Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 972
Filtrar
1.
Int J Biol Macromol ; 267(Pt 1): 131447, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588843

RESUMEN

The drug encapsulation efficiency, release rate and time, sustained release, and stimulus-response of carriers are very important for drug delivery. However, these always cannot obtained for the carrier with a single component. To improve the comprehensive performance of chitosan-based carriers for 5-Fu delivery, diatomite-incorporated hydroxypropyl cellulose/chitosan (DE/HPC/CS) composite aerogel microspheres were fabricated for the release of 5-fluorouracil (5-Fu), and the release performance was regulated with the content of diatomite, pH value, and external coating material. Firstly, the 5-Fu loaded DE/HPC/CS composite aerogel microspheres and Eudragit L100 coated microspheres were prepared with cross-linking followed by freeze-drying, and characterized by SEM, EDS, FTIR, XRD, DSC, TG, and swelling. The obtained aerogel microspheres have a diameter of about 0.5 mm, the weight percentage of F and Si elements on the surface are 0.55 % and 0.78 % respectively. The glass transition temperature increased from 179 °C to 181 °C and 185 °C with the incorporation of DE and coating of Eudragit, and the equilibrium swelling percentage of DE/HPC/CS (1.5:3:2) carriers are 101.52 %, 45.27 %, 67.32 % at pH 1.2, 5.0, 7.4, respectively. Then, the effect of DE content on the drug loading efficiency of DE/HPC/CS@5-Fu was investigated, with the increase of DE content, the highest encapsulation efficiency was 82.6 %. Finally, the release behavior of DE incorporated and Eudragit L100 Coated microspheres were investigated under different pH values, and evaluated with four kinetic models. The results revealed that the release rate of 5-Fu decreased with the increase of DE content, sustained release with extending time and pH-responsive were observed for the Eudragit-coated aerogel microspheres.


Asunto(s)
Celulosa , Celulosa/análogos & derivados , Quitosano , Preparaciones de Acción Retardada , Tierra de Diatomeas , Portadores de Fármacos , Liberación de Fármacos , Fluorouracilo , Microesferas , Ácidos Polimetacrílicos , Quitosano/química , Celulosa/química , Fluorouracilo/química , Fluorouracilo/administración & dosificación , Tierra de Diatomeas/química , Ácidos Polimetacrílicos/química , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Geles/química
2.
Int J Biol Macromol ; 267(Pt 2): 131543, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614169

RESUMEN

A temperature/pH dual sensitive hydrogel with a semi-interpenetrating network (semi-IPN) structure was synthesized through an aqueous amino-succinimide reaction between water-soluble polysuccinimide and polyethyleneimine in the presence of thermosensitive cellulose derivatives. Single-factor experiments were carried out to optimize the preparation conditions of the semi-IPN hydrogel. The swelling behavior and cytotoxicity assay of the hydrogel were tested. Finally, taking 5- fluorouracil (5-Fu) as a model drug, the release performance of the 5-Fu-loaded hydrogel was investigated. The results indicated that the swelling ratio (SR) first decreased and then increased when the pH of the solutions ascended from 2 to 10. The SR decreased with the increase in temperature. In addition, the swelling behavior of the hydrogel was reversible and reproducible under different pH values and temperatures. The prepared hydrogels had good cytocompatibility. The release behavior of 5-Fu was most consistent with the Korsmeyer-Peppas model and followed the case II diffusion. The acidic environment was beneficial for the release of 5-Fu. The preparation process of the semi-IPN hydrogel is simple and the reaction can proceed quickly in water. The strategy introduced here has great potential for application in the preparation of drug carriers.


Asunto(s)
Celulosa , Fluorouracilo , Hidrogeles , Succinimidas , Temperatura , Hidrogeles/química , Hidrogeles/síntesis química , Celulosa/química , Celulosa/análogos & derivados , Concentración de Iones de Hidrógeno , Fluorouracilo/química , Fluorouracilo/farmacología , Succinimidas/química , Agua/química , Liberación de Fármacos , Portadores de Fármacos/química , Humanos
3.
J Mater Chem B ; 12(16): 3947-3958, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38586917

RESUMEN

Colorectal cancer (CRC) occurs in the colorectum and ranks second in the global incidence of all cancers, accounting for one of the highest mortalities. Although the combination chemotherapy regimen of 5-fluorouracil (5-FU) and platinum(IV) oxaliplatin prodrug (OxPt) is an effective strategy for CRC treatment in clinical practice, chemotherapy resistance caused by tumor-resided Fusobacterium nucleatum (Fn) could result in treatment failure. To enhance the efficacy and improve the biocompatibility of combination chemotherapy, we developed an antibacterial-based nanodrug delivery system for Fn-associated CRC treatment. A tumor microenvironment-activated nanomedicine 5-FU-LA@PPL was constructed by the self-assembly of chemotherapeutic drug derivatives 5-FU-LA and polymeric drug carrier PPL. PPL is prepared by conjugating lauric acid (LA) and OxPt to hyperbranched polyglycidyl ether. In principle, LA is used to selectively combat Fn, inhibit autophagy in CRC cells, restore chemosensitivity of 5-FU as well as OxPt, and consequently enhance the combination chemotherapy effects for Fn-associated drug-resistant colorectal tumor. Both in vitro and in vivo studies exhibited that the tailored nanomedicine possessed efficient antibacterial and anti-tumor activities with improved biocompatibility and reduced non-specific toxicity. Hence, this novel anti-tumor strategy has great potential in the combination chemotherapy of CRC, which suggests a clinically relevant valuable option for bacteria-associated drug-resistant cancers.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Fluorouracilo , Ácidos Láuricos , Fluorouracilo/farmacología , Fluorouracilo/química , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Humanos , Ácidos Láuricos/química , Ácidos Láuricos/farmacología , Animales , Ratones , Antineoplásicos/química , Antineoplásicos/farmacología , Fusobacterium nucleatum/efectos de los fármacos , Oxaliplatino/farmacología , Oxaliplatino/química , Sistemas de Liberación de Medicamentos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Profármacos/química , Profármacos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Ratones Endogámicos BALB C , Tamaño de la Partícula , Portadores de Fármacos/química
4.
Phys Chem Chem Phys ; 26(7): 6410-6419, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315790

RESUMEN

In the present work, we report a facile and simple strategy to functionalize graphene with the chloromethyl (CH2Cl) functional group as a nanoplatform for effectual loading of the 5-fluorouracil (5-FU) anticancer drug. To achieve the highest loading capacity, hydrochloric acid concentration, the quantity of paraformaldehyde, ultrasonic treatment time, and stirring duration were all carefully optimized. The results revealed that the optimum conditions for functionalizing graphene were obtained at 70 mL of hydrochloric acid, 700 mg of paraformaldehyde, and times of 35 min and 2 h of ultrasonication and stirring. Later, the drug (5-FU) was loaded onto CH2Cl-functionalized graphene through hydrogen bonding and π-π interactions. The chemical structure of the functionalized material and the loading of the 5-FU drug were confirmed by FTIR analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The 5-FU loading capacity of as-prepared materials was determined using the ion chromatography instrument. Our findings demonstrate that chloromethylated graphene is a very excellent nano-platform for high-efficiency drug loading, yielding a loading capacity of 52.3%, comparatively higher than pure graphene (36.54%).


Asunto(s)
Antineoplásicos , Formaldehído , Grafito , Polímeros , Fluorouracilo/química , Grafito/química , Ácido Clorhídrico , Antineoplásicos/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos
5.
J Biotechnol ; 381: 100-108, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38181982

RESUMEN

Metal sulfide nanoparticles are synthesized for their biomedical applications, including cancer drug targeting. This paper reports a novel nanocomposite made of praseodymium sulfide nanoparticles and poly-cyclodextrin. The praseodymium sulfide nanoparticles were synthesized hydrothermal, autoclaving the nitrate precursors at 150 °C for 18 hours. The material is characterized using XRD and shows an orthorhombic crystal system with high crystallinity. The size and morphology of the nanomaterial were optimized. The material shows a rod-shaped morphology, as seen in the TEM image, with 150 ± 3 nm length and 25 ± 5 nm width. Particle size analysis supports this size range. The colloidal particles were stable in the aqueous medium without precipitation at neutral pH. The elements in the material in the polymer-coated form and their electronic states are studied by X-ray photoelectron spectroscopy. Thermogravimetry confirms that the material contains about 18.5% of the weight of the polymer. The material has an observable magnetic property at room temperature due to the praseodymium element. The UV-vis-NIR absorption spectrum of the material shows a long absorption range that extends to 1200 nm. The drug 5-fluorouracil is encapsulated in the nanoparticles through host: guest association, and its release profile is analyzed. The release is modulated at a slightly acidic pH, indicating the pH-tunability. The nanoparticles and 5-fluorouracil were taken in the w/w ratio of 2:1 (2/1 mg in 1 mL of deionized water). Further, the in vitro anticancer activity of the drug-encapsulated material is screened on breast cancer and non-cancerous cell lines. The IC50 values are reported, and the advantageous properties of the material as drug carriers are discussed.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Praseodimio/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Antineoplásicos/química , Fluorouracilo/química , Fluorouracilo/uso terapéutico , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Polímeros/uso terapéutico , Nanopartículas/química
6.
Biotechnol Appl Biochem ; 71(1): 5-16, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37743549

RESUMEN

Suicide gene therapy involves introducing viral or bacterial genes into tumor cells, which enables the conversion of a nontoxic prodrug into a toxic-lethal drug. The application of the bacterial cytosine deaminase (bCD)/5-fluorocytosine (5-FC) approach has been beneficial and progressive within the current field of cancer therapy because of the enhanced bystander effect. The basis of this method is the preferential deamination of 5-FC to 5-fluorouracil by cancer cells expressing cytosine deaminase (CD), which strongly inhibits DNA synthesis and RNA function, effectively targeting tumor cells. However, the poor binding affinity of toward 5-FC compared to the natural substrate cytosine and/or inappropriate thermostability limits the clinical applications of this gene therapy approach. Nowadays, many genetic engineering studies have been carried out to solve and improve the activity of this enzyme. In the current review, we intend to discuss the biotechnological aspects of Escherichia coli CD, including its structure, functions, molecular cloning, and protein engineering. We will also explore its relevance in cancer clinical trials. By examining these aspects, we hope to provide a thorough understanding of E. coli CD and its potential applications in cancer therapy.


Asunto(s)
Citosina Desaminasa , Profármacos , Humanos , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Escherichia coli/metabolismo , Fluorouracilo/química , Flucitosina/farmacología , Flucitosina/metabolismo , Terapia Genética , Profármacos/metabolismo
7.
Int J Biol Macromol ; 258(Pt 2): 128736, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101677

RESUMEN

Reducing the side effects of cancer treatment methods is an important issue. The loading efficiency and sustained release of 5-Fluorouracil (5-FU) have been significantly improved by creating a new method. A nanocarrier with pH sensitivity has been developed through the w/o/w emulsification method. It is loaded with 5-FU and comprises of chitosan (CS), hydroxyapatite (HAp), and graphitic carbon nitride (g-C3N4). g-C3N4 nanosheets were incorporated in CS/HAp hydrogel to improve the entrapment and loading efficiency. Drug loading efficiency and entrapment efficiency reached 48 % and 87 %, respectively, and the FTIR and XRD tests verified evidence of the formation of chemical bonds among the drug and nanocarrier. Structural analysis was done using FE-SEM. DLS and zeta potential were employed to obtain average size distribution and surface charge. The release profile of 5-FU in various conditions shows the nanoparticles' pH dependence, and the nanocomposite's controlled release is consistent with the Korsmeyer-Peppas kinetic model. Cell apoptosis and cytotoxicity were evaluated in vitro using flow cytometry and MTT analysis. The biocompatibility of CS/HAp/g-C3N4 against MCF-7 cells was shown by the MTT method and confirmed by flow cytometry. CS/HAp/g-C3N4@5-FU led to the highest apoptosis rate in MCF-7 cells, indicating the nanocarrier's efficiency in killing cancer cells. These data indicate that the designed CS/HAp/g-C3N4@5-FU can be a potential drug for treating cancer cells.


Asunto(s)
Quitosano , Grafito , Nanocompuestos , Compuestos de Nitrógeno , Humanos , Quitosano/química , Hidrogeles , Fluorouracilo/química , Portadores de Fármacos/química , Nanocompuestos/química , Hidroxiapatitas , Liberación de Fármacos
8.
Int J Biol Macromol ; 258(Pt 1): 128895, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141696

RESUMEN

5-Fluorouracil (5-FU) has been in clinical practice for decades one of the oldest chemotherapy agents. However, intravenous administration of 5-FU requires the development of an oral controlled delivery system for improved patient compliances. For this purpose, 5-FU loaded and sodium alginate (NaAlg) coated and uncoated methyl cellulose (MC)/chitosan (CS) microspheres were prepared by emulsion crosslinking method using a mixture of water and oil. Firstly, MC/CS microspheres were prepared and then coated with NaAlg. The prepared microspheres were characterized by optical microscopy, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Microspheres were also characterized by equilibrium swelling values and drug release profiles. The in vitro drug release studies were carried out with three pH values 1.2, 6.8, and 7.4, respectively, each for 2 h. It was determined that coating the microspheres with NaAlg provides more controlled drug release, especially at pH 1.2. The effects of the preparation conditions, such as coating time, MC/CS ratio, NaAlg concentration, and crosslinker concentration on the 5-FU release were investigated.


Asunto(s)
Quitosano , Fluorouracilo , Humanos , Fluorouracilo/química , Metilcelulosa , Quitosano/química , Microesferas , Alginatos/química , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier , Microscopía Electrónica de Rastreo , Preparaciones de Acción Retardada/química
9.
Molecules ; 28(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38138585

RESUMEN

One of the promising and relevant directions in the treatment of oncological diseases is currently the development of a system for the delivery of antitumor drugs based on polyanions. Therefore, the aim of this work was to study the specifics of pharmacokinetics and biodistribution of a 5-Fluorouracil polymeric complex compared with commercial 5-Fluorouracil. MATERIALS AND METHODS: Monomeric methacrylic acid was used to synthesize polymers; 2-phenylpropane-2-ilbenzodithioate was used for the synthesis of poly(methacrylic acid). To study the molecular-weight characteristics of poly(methacrylic acid) by gel permeation chromatography, an experimental neoplasm model was obtained by grafting PC-1 cancer cells. Blood samples were drawn from the tail vein at different points in time. The rats were sacrificed via decapitation after drawing the last pharmacokinetic blood sample. To study the biodistribution, internal organs were isolated and analyzed. The measurements were carried out by high-performance liquid chromatography. RESULTS: Our results demonstrate that incorporation in a polymeric complex changes the pharmacokinetics and biodistribution profile of 5-FU. The polymeric complex was shown to accumulate to a higher level in the lung and spleen. CONCLUSION: The results obtained are the basis for further studies to verify the efficacy of the 5-Fluorouracil polymeric complex.


Asunto(s)
Portadores de Fármacos , Fluorouracilo , Ratas , Animales , Fluorouracilo/química , Distribución Tisular , Portadores de Fármacos/química , Polímeros/química
10.
Int J Pharm ; 648: 123608, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972670

RESUMEN

Breast cancer (BC) is one of the leading fatal diseases affecting females worldwide. Despite the presence of tremendous chemotherapeutic agents, the resistance emergence directs the recent research towards synergistic drugs' combination along with encapsulation inside biocompatible smart nanocarriers. Methotrexate (MTX) and 5-fluorouracil (Fu) are effective against BC and have sequential synergistic activity. In this study, a core-shell nanocarrier composed of mesoporous silica nanoparticles (MSN) as the core and zeolitic imidazolate framework-8 nano metal organic frameworks (ZIF-8 NMOF) as the shell was developed and loaded with Fu and MTX, respectively. The developed nanostructure; Fu-MSN@MTX-NMOF was validated by several characterization techniques and conferred high drugs' entrapment efficiency (EE%). In-vitro assessment revealed a pH-responsive drug release pattern in the acidic pH where MTX was released followed by Fu. The cytotoxicity evaluation indicated enhanced anticancer effect of the Fu-MSN@MTX-NMOF relative to the free drugs in addition to time-dependent fortified cytotoxic effect due to the sequential drugs' release. The in-vivo anticancer efficiency was examined using Ehrlich ascites carcinoma (EAC) animal model where the anticancer effect of the developed Fu-MSN@MTX-NMOF was compared to the sequentially administrated free drugs. The results revealed enhanced anti-tumor effect while maintaining the normal functions of the vital organs as the heart, kidney and liver.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Femenino , Fluorouracilo/química , Metotrexato/farmacología , Portadores de Fármacos/química , Nanopartículas/química , Concentración de Iones de Hidrógeno
11.
Chem Biodivers ; 20(9): e202300659, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37548485

RESUMEN

Breast cancer is a malignancy that affects mostly females and is among the most lethal types of cancer. The ligand-functionalized nanoparticles used in the nano-drug delivery system offer enormous potential for cancer treatments. This work devised a promising approach to increase drug loading efficacy and produce sustained release of 5-fluorouracil (5-FU) and Ganoderic acid (GA) as model drugs for breast cancer. Chitosan, aptamer, and carbon quantum dot (CS/Apt/COQ) hydrogels were initially synthesized as a pH-sensitive and biocompatible delivery system. Then, CS/Apt/COQ NPs loaded with 5-FU-GA were made using the W/O/W emulsification method. FT-IR, XRD, DLS, zeta potentiometer, and SEM were used to analyze NP's chemical structure, particle size, and shape. Cell viability was measured using MTT assays in vitro using the MCF-7 cell lines. Real-time PCR measured cell apoptotic gene expression. XRD and FT-IR investigations validated nanocarrier production and revealed their crystalline structure and molecular interactions. DLS showed that nanocarriers include NPs with an average size of 250.6 nm and PDI of 0.057. SEM showed their spherical form, and zeta potential studies showed an average surface charge of +37.8 mV. pH 5.4 had a highly effective and prolonged drug release profile, releasing virtually all 5-FU and GA in 48 h. Entrapment efficiency percentages for 5-FU and GA were 84.7±5.2 and 80.2 %±2.3, respectively. The 5-FU-GA-CS-CQD-Apt group induced the highest cell death, with just 57.9 % of the MCF-7 cells surviving following treatment. 5-FU and GA in CS-CQD-Apt enhanced apoptotic induction by flow cytometry. 5-FU-GA-CS-CQD-Apt also elevated Caspase 9 and downregulated Bcl2. Accordingly, the produced NPs may serve as pH-sensitive nano vehicles for the controlled release of 5-FU and GA in treating breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Quitosano , Puntos Cuánticos , Femenino , Humanos , Masculino , Fluorouracilo/farmacología , Fluorouracilo/química , Quitosano/química , Espectroscopía Infrarroja por Transformada de Fourier , Línea Celular Tumoral , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos
12.
Chembiochem ; 24(21): e202300473, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37552008

RESUMEN

Activity-based protein profiling is a powerful chemoproteomic technique to detect active enzymes and identify targets and off-targets of drugs. Here, we report the use of carmofur- and activity-based probes to identify biologically relevant enzymes in the bacterial pathogen Staphylococcus aureus. Carmofur is an anti-neoplastic prodrug of 5-fluorouracil and also has antimicrobial and anti-biofilm activity. Carmofur probes were originally designed to target human acid ceramidase, a member of the NTN hydrolase family with an active-site cysteine nucleophile. Here, we first profiled the targets of a fluorescent carmofur probe in live S. aureus under biofilm-promoting conditions and in liquid culture, before proceeding to target identification by liquid chromatography/mass spectrometry. Treatment with a carmofur-biotin probe led to enrichment of 20 enzymes from diverse families awaiting further characterization, including the NTN hydrolase-related IMP cyclohydrolase PurH. However, the probe preferentially labeled serine hydrolases, thus displaying a reactivity profile similar to that of carbamates. Our results suggest that the electrophilic N-carbamoyl-5-fluorouracil scaffold could potentially be optimized to achieve selectivity towards diverse enzyme families. The observed promiscuous reactivity profile suggests that the clinical use of carmofur presumably leads to inactivation of a number human and microbial enzymes, which could lead to side effects and/or contribute to therapeutic efficacy.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Humanos , Staphylococcus aureus , Fluorouracilo/química , Fluorouracilo/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Biopelículas
13.
Molecules ; 28(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37570864

RESUMEN

Natural bentonite clay (BE) underwent modification steps that involved the exfoliation of its layers into separated nanosheets (EXBE) and further functionalization of these sheets with methanol, forming methoxy-exfoliated bentonite (Mth/EXBE). The synthetically modified products were investigated as enhanced carriers of 5-fluorouracil as compared to raw bentonite. The modification process strongly induced loading properties that increased to 214.4 mg/g (EXBE) and 282.6 mg/g (Mth/EXBE) instead of 124.9 mg/g for bentonite. The loading behaviors were illustrated based on the kinetic (pseudo-first-order model), classic isotherm (Langmuir model), and advanced isotherm modeling (monolayer model of one energy). The Mth/EBE carrier displays significantly higher loading site density (95.9 mg/g) as compared to EXBE (66.2 mg/g) and BE (44.9 mg/g). The loading numbers of 5-Fu in each site of BE, EXBE, and Mth/EXBE (>1) reflect the vertical orientation of these loaded ions involving multi-molecular processes. The loading processes that occurred appeared to be controlled by complex physical and weak chemical mechanisms, considering both Gaussian energy (<8 KJ/mol) as well as loading energy (<40 KJ/mol). The releasing patterns of EXBE and Mth/EXBE exhibit prolonged and continuous properties up to 100 h, with Mth/EXBE displaying much faster behaviors. Based on the release kinetic modeling, the release reactions exhibit non-Fickian transport release properties, validating cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/BE (8.6% cell viability), 5-Fu/EXBE (2.21% cell viability), and 5-Fu/Mth/EXBE (0.73% cell viability).


Asunto(s)
Bentonita , Fluorouracilo , Fluorouracilo/farmacología , Fluorouracilo/química , Bentonita/química , Portadores de Fármacos/química , Liberación de Fármacos , Iones
14.
Molecules ; 28(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37513298

RESUMEN

Synthetic zeolite-A (ZA) was hybridized with two different biopolymers (chitosan and ß-cyclodextrin) producing biocompatible chitosan/zeolite-A (CS/ZA) and ß-cyclodextrin/zeolite-A (CD/ZA) biocomposites. The synthetic composites were assessed as bio-carriers of the 5-fluorouracil drug (5-Fu) with enhanced properties, highlighting the impact of the polymer type. The hybridization by the two biopolymers resulted in notable increases in the 5-Fu loading capacities, to 218.2 mg/g (CS/ZA) and 291.3 mg/g (CD/ZA), as compared to ZA (134.2 mg/g). The loading behaviors using ZA as well as CS/ZA and CD/ZA were illustrated based on the classic kinetics properties of pseudo-first-order kinetics (R2 > 0.95) and the traditional Langmuir isotherm (R2 = 0.99). CD/ZA shows a significantly higher active site density (102.7 mg/g) in comparison to CS/ZA (64 mg/g) and ZA (35.8 mg/g). The number of loaded 5-Fu per site of ZA, CS/ZA, and CD/ZA (>1) validates the vertical ordering of the loaded drug ions by multi-molecular processes. These processes are mainly physical mechanisms based on the determined Gaussian energy (<8 kJ/mol) and loading energy (<40 kJ/mol). Both the CS/ZA and CD/ZA 5-Fu release activities display continuous and controlled profiles up to 80 h, with CD/ZA exhibiting much faster release. According to the release kinetics studies, the release processes contain non-Fickian transport release properties, suggesting cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/ZA (11.72% cell viability), 5-Fu/CS/ZA (5.43% cell viability), and 5-Fu/CD/ZA (1.83% cell viability).


Asunto(s)
Antineoplásicos , Quitosano , Zeolitas , beta-Ciclodextrinas , Fluorouracilo/farmacología , Fluorouracilo/química , Quitosano/química , Cinética , Portadores de Fármacos/química , beta-Ciclodextrinas/química
15.
Inorg Chem ; 62(24): 9440-9453, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37278598

RESUMEN

The coordination between benzene 1,4-bis(bisphosphonic acid) (BBPA), the bisphosphonate (BP) analogue of benzene 1,4-dicarboxylic acid (BDC), and bioactive metals led to the formation of extended bisphosphonate-based coordination polymers (BPCPs). Four distinct crystalline phases were obtained, namely, BBPA-Ca forms I and II, BBPA-Zn, and BBPA-Mg. Among these, BBPA-Ca forms I (7 × 9 Å2) and II (8 × 12 Å2) possess channels large enough to encapsulate 5-fluorouracil (5-FU), a drug prescribed in combination with BPs to treat breast cancer-induced osteolytic metastases (OM). Dissolution curves show a 14% release of BBPA from BBPA-Ca form II in phosphate-buffered saline, while ∼90% was released in fasted-state simulated gastric fluid. These results suggest that this material is relatively stable in neutral environments yet collapses in acidic conditions. Moreover, the phase inversion temperature method decreased the particle size of BBPA-Ca form II, resulting in nano-Ca@BBPA (∼134 d.nm). Binding assays showed a higher affinity of nano-Ca@BBPA (∼97%) to hydroxyapatite than BBPA (∼70%) and significantly higher binding than commercial BPs, zolendronic (3.0×), and risedronic (2.4×) acids after 24 h. Furthermore, both BBPA-Ca form II and nano-Ca@BBPA presented comparable drug loading and release (∼30 wt % 5-FU) relative to BDC-based CCs (UiO-66, MIL-53, and BDC-Zr) where other pharmaceutical compounds (caffeine, ibuprofen, aspirin, and α-cyano-4-hydroxycinnamic acid) have been encapsulated. Cell viability assays established that drug-loaded nano-Ca@BBPA increases the cytotoxicity of a triple-negative human breast cancer cell line (MDA-MB-231) when compared to 5-FU (%RCV = 8 ± 5 vs 75 ± 1% at a 100 µM). At the same concentration, no significant decrease in cell viability was observed for normal human osteoblast-like hFOB 1.19 cells (%RCV = 85 ± 1%). Collectively, these results demonstrate the feasibility of nano-Ca@BBPA as a potential drug delivery system (DDS), with high affinity to bone tissue, to treat bone-related diseases such as OM.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Difosfonatos/farmacología , Polímeros , Benceno , Fluorouracilo/farmacología , Fluorouracilo/química , Sistemas de Liberación de Medicamentos , Huesos , Melanoma Cutáneo Maligno
16.
Colloids Surf B Biointerfaces ; 226: 113333, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37141773

RESUMEN

To overcome the limitations associated with the targeting abilities of nanotherapeutics and drug loading capacity of mesenchymal stem cells (MSCs), the present study relies on the combination of MSCs tumor tropism with the controlled release function of nano-based drug delivery platforms to achieve tumor-specific accumulation of chemotherapeutics with minimal off-target effects. 5-fluorouracil (5-FU)-containing ceria (CeNPs) coated calcium carbonate nanoparticles (CaNPs) were functionalized with folinic acid (FA) to develop drug-containing nanocomposites (Ca.FU.Ce.FA NCs). NCs were then conjugated with graphene oxide (GO) and decorated with silver nanoparticles (Ag°NPs) to form FU.FA@NS, a rationally designed drug delivery system with O2 generation capacity that alleviates tumor hypoxia for improved photodynamic therapy. Engineering of MSCs with FU.FA@NSs provided successful loading and long-term retention of therapeutics on the surface membrane with minimal changes to the functional properties of MSCs. Co-culturing of FU.FA@NS.MSCs with CT26 cells upon UVA exposure revealed enhanced apoptosis in tumor cells through ROS-mediated mitochondrial pathway. FU.FA@NSs released from MSCs were effectively taken up by CT26 cells via a clathrin-mediated endocytosis pathway and distributed their drug depots in a pH, H2O2, and UVA-stimulated fashion. Therefore, the cell-based biomimetic drug delivery platform formulated in the current study could be considered a promising strategy for targeted chemo-photodynamic therapy of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas del Metal , Nanopartículas , Fotoquimioterapia , Humanos , Leucovorina , Línea Celular Tumoral , Peróxido de Hidrógeno , Plata , Fluorouracilo/química , Sistemas de Liberación de Medicamentos , Neoplasias Colorrectales/tratamiento farmacológico , Nanopartículas/química
17.
J Mol Graph Model ; 122: 108469, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37068440

RESUMEN

In this study, oxygenated triarylmethyl (oxTAM) is investigated by DFT calculations as a drug carrier framework for Nitrosourea (NU) and Fluorouracil (FU) drugs. Based on the adsorption analysis i.e., energies and distances between interacting atoms, it is found that oxTAM exhibits excellent carrier abilities for the delivery of FU (-1.53 eV & 2.00 Å) and NU (-1.33 eV & 2.12 Å) drugs. NCI and QTAIM results indicate the presence of hydrogen bonding in drug-carrier complexes. The values of dipole moment and global chemical descriptors show the significant reactivity of oxTAM for NU and FU drugs. Based on electronic property analysis, FU@oxTAM has a higher adsorption trend for complexation with oxTAM as compared to NU@oxTAM. Moreover, FU can easily release from the carrier due to the decreasing adsorption stability after protonation under an acidic environment as well as a short recovery time observed for the oxTAM carrier surface. Keeping in view all the above parameters, we inferred that oxTAM can serve as a potential drug delivery system for anticancer drugs including, Nitrosourea and Fluorouracil drugs.


Asunto(s)
Antineoplásicos , Antineoplásicos/farmacología , Antineoplásicos/química , Fluorouracilo/farmacología , Fluorouracilo/química , Sistemas de Liberación de Medicamentos , Portadores de Fármacos , Compuestos de Nitrosourea
18.
Eur J Pharm Biopharm ; 187: 12-23, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37031731

RESUMEN

Gallic acid (GA) is a naturally occurring polyphenolic compound exhibiting anti-tumor activity. To clarify the capability of GA in optimizing the in vitro/in vivo properties of the first line anti-tumor drug 5-fluorouracil (5-FU) and achieve synergistically enhanced anti-tumor activity, a novel cocrystal hydrate of 5-FU-GA-H2O was successfully screened and characterized based on various spectroscopic and experimental analysis including Fourier transform infrared spectroscopy (FT-IR), Raman spectra (Raman), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric (TG) and scanning electric microscope (SEM) techniques. The results suggested the existence of hydrogen bonding interactions between C=O group of 5-FU and O-H group of GA. Although the dissolution rate and solubility of 5-FU-GA-H2O cocrystal were slowed and lowered compared with that of 5-FU, respectively, the membrane permeability was enhanced for cocrystal compared with that of intact 5-FU and physical mixture (PM) of 5-FU and GA. For the cocrystal, the cumulative amount per unit area of permeated 5-FU in the first 10 h was 2.56 and 9.97 times of that of pure 5-FU and PM, respectively, in the case that transmembrane behavior of 5-FU depended on the type of solution from which the powder was dissolved. Meanwhile, improvement on oral bioavailability by co-crystallization was observed; AUC0-t of cocrystal was 2.78-fold higher than that of 5-FU. Furthermore, the cocrystal displayed a superior cytotoxic activity on 4T1 mouse breast cancer cells compared with pure 5-FU and even the PM. It was confirmed that the cocrystal solution induced higher autophagic flux than those of 5-FU and PM in 4T1 cell, suggesting that autophagy rather than apoptosis mainly mediated cell death. The obvious difference of tumor inhibition activity between PM and cocrystal in intraperitoneal injection administration indicated that some of the interactions formed in the solid cocrystal could retain in solution in some way. Benefiting from synergistic cytotoxicity, drug efficacy in vivo was enhanced through injection administration of solution from which cocrystal was dissolved.


Asunto(s)
Antineoplásicos , Neoplasias , Ratones , Animales , Fluorouracilo/farmacología , Fluorouracilo/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Inyecciones Intraperitoneales , Polvos , Antineoplásicos/farmacología , Difracción de Rayos X , Solubilidad , Rastreo Diferencial de Calorimetría
19.
Molecules ; 28(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36770926

RESUMEN

This study investigates the development of topically applied non-invasive amino-functionalized silica nanoparticles (AMSN) and O-Carboxymethyl chitosan-coated AMSN (AMSN-CMC) for ocular delivery of 5-Fluorouracil (5-FU). Particle characterization was performed by the DLS technique (Zeta-Sizer), and structural morphology was examined by SEM and TEM. The drug encapsulation and loading were determined by the indirect method using HPLC. Physicochemical characterizations were performed by NMR, TGA, FTIR, and PXRD. In vitro release was conducted through a dialysis membrane in PBS (pH 7.4) using modified Vertical Franz diffusion cells. The mucoadhesion ability of the prepared nanoparticles was tested using the particle method by evaluating the change in zeta potential. The transcorneal permeabilities of 5-FU from AMNS-FU and AMSN-CMC-FU gel formulations were estimated through excised goat cornea and compared to that of 5-FU gel formulation. Eye irritation and ocular pharmacokinetic studies from gel formulations were evaluated in rabbit eyes. The optimum formulation of AMSN-CMC-FU was found to be nanoparticles with a particle size of 249.4 nm with a polydispersity of 0.429, encapsulation efficiency of 25.8 ± 5.8%, and drug loading capacity of 5.2 ± 1.2%. NMR spectra confirmed the coating of AMSN with the CMC layer. In addition, TGA, FTIR, and PXRD confirmed the drug loading inside the AMSN-CMC. Release profiles showed 100% of the drug was released from the 5-FU gel within 4 h, while AMSN-FU gel released 20.8% of the drug and AMSN-CMC-FU gel released around 55.6% after 4 h. AMSN-CMC-FU initially exhibited a 2.45-fold increase in transcorneal flux and apparent permeation of 5-FU compared to 5-FU gel, indicating a better corneal permeation. Higher bioavailability of AMSN-FU and AMSN-CMC-FU gel formulations was found compared to 5-FU gel in the ocular pharmacokinetic study with superior pharmacokinetics parameters of AMSN-CMC-FU gel. AMSN-CMC-FU showed 1.52- and 6.14-fold higher AUC0-inf in comparison to AMSN-FU and 5-FU gel, respectively. AMSN-CMC-FU gel and AMSN-FU gel were "minimally irritating" to rabbit eyes but showed minimal eye irritation potency in comparison to the 5 FU gel. Thus, the 5-FU loaded in AMSN-CMC gel could be used as a topical formulation for the treatment of ocular cancer.


Asunto(s)
Quitosano , Nanopartículas , Animales , Conejos , Fluorouracilo/química , Quitosano/química , Diálisis Renal , Nanopartículas/química , Córnea , Tamaño de la Partícula , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos
20.
Int J Biol Macromol ; 233: 123621, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773864

RESUMEN

5-Fluorouracil (5-FU) is a cytotoxic drug with a low half-life. These features can cause some problems such as burst drug release and numerous side effects. In the present study, a pH-sensitive nanocomposite of polyvinylpyrrolidone (PVP)/carboxymethyl cellulose (CMC)/γ-alumina developed by using water in oil in water (W/O/W) double emulsion method. The fabricated emulsion has been employed as the 5-FU carrier to investigate its effects on drug half-life, side effects, drug loading efficiency (DLE), and drug entrapment efficiency (DEE). Analyzing the FTIR and XRD indicated the successful loading of 5-FU into the nanocarrier and affirmed the synthesized nanocomposite's chemical bonding and crystalline features. Furthermore, by using DLS and Zeta potential assessment, size and undersize distribution, as well as the stability of the drug-loaded nanocomposite were determined, which demonstrated the monodisperse and stable nanoparticles. Moreover, the nanocomposites with spherical shapes and homogeneous surfaces were shown in FE-SEM, which indicated good compatibility for the constituents of the nanocomposites. Moreover, by employing BET analysis the porosity has been investigated. Drug release pattern was studied, which indicated a controlled drug release behavior with above 96 h drug retention. Besides, the loading and entrapment efficiencies were obtained 44 % and 86 %, respectively. Furthermore, the curve fitting technique has been employed and the predominant release mechanism has been determined to evaluate the best-fitted kinetic models. MTT assay and flow cytometry assessment has been carried out to investigate the cytotoxic effects of the fabricated drug-loaded nanocomposite on MCF-7 and normal cells. The results showed enhanced cytotoxicity and late apoptosis for the PVP/CMC/γ-alumina/5-FU. Based on the MTT assay outcomes on normal cell lines (L929), which indicated above 90 % cell viability, the biocompatibility and biosafety of the synthesized nanocarrier have been confirmed. Moreover, due to the porosity of the PVP/CMC/γ-alumina, this nanocarrier can exploit from high specific surface area and be more sensitive to environmental conditions such as pH. These outcomes propose that the novel pH-sensitive PVP/CMC/γ-alumina nanocomposite can be a potential candidate for drug delivery applications, especially for cancer therapy.


Asunto(s)
Antineoplásicos , Fluorouracilo , Fluorouracilo/química , Carboximetilcelulosa de Sodio/química , Porosidad , Povidona , Óxido de Aluminio/farmacología , Emulsiones , Agua , Concentración de Iones de Hidrógeno , Portadores de Fármacos/química , Liberación de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...