsic and mitochondrial-mediated intrinsic routes. The development of acidic vesicular organelles and the accumulation of LC3-II protein suggest an increase in the autophagic process. Apoptosis was detected by double staining. The MAPK/ERK and PI3K/Akt signaling pathways were indeed suppressed during treatment. Along with elevated ROS generation and apoptosis, MSDF also caused anoikis and cell death by causing cells to lose contact with their extracellular matrix. ROS production was induced by MSDF and sustained by an NAC scavenger. MSDF-induced apoptosis led to increased autophagy, as shown by the suppression of apoptosis by Z-VAD-FMK. However, inhibition of autophagy by inhibitor 3-MA increased MSDF-induced apoptosis. More evidence shows that MSDF downregulated the expression of immune checkpoint proteins, suggesting that MSDF could be used in the future as an adjuvant to improve the effectiveness of HCC immunotherapy. Altogether, our results highlight the potential of MSDF as a multitarget drug for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Especies Reactivas de Oxígeno/metabolismo , Anoicis , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Apoptosis , Autofagia/fisiología , Fluorenos/farmacología
5.
J Nat Prod ; 86(6): 1632-1640, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37276341

RESUMEN

In this overview the literature on benzo[j]fluoranthene-derived toxins produced by fungi is discussed with a view on isolation, structure, biological activities, biosynthesis, and total syntheses of the natural products. This class of compounds consists until now of 33 naturally occurring compounds, where 25 are chiral and eight contain no stereogenic centers. The relative configuration of xylarenol was clarified by comparison of experimental and calculated ECD spectra, and absolute configurations of four toxins were corrected. The compounds show various biological activities including antibiotic and cytotoxic properties.


Asunto(s)
Antineoplásicos , Productos Biológicos , Productos Biológicos/farmacología , Fluorenos/farmacología , Fluorenos/química , Antibacterianos , Estructura Molecular
6.
Lancet Infect Dis ; 23(9): 1051-1061, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37327809

RESUMEN

BACKGROUND: Emergence of drug resistance demands novel antimalarial drugs with new mechanisms of action. We aimed to identify effective and well tolerated doses of ganaplacide plus lumefantrine solid dispersion formulation (SDF) in patients with uncomplicated Plasmodium falciparum malaria. METHODS: This open-label, multicentre, parallel-group, randomised, controlled, phase 2 trial was conducted at 13 research clinics and general hospitals in ten African and Asian countries. Patients had microscopically-confirmed uncomplicated P falciparum malaria (>1000 and <150 000 parasites per µL). Part A identified the optimal dose regimens in adults and adolescents (aged ≥12 years) and in part B, the selected doses were assessed in children (≥2 years and <12 years). In part A, patients were randomly assigned to one of seven groups (once a day ganaplacide 400 mg plus lumefantrine-SDF 960 mg for 1, 2, or 3 days; ganaplacide 800 mg plus lumefantrine-SDF 960 mg as a single dose; once a day ganaplacide 200 mg plus lumefantrine-SDF 480 mg for 3 days; once a day ganaplacide 400 mg plus lumefantrine-SDF 480 mg for 3 days; or twice a day artemether plus lumefantrine for 3 days [control]), with stratification by country (2:2:2:2:2:2:1) using randomisation blocks of 13. In part B, patients were randomly assigned to one of four groups (once a day ganaplacide 400 mg plus lumefantrine-SDF 960 mg for 1, 2, or 3 days, or twice a day artemether plus lumefantrine for 3 days) with stratification by country and age (2 to <6 years and 6 to <12 years; 2:2:2:1) using randomisation blocks of seven. The primary efficacy endpoint was PCR-corrected adequate clinical and parasitological response at day 29, analysed in the per protocol set. The null hypothesis was that the response was 80% or lower, rejected when the lower limit of two-sided 95% CI was higher than 80%. This study is registered with EudraCT (2020-003284-25) and ClinicalTrials.gov (NCT03167242). FINDINGS: Between Aug 2, 2017, and May 17, 2021, 1220 patients were screened and of those, 12 were included in the run-in cohort, 337 in part A, and 175 in part B. In part A, 337 adult or adolescent patients were randomly assigned, 326 completed the study, and 305 were included in the per protocol set. The lower limit of the 95% CI for PCR-corrected adequate clinical and parasitological response on day 29 was more than 80% for all treatment regimens in part A (46 of 50 patients [92%, 95% CI 81-98] with 1 day, 47 of 48 [98%, 89-100] with 2 days, and 42 of 43 [98%, 88-100] with 3 days of ganaplacide 400 mg plus lumefantrine-SDF 960 mg; 45 of 48 [94%, 83-99] with ganaplacide 800 mg plus lumefantrine-SDF 960 mg for 1 day; 47 of 47 [100%, 93-100] with ganaplacide 200 mg plus lumefantrine-SDF 480 mg for 3 days; 44 of 44 [100%, 92-100] with ganaplacide 400 mg plus lumefantrine-SDF 480 mg for 3 days; and 25 of 25 [100%, 86-100] with artemether plus lumefantrine). In part B, 351 children were screened, 175 randomly assigned (ganaplacide 400 mg plus lumefantrine-SDF 960 mg once a day for 1, 2, or 3 days), and 171 completed the study. Only the 3-day regimen met the prespecified primary endpoint in paediatric patients (38 of 40 patients [95%, 95% CI 83-99] vs 21 of 22 [96%, 77-100] with artemether plus lumefantrine). The most common adverse events were headache (in seven [14%] of 51 to 15 [28%] of 54 in the ganaplacide plus lumefantrine-SDF groups and five [19%] of 27 in the artemether plus lumefantrine group) in part A, and malaria (in 12 [27%] of 45 to 23 [44%] of 52 in the ganaplacide plus lumefantrine-SDF groups and 12 [50%] of 24 in the artemether plus lumefantrine group) in part B. No patients died during the study. INTERPRETATION: Ganaplacide plus lumefantrine-SDF was effective and well tolerated in patients, especially adults and adolescents, with uncomplicated P falciparum malaria. Ganaplacide 400 mg plus lumefantrine-SDF 960 mg once daily for 3 days was identified as the optimal treatment regimen for adults, adolescents, and children. This combination is being evaluated further in a phase 2 trial (NCT04546633). FUNDING: Novartis and Medicines for Malaria Venture.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Adulto , Adolescente , Niño , Humanos , Lumefantrina/farmacología , Lumefantrina/uso terapéutico , Fluorenos/uso terapéutico , Fluorenos/farmacología , Etanolaminas/uso terapéutico , Etanolaminas/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Arteméter/farmacología , Arteméter/uso terapéutico , Malaria/tratamiento farmacológico , Combinación de Medicamentos , Plasmodium falciparum , Resultado del Tratamiento
7.
Environ Sci Pollut Res Int ; 30(33): 80001-80013, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37289393

RESUMEN

Exposure to phenols, phthalates, pesticides, and polycyclic aromatic hydrocarbons (PAHs) can harm the skeleton. However, data about the joint effects of these chemicals' mixture on bone health are limited. The final analysis involved 6766 participants aged over 20 years recruited from the National Health and Nutrition Examination Survey. Generalized linear regression, weighted quantile sum (WQS) regression, Bayesian kernel machine regression (BKMR), and quantile g-computation (qgcomp) were performed to investigate the association of the urinary levels of chemicals (three phenols, two chlorophenol pesticides, nine phthalates, and six polycyclic aromatic hydrocarbon [PAH] metabolites) with bone mineral density (BMD) measurements and osteoporosis (OP) risk. Generalized linear regression identified that benzophenone-3, 2,4-dichlorophenol, mono-n-butyl phthalate, 1-napthol, 3-fluorene, 2-fluorene, and 1-phenanthrene were significantly associated with lower BMD and increased OP risk. The WQS index was negatively associated with total femur, femoral neck, and lumbar spine vertebra 1 (L1) BMD among all the participants, with corresponding ß (95% confidence interval) values of -0.028 g/cm2 (-0.040, -0.017), -0.015 g/cm2 (-0.025, -0.004), and -0.018 g/cm2 (-0.033, -0.003). In the BKMR analysis, the overall effect of the mixture was significantly associated with femoral neck BMD among males and OP risk among females. The qgcomp model found a significant association between co-exposure and L1 BMD among all the participants and among males. Our study presents compelling epidemiological evidence that co-exposure to phenols, chlorophenol pesticides, phthalates, and PAHs is associated with reduced BMD and elevated OP risk. It provides epidemiologic evidence for the detrimental effects of these chemicals on bone health.


Asunto(s)
Clorofenoles , Plaguicidas , Ácidos Ftálicos , Hidrocarburos Policíclicos Aromáticos , Masculino , Femenino , Humanos , Adulto , Densidad Ósea , Fenol/farmacología , Plaguicidas/farmacología , Encuestas Nutricionales , Teorema de Bayes , Ácidos Ftálicos/orina , Modelos Estadísticos , Fenoles/farmacología , Fluorenos/farmacología , Cuello Femoral
8.
J Nat Prod ; 86(5): 1294-1306, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37140218

RESUMEN

Three new phenanthrene derivatives (1, 2, 4), one new fluorenone (3), and four known compounds (5-8) were isolated from the ethyl acetate extract of Dendrobium crumenatum Sw. stems using column chromatography. The chemical structures were elucidated by analysis of spectroscopic data. The absolute configuration of 4 was determined by electronic circular dichroism calculation. We also evaluated the immunomodulatory effects of compounds isolated from D. crumenatum in human peripheral blood mononuclear cells from healthy individuals and those from patients with multiple sclerosis in vitro. Dendrocrumenol B (2) and dendrocrumenol D (4) showed strong immunomodulatory effects on both CD3+ T cells and CD14+ monocytes. Compounds 2 and 4 could reduce IL-2 and TNF production in T cells and monocytes that were treated with phorbol-12-myristate-13-acetate and ionomycin (PMA/Iono). Deep immune profiling using high-dimensional single-cell mass cytometry could confirm immunomodulatory effects of 4, quantified by the reduction of activated T cell population under PMA/Iono stimulation, in comparison to the stimulated T cells without treatment.


Asunto(s)
Dendrobium , Fenantrenos , Humanos , Dendrobium/química , Leucocitos Mononucleares , Monocitos , Fenantrenos/farmacología , Fenantrenos/química , Linfocitos T , Acetato de Tetradecanoilforbol/farmacología , Fluorenos/química , Fluorenos/farmacología
9.
J Nat Prod ; 86(3): 596-603, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36884371

RESUMEN

Macrocyclic alkaloids with a cyclopenta[b]fluorene ring system are a relatively young structural class of fungal metabolites, with the first members reported in 2013. Bioassay-guided fractionation of a Sarocladium sp. (fungal strain MSX6737) led to a series of both known and new members of this structural class (1-5), including the known embellicine A (1), three new embellicine analogues (2, 4, and 5), and a semisynthetic acetylated analogue (3). The structures were identified by examining both high-resolution electrospray ionization mass spectrometry data and one-dimensional and two-dimensional NMR spectra. The relative configurations of these molecules were established via 1H-1H coupling constants and nuclear Overhauser effect spectroscopy, while comparisons of the experimental electronic circular dichroism (ECD) spectra with the time-dependent density functional theory ECD calculations were utilized to assign their absolute configurations, which were in good agreement with the literature. These alkaloids (1-5) showed cytotoxic activity against a human breast cancer cell line (MDA-MB-231) that ranged from 0.4 to 4.8 µM. Compounds 1 and 5 were also cytotoxic against human ovarian (OVCAR3) and melanoma (MDA-MB-435) cancer cell lines.


Asunto(s)
Alcaloides , Antineoplásicos , Hypocreales , Neoplasias Ováricas , Femenino , Humanos , Apoptosis , Línea Celular Tumoral , Antineoplásicos/farmacología , Dicroismo Circular , Alcaloides/farmacología , Alcaloides/química , Fluorenos/farmacología , Estructura Molecular
10.
Reprod Biol Endocrinol ; 20(1): 47, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260167

RESUMEN

BACKGROUND: The purpose of this study was to investigate the effects of polycyclic aromatic hydrocarbons (PAHs) other than bisphenol A (BPA) and BPA substitutes on placental cells. METHODS: HTR-8/SVneo cells were treated with anthracene, benzo[k]fluoranthene, benzo[a]pyrene, and 4,4-(9-fluorenylidene)diphenol, which is used as a substitute for BPA-free products. After confirming the dose response for each reagent using the prepared cells, the cells were incubated for 24, 48, and 72 h. Cell viability was confirmed using the XTT assay. Each experiment was performed with the minimum number of samples (n = 3) required for statistical analysis. The results were analyzed using t-tests; p < 0.05 was considered statistically significant. RESULTS: After treatment with anthracene, benzo[k]fluoranthene, benzo[a]pyrene, and 4,4-(9-fluorenylidene)diphenol, the absorbance measured using the XTT assay decreased significantly with increasing concentration. The absorbance decreased significantly over time following treatment with each endocrine disruptor at the concentration confirmed by the dose-response analysis. CONCLUSIONS: This study showed that anthracene, benzo[k]fluoranthene, benzo[a]pyrene, and 4,4-(9-fluorenylidene)diphenol-a BPA substitute-affect cell viability and necrosis in the placental cell line. The study indicates the serious effects of PAHs that negatively affect pregnancy but were previously unknown. Further, this study would serve as a reference for the identification of harmful PAHs during pregnancy prognosis in women who are more susceptible to PAH exposure.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/farmacología , Antracenos/farmacología , Compuestos de Bencidrilo/farmacología , Benzo(a)pireno/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Fluorenos/farmacología , Humanos , Fenoles/farmacología , Placenta/citología , Embarazo , Factores de Tiempo
11.
Drugs ; 81(11): 1343-1348, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34287805

RESUMEN

Pamiparib (PARTRUVIX™; BeiGene Ltd.) is a selective poly (ADP-ribose) polymerase 1 and 2 (PARP1 and PARP2) inhibitor being developed for the treatment of various cancers. Based on the results from the pivotal phase II portion of a phase I/II trial (NCT03333915) pamiparib was recently approved in China for the treatment of germline BRCA mutation-associated recurrent advanced ovarian, fallopian tube or primary peritoneal cancer previously treated with two or more lines of chemotherapy. This article summarizes the milestones in the development of pamiparib leading to this first approval.


Asunto(s)
Fluorenos/farmacología , Fluorenos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Peritoneales/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Área Bajo la Curva , China , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Aprobación de Drogas , Femenino , Fluorenos/efectos adversos , Fluorenos/farmacocinética , Semivida , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/efectos adversos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacocinética
12.
Biochem Biophys Res Commun ; 571: 26-31, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34303192

RESUMEN

The pandemic of SARS-CoV-2 has necessitated expedited research efforts towards finding potential antiviral targets and drug development measures. While new drug discovery is time consuming, drug repurposing has been a promising area for elaborate virtual screening and identification of existing FDA approved drugs that could possibly be used for targeting against functions of various proteins of SARS-CoV-2 virus. RNA dependent RNA polymerase (RdRp) is an important enzyme for the virus that mediates replication of the viral RNA. Inhibition of RdRp could inhibit viral RNA replication and thus new virus particle production. Here, we screened non-nucleoside antivirals and found three out of them to be strongest in binding to RdRp out of which two retained binding even using molecular dynamic simulations. We propose these two drugs as potential RdRp inhibitors which need further in-depth testing.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Amidas/farmacología , Antivirales/química , Bencimidazoles/farmacología , COVID-19/virología , Carbamatos/farmacología , Dominio Catalítico , Simulación por Computador , ARN Polimerasa Dependiente de ARN de Coronavirus/química , Ciclopropanos/farmacología , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Fluorenos/farmacología , Humanos , Lactamas Macrocíclicas/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Prolina/análogos & derivados , Prolina/farmacología , Conformación Proteica , Quinoxalinas/farmacología , Sulfonamidas/farmacología
13.
J Am Chem Soc ; 143(31): 11903-11907, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34323478

RESUMEN

Fluorescent voltage indicators are an attractive alternative for studying the electrical activity of excitable cells; however, the development of indicators that are both highly sensitive and low in toxicity over long-term experiments remains a challenge. Previously, we reported a fluorene-based voltage-sensitive fluorophore that exhibits much lower phototoxicity than previous voltage indicators in cardiomyocyte monolayers, but suffers from low sensitivity to membrane potential changes. Here, we report that the addition of a single vinyl spacer in the fluorene molecular wire scaffold improves the voltage sensitivity 1.5- to 3.5-fold over fluorene-based voltage probes. Furthermore, we demonstrate the improved ability of the new vinyl-fluorene VoltageFluors to monitor action potential kinetics in both mammalian neurons and human-induced pluripotent stem cell-derived cardiomyocytes. Addition of the vinyl spacer between the aniline donor and fluorene monomer results in indicators that are significantly less phototoxic in cardiomyocyte monolayers. These results demonstrate how structural modification to the voltage sensing domain have a large effect on improving the overall properties of molecular wire-based voltage indicators.


Asunto(s)
Fluorenos/farmacología , Colorantes Fluorescentes/farmacología , Miocitos Cardíacos/efectos de los fármacos , Neuronas/efectos de los fármacos , Compuestos de Vinilo/farmacología , Fluorenos/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Estructura Molecular , Procesos Fotoquímicos , Compuestos de Vinilo/química
14.
J Med Chem ; 64(15): 11229-11246, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34293864

RESUMEN

In this paper, we applied an innovative nuclear magnetic resonance (NMR)-guided screening and ligand design approach, named focused high-throughput screening by NMR (fHTS by NMR), to derive potent, low-molecular-weight ligands capable of mimicking interactions elicited by ephrin ligands on the receptor tyrosine kinase EphA4. The agents bind with nanomolar affinity, trigger receptor activation in cellular assays with motor neurons, and provide remarkable motor neuron protection from amyotrophic lateral sclerosis (ALS) patient-derived astrocytes. Structural studies on the complex between EphA4 ligand-binding domain and a most active agent provide insights into the mechanism of the agents at a molecular level. Together with preliminary in vivo pharmacology studies, the data form a strong foundation for the translation of these agents for the treatment of ALS and potentially other human diseases.


Asunto(s)
Aminoácidos/farmacología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Diseño de Fármacos , Fluorenos/farmacología , Receptor EphA4/agonistas , Aminoácidos/química , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Fluorenos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Ratones , Ratones Transgénicos , Modelos Moleculares , Estructura Molecular , Receptor EphA4/metabolismo , Relación Estructura-Actividad , Termodinámica
15.
Molecules ; 26(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070126

RESUMEN

Antimicrobial resistance is one of the major public health threats at the global level, urging the search for new antimicrobial molecules. The fluorene nucleus is a component of different bioactive compounds, exhibiting diverse pharmacological actions. The present work describes the synthesis, chemical structure elucidation, and bioactivity of new O-aryl-carbamoyl-oxymino-fluorene derivatives and the contribution of iron oxide nanoparticles to enhance the desired biological activity. The antimicrobial activity assessed against three bacterial and fungal strains, in suspension and biofilm growth state, using a quantitative assay, revealed that the nature of substituents on the aryl moiety are determinant for both the spectrum and intensity of the inhibitory effect. The electron-withdrawing inductive effect of chlorine atoms enhanced the activity against planktonic and adhered Staphylococcus aureus, while the +I effect of the methyl group enhanced the anti-fungal activity against Candida albicans strain. The magnetite nanoparticles have substantially improved the antimicrobial activity of the new compounds against planktonic microorganisms. The obtained compounds, as well as the magnetic core@shell nanostructures loaded with these compounds have a promising potential for the development of novel antimicrobial strategies.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Fluorenos/farmacología , Nanopartículas Magnéticas de Óxido de Hierro/química , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Espectroscopía de Resonancia Magnética con Carbono-13 , Fluorenos/química , Hongos/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/ultraestructura , Magnetometría , Pruebas de Sensibilidad Microbiana , Plancton/efectos de los fármacos , Espectroscopía de Protones por Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier
16.
Cells ; 10(5)2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946869

RESUMEN

The rapid spread of the virus, the surge in the number of deaths, and the unavailability of specific SARS-CoV-2 drugs thus far necessitate the identification of drugs with anti-COVID-19 activity. SARS-CoV-2 enters the host cell and assembles a multisubunit RNA-dependent RNA polymerase (RdRp) complex of viral nonstructural proteins that plays a substantial role in the transcription and replication of the viral genome. Therefore, RdRp is among the most suitable targets in RNA viruses. Our aim was to investigate the FDA approved antiviral drugs having potential to inhibit the viral replication. The methodology adopted was virtual screening and docking of FDA-approved antiviral drugs into the RdRp protein. Top hits were selected and subjected to molecular dynamics simulations to understand the dynamics of RdRp in complex with these drugs. The antiviral activity of the drugs against SARS-CoV-2 was assessed in Vero E6 cells. Notably, both remdesivir (half-maximal effective concentration (EC50) 6.6 µM, 50% cytotoxicity concentration (CC50) > 100 µM, selectivity index (SI) = 15) and ledipasvir (EC50 34.6 µM, CC50 > 100 µM, SI > 2.9) exerted antiviral action. This study highlights the use of direct-acting antiviral drugs, alone or in combination, for better treatments of COVID-19.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Bencimidazoles/farmacología , Fluorenos/farmacología , Adenosina Monofosfato/farmacología , Alanina/farmacología , Animales , Chlorocebus aethiops , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos
17.
Antiviral Res ; 191: 105087, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33965437

RESUMEN

Marine microorganisms have been a resource for novel therapeutic drugs for decades. In addition to anticancer drugs, the drug acyclovir, derived from a marine sponge, is FDA-approved for the treatment of human herpes simplex virus-1 infections. Most alphaviruses that are infectious to terrestrial animals and humans, such as Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV), lack efficient antiviral drugs and it is imperative to develop these remedies. To push the discovery and development of anti-alphavirus compounds forward, this study aimed to isolate and screen for potential antiviral compounds from cultured marine microbes originating from the marine environment. Compounds from marine microbes were of interest as they are prolific producers of bioactive compounds across the spectrum of human diseases and infections. Homoseongomycin, an actinobacteria isolated from a marine sponge displayed impressive activity against VEEV from a total of 76 marine bioactive products. The 50% effective concentration (EC50) for homoseongomycin was 8.6 µM for suppressing VEEV TC-83 luciferase reporter virus replication. Homoseongomycin was non-toxic up to 50 µM and partially rescued cells from VEEV induced cell death. Homoseongomycin exhibited highly efficient antiviral activity with a reduction of VEEV infectious titers by 8 log10 at 50 µM. It also inhibited EEEV replication with an EC50 of 1.2 µM. Mechanism of action studies suggest that homoseongomycin affects both early and late stages of the viral life cycle. Cells treated with 25 µM of homoseongomycin had a ~90% reduction in viral entry. In comparison, later stages showed a more robust reduction in infectious titers (6 log10) and VEEV extracellular viral RNA levels (4 log10), but a lesser impact on intracellular viral RNA levels (1.5 log10). In sum, this work demonstrates that homoseongomycin is a potential anti-VEEV and anti-EEEV compound due to its low cytotoxicity and potent antiviral activity.


Asunto(s)
Actinobacteria/química , Antivirales/farmacología , Virus de la Encefalitis Equina del Este/efectos de los fármacos , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Fluorenos/farmacología , Replicación Viral/efectos de los fármacos , Animales , Organismos Acuáticos/química , Línea Celular , Chlorocebus aethiops , Humanos , Células Vero
18.
Aging (Albany NY) ; 13(9): 12526-12536, 2021 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-33934091

RESUMEN

To investigate the suppressive function of RO4929097, a potent -secretase inhibitor, on RANKL-induced osteoclastogenesis. The cytotoxicity of RO4929097 was evaluated. The suppressive effect and possible molecular mechanism of RO4929097 on RANKL-induced osteoclastogenesis was evaluated both in vitro and in vivo. The IC50 of RO4929097 was 2.93 µM. Treatment with different doses of RO4929097 (100 nM, 200 nM, and 400 nM) effectively reduced osteoclast formation (number and resorption area) in a dose-dependent manner. The qPCR results revealed that RO4929097 attenuates RANKL-induced osteoclast formation and NFATc1 protein expression. The in vivo experiments demonstrated that RO4929097 had an inhibitory effect on LPS-induced bone resorption. Our in vitro experiments showed that RO4929097 can potently inhibit osteoclastogenesis and bone resorption by down-regulating the Notch/MAPK/JNK/Akt-mediated reduction of NFATc1. In accordance with these in vitro observations, RO4929097 attenuated LPS-induced osteolysis in mice. In conclusion, our findings indicate that Notch may represent a potential therapeutic target for the treatment of osteolytic diseases.


Asunto(s)
Benzazepinas/farmacología , Fluorenos/farmacología , Cetonas/farmacología , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteólisis/tratamiento farmacológico , Animales , Diferenciación Celular/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Osteogénesis/fisiología , Osteólisis/inducido químicamente , Transducción de Señal/efectos de los fármacos
19.
Eur J Med Chem ; 219: 113427, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33845235

RESUMEN

To further pursue potent Bax activators with better safety profiles for the treatment of breast cancer, structural optimization was conducted based on lead compound CYD-4-61 through several strategies, including scaffold hopping on the 2-nitro-fluorene ring, replacement of the nitro group with bioisosteres to avoid potential toxicity, and further optimization on the upper pyridine by exploring diverse alkylamine linkers as a tail or replacing the pyridine with bioisosteric heterocycles. F-containing compound 22d (GL0388) exhibited a good balance between the activity and toxicity, displaying submicromolar activities against a variety of cancer cell lines with 5.8-10.7-fold selectivity of decreased activity to MCF-10A human mammary epithelial cell line. Compound 22d dose-dependently blocked colony formation of breast cancer cells and prevented the migration and invasion of MDA-MB-231 cells. Mechanism of action studies indicate that 22d activated Bax, rendering its insertion into mitochondrial membrane, thereby leading to cytochrome c release from the mitochondria into the cytoplasm, subsequently inducing release of apoptotic biomarkers. Further in vivo efficacy studies of 22d in human breast cancer xenografts arisen from MDA-MB-231 cells demonstrated that this drug candidate significantly suppressed tumor growth, indicating the therapeutic promise of this class of compounds for the treatment of breast cancer as well as the potential for developing F-radiolabeled imaging ligands as anticancer chemical probes.


Asunto(s)
Antineoplásicos/síntesis química , Diseño de Fármacos , Fluorenos/química , Proteína X Asociada a bcl-2/agonistas , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Sitios de Unión , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Fluorenos/metabolismo , Fluorenos/farmacología , Fluorenos/uso terapéutico , Humanos , Ratones , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Trasplante Heterólogo , Proteína X Asociada a bcl-2/metabolismo
20.
Eur J Clin Pharmacol ; 77(9): 1369-1379, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33791829

RESUMEN

PURPOSE: Comorbid conditions of heart and liver disorders added to HCV-induced hepatic steatosis make co-administration of statins, and direct-acting antivirals is common in clinical practice. This study aimed to evaluate the pharmacokinetic interaction of atorvastatin and fixed-dose combination of sofosbuvir/ledipasvir "FDCSL" with rationalization to the underlying mechanism. METHODS: A randomized, three-phase crossover study that involves 12 healthy volunteers was performed. Participants received a single-dose of atorvastatin 80 mg alone, atorvastatin 80-mg plus tablets containing 400/90 mg FDCSL, or tablets containing 400/90 mg FDCSL alone. Plasma samples were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for atorvastatin, sofosbuvir, ledipasvir, and sofosbuvir metabolite "GS-331007," and their pharmacokinetics parameters were determined. RESULTS: Compared to atorvastatin alone, the administration of FDCSL caused a significant increase in both areas under the concentration-time curve from time zero to infinity (AUC0-∞) and maximum plasma concentration (Cmax) of atorvastatin by 65.5% and 156.0%, respectively. Also, atorvastatin caused a significant increase in the AUC0-∞ and Cmax of sofosbuvir by 32.0% and 11.0%, respectively. Similarly, AUC0-∞ and Cmax of sofosbuvir metabolite significantly increased by 84.0% and 74.0%, respectively. However, ledipasvir AUC0-∞ showed no significant change after atorvastatin intake. The elimination rate in all drugs revealed no significant changes. CONCLUSION: After concurrent administration of FDCSL with atorvastatin, the AUC0-∞ of both atorvastatin and sofosbuvir were increased. Caution should be taken with close monitoring for possible side effects after co-administration of atorvastatin and FDCSL in clinical practice.


Asunto(s)
Anticolesterolemiantes/farmacología , Antivirales/farmacología , Atorvastatina/farmacología , Bencimidazoles/farmacología , Fluorenos/farmacología , Sofosbuvir/farmacología , Adulto , Anticolesterolemiantes/farmacocinética , Antivirales/farmacocinética , Área Bajo la Curva , Atorvastatina/farmacocinética , Bencimidazoles/farmacocinética , Estudios Cruzados , Egipto , Fluorenos/farmacocinética , Voluntarios Sanos , Humanos , Masculino , Tasa de Depuración Metabólica , Método Simple Ciego , Sofosbuvir/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...