Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Platelets ; 33(3): 432-442, 2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-34223798

RESUMEN

Variants of the Diaphanous-Related Formin 1 (DIAPH-1) gene have recently been reported causing inherited macrothrombocytopenia. The essential/"diagnostic" characteristics associated with the disorder are emerging; however, robust and complete criteria are not established. Here, we report the first cases of DIAPH1-related disorder in Australia caused by the autosomal dominant gain-of-function DIAPH1 R1213X variant formed by truncation of the protein within the diaphanous auto-regulatory domain (DAD) with loss of regulatory motifs responsible for autoinhibitory interactions within the DIAPH1 protein. We affirm phenotypic changes induced by the DIAPH1 R1213X variant to include macrothrombocytopenia, early-onset progressive sensorineural hearing loss, and mild asymptomatic neutropenia. High-resolution microscopy confirms perturbations of cytoskeletal dynamics caused by the DIAPH1 variant and we extend the repertoire of changes generated by this variant to include alteration of procoagulant platelet formation and possible dental anomalies.


Asunto(s)
Plaquetas/metabolismo , Sordera/genética , Forminas/efectos adversos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sordera/patología , Humanos , Fenotipo
2.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074767

RESUMEN

Profilin-1 (PFN1) plays important roles in modulating actin dynamics through binding both monomeric actin and proteins enriched with polyproline motifs. Mutations in PFN1 have been linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). However, whether ALS-linked mutations affect PFN1 function has remained unclear. To address this question, we employed an unbiased proteomics analysis in mammalian cells to identify proteins that differentially interact with mutant and wild-type (WT) PFN1. These studies uncovered differential binding between two ALS-linked PFN1 variants, G118V and M114T, and select formin proteins. Furthermore, both variants augmented formin-mediated actin assembly relative to PFN1 WT. Molecular dynamics simulations revealed mutation-induced changes in the internal dynamic couplings within an alpha helix of PFN1 that directly contacts both actin and polyproline, as well as structural fluctuations within the actin- and polyproline-binding regions of PFN1. These data indicate that ALS-PFN1 variants have the potential for heightened flexibility in the context of the ternary actin-PFN1-polyproline complex during actin assembly. Conversely, PFN1 C71G was more severely destabilized than the other PFN1 variants, resulting in reduced protein expression in both transfected and ALS patient lymphoblast cell lines. Moreover, this variant exhibited loss-of-function phenotypes in the context of actin assembly. Perturbations in actin dynamics and assembly can therefore result from ALS-linked mutations in PFN1. However, ALS-PFN1 variants may dysregulate actin polymerization through different mechanisms that depend upon the solubility and stability of the mutant protein.


Asunto(s)
Actinas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Forminas/efectos adversos , Polimerizacion , Profilinas/genética , Profilinas/metabolismo , Animales , Células HeLa , Humanos , Proteínas Mutantes/química , Mutación , Enfermedades Neurodegenerativas , Fenotipo , Profilinas/química , Conformación Proteica en Hélice alfa , Deficiencias en la Proteostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...