Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Nucl Med ; 39(8): 701-3, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24978339

RESUMEN

In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone of this evolving and exciting discipline.


Asunto(s)
Medicina Nuclear/historia , Publicaciones Periódicas como Asunto/historia , Tomografía de Emisión de Positrones/historia , Fluorodesoxiglucosa F18/historia , Historia del Siglo XX , Medicina Nuclear/métodos , Radiofármacos/historia
2.
JACC Cardiovasc Imaging ; 5(12): 1269-84, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23236979

RESUMEN

The field of nuclear cardiac imaging has evolved from being rather subjective, more "art than a science," to a more objective, digital-based quantitative technique, providing insight into the physiological processes of cardiovascular disorders and predicting patient outcome. In a mere 4 decades of its clinical use, the technology used to image myocardial perfusion has made quantum leaps from planar to single-photon emission computed tomography (SPECT) and now to a more contemporary rapid SPECT, positron emission tomography (PET), and hybrid SPECT-computed tomography (CT) and PET-CT techniques. Meanwhile, radiotracers have flourished from potassium-43 and red blood cell-tagged blood pool imaging to thallium-201 and technetium-99m-labeled SPECT perfusion tracers along with rubidium-82, ammonia N-13, and more recently F-18 fluorine-labeled PET perfusion tracers. Concurrent with this expansion is the introduction of new quantitative methods and software for image processing, evaluation, and data interpretation. Technical advances, particularly in obtaining quantitative data, have led to a better understanding of the physiological mechanisms underlying cardiovascular diseases beyond discrete epicardial coronary artery disease to coronary vasomotor function in the early stages of the development of coronary atherosclerosis, hypertrophic cardiomyopathy, and dilated nonischemic cardiomyopathy. Progress in the areas of molecular and hybrid imaging are equally important areas of growth in nuclear cardiology. However, this paper focuses on the past and future of nuclear myocardial perfusion imaging and particularly perfusion tracers.


Asunto(s)
Cardiología/historia , Radioisótopos de Flúor/historia , Fluorodesoxiglucosa F18/historia , Cardiopatías/historia , Imagen de Perfusión Miocárdica/historia , Medicina Nuclear/historia , Trazadores Radiactivos , Cardiología/métodos , Cardiopatías/diagnóstico por imagen , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Medicina Nuclear/métodos
5.
Eur J Cancer ; 36(16): 2028-35, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11044638

RESUMEN

The origins of positron emission tomography (PET) date back 70 years. Since the 1970s, however, its use has increased exponentially in the fields of neurology, cardiology and oncology. [18F]-Fluorodeoxyglucose (FDG) whole-body scanning is by far the most widely utilised and recognised application of PET in oncology. However, PET is a very versatile and powerful imaging modality capable of helping bridge the gap between the laboratory and the clinic. This article reviews the history and current applications of PET in oncology and then explores some of the newer applications and potential future uses of this versatile technology particularly in the area of cancer research.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias/diagnóstico por imagen , Radiofármacos , Tomografía Computarizada de Emisión/métodos , Antineoplásicos/uso terapéutico , Fluorodesoxiglucosa F18/historia , Expresión Génica , Historia del Siglo XX , Humanos , Neoplasias/historia , Neoplasias/metabolismo , Radiofármacos/historia , Sensibilidad y Especificidad , Tomografía Computarizada de Emisión/historia , Tomografía Computarizada de Emisión/tendencias
6.
Semin Nucl Med ; 28(3): 213-20, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9704363

RESUMEN

The development of positron emission tomography (PET) illustrates how advances in basic science translates into benefits for human beings. In 1930 Ernest Lawrence and co-workers conceived of the cyclotron. By 1938 Lawrence, Livingston, et al had designed a "medical cyclotron." The subsequent production of C-11, N-13, O-15, and F-18 found many uses in medical and physiologic research. The introduction of F-18 deoxyglucose represents another major step toward practical clinical use of positron-emitting tracers. We have now achieved the transition from the postulation of the existence of positrons to their use in a wide variety of diseases.


Asunto(s)
Tomografía Computarizada de Emisión/historia , Ciclotrones/historia , Radioisótopos de Flúor/historia , Fluorodesoxiglucosa F18/historia , Historia del Siglo XX , Humanos , Radiofármacos/historia , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA