Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
PLoS Genet ; 19(7): e1010713, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37523383

RESUMEN

We and others have previously shown that genetic association can be used to make causal connections between gene loci and small molecules measured by mass spectrometry in the bloodstream and in tissues. We identified a locus on mouse chromosome 7 where several phospholipids in liver showed strong genetic association to distinct gene loci. In this study, we integrated gene expression data with genetic association data to identify a single gene at the chromosome 7 locus as the driver of the phospholipid phenotypes. The gene encodes α/ß-hydrolase domain 2 (Abhd2), one of 23 members of the ABHD gene family. We validated this observation by measuring lipids in a mouse with a whole-body deletion of Abhd2. The Abhd2KO mice had a significant increase in liver levels of phosphatidylcholine and phosphatidylethanolamine. Unexpectedly, we also found a decrease in two key mitochondrial lipids, cardiolipin and phosphatidylglycerol, in male Abhd2KO mice. These data suggest that Abhd2 plays a role in the synthesis, turnover, or remodeling of liver phospholipids.


Asunto(s)
Cardiolipinas , Hidrolasas , Animales , Masculino , Ratones , Cardiolipinas/genética , Cardiolipinas/metabolismo , Ratones de Colaboración Cruzada/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Lipidómica , Fosfatidilcolinas/genética , Fosfolípidos/genética , Fosfolípidos/metabolismo
2.
PLoS Pathog ; 19(7): e1011112, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37506172

RESUMEN

Glycerophospholipids including phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are vital components of biological membranes. Trypanosomatid parasites of the genus Leishmania can acquire PE and PC via de novo synthesis and the uptake/remodeling of host lipids. In this study, we investigated the ethanolaminephosphate cytidylyltransferase (EPCT) in Leishmania major, which is the causative agent for cutaneous leishmaniasis. EPCT is a key enzyme in the ethanolamine branch of the Kennedy pathway which is responsible for the de novo synthesis of PE. Our results demonstrate that L. major EPCT is a cytosolic protein capable of catalyzing the formation of CDP-ethanolamine from ethanolamine-phosphate and cytidine triphosphate. Genetic manipulation experiments indicate that EPCT is essential in both the promastigote and amastigote stages of L. major as the chromosomal null mutants cannot survive without the episomal expression of EPCT. This differs from our previous findings on the choline branch of the Kennedy pathway (responsible for PC synthesis) which is required only in promastigotes but not amastigotes. While episomal EPCT expression does not affect promastigote proliferation under normal conditions, it leads to reduced production of ethanolamine plasmalogen or plasmenylethanolamine, the dominant PE subtype in Leishmania. In addition, parasites with episomal EPCT exhibit heightened sensitivity to acidic pH and starvation stress, and significant reduction in virulence. In summary, our investigation demonstrates that proper regulation of EPCT expression is crucial for PE synthesis, stress response, and survival of Leishmania parasites throughout their life cycle.


Asunto(s)
Leishmania major , Leishmania major/genética , Etanolaminas/metabolismo , Etanolamina/metabolismo , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Homeostasis
3.
Molecules ; 26(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34946633

RESUMEN

Lentil (Lens culinaris; Fabaceae), one of the major pulse crops in the world, is an important source of proteins, prebiotics, lipids, and essential minerals as well as functional components such as flavonoids, polyphenols, and phenolic acids. To improve crop nutritional and medicinal traits, hybridization and mutation are widely used in plant breeding research. In this study, mutant lentil populations were generated by γ-irradiation for the development of new cultivars by inducing genetic diversity. Molecular networking via Global Natural Product Social Molecular Networking web platform and dipeptidyl peptide-IV inhibitor screening assay were utilized as tools for structure-based discovery of active components in active mutant lines selected among the lentil population. The bioactivity-based molecular networking analysis resulted in the annotation of the molecular class of phosphatidylcholine (PC) from the most active mutant line. Among PCs, 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (18:0 Lyso PC) was selected for further in vivo study of anti-obesity effect in a high-fat diet (HFD)-induced obese mouse model. The administration of 18:0 Lyso PC not only prevented body weight gain and decreased relative gonadal adipose tissue weight, but also attenuated the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and leptin in the sera of HFD-induced obese mice. Additionally, 18:0 Lyso PC treatment inhibited the increase of adipocyte area and crown-like structures in adipose tissue. Therefore, these results suggest that 18:0 Lyso PC is a potential compound to have protective effects against obesity, improving obese phenotype induced by HFD.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Fármacos Antiobesidad , LDL-Colesterol/sangre , Dieta Alta en Grasa/efectos adversos , Lens (Planta) , Obesidad , Fosfatidilcolinas , Animales , Fármacos Antiobesidad/química , Fármacos Antiobesidad/farmacología , Lens (Planta)/química , Lens (Planta)/genética , Masculino , Ratones , Obesidad/sangre , Obesidad/inducido químicamente , Obesidad/tratamiento farmacológico , Fosfatidilcolinas/química , Fosfatidilcolinas/genética , Fosfatidilcolinas/farmacología
4.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34830477

RESUMEN

Singapore grouper iridovirus (SGIV), belonging to genus Ranavirus, family Iridoviridae, causes great economic losses in the aquaculture industry. Previous studies demonstrated the lipid composition of intracellular unenveloped viruses, but the changes in host-cell glyceophospholipids components and the roles of key enzymes during SGIV infection still remain largely unknown. Here, the whole cell lipidomic profiling during SGIV infection was analyzed using UPLC-Q-TOF-MS/MS. The lipidomic data showed that glycerophospholipids (GPs), including phosphatidylcholine (PC), phosphatidylserine (PS), glycerophosphoinositols (PI) and fatty acids (FAs) were significantly elevated in SGIV-infected cells, indicating that SGIV infection disturbed GPs homeostasis, and then affected the metabolism of FAs, especially arachidonic acid (AA). The roles of key enzymes, such as cytosolic phospholipase A2 (cPLA2), 5-Lipoxygenase (5-LOX), and cyclooxygenase (COX) in SGIV infection were further investigated using the corresponding specific inhibitors. The inhibition of cPLA2 by AACOCF3 decreased SGIV replication, suggesting that cPLA2 might play important roles in the process of SGIV infection. Consistent with this result, the ectopic expression of EccPLA2α or knockdown significantly enhanced or suppressed viral replication in vitro, respectively. In addition, the inhibition of both 5-LOX and COX significantly suppressed SGIV replication, indicating that AA metabolism was essential for SGIV infection. Taken together, our results demonstrated for the first time that SGIV infection in vitro disturbed GPs homeostasis and cPLA2 exerted crucial roles in SGIV replication.


Asunto(s)
Peces/virología , Iridovirus/genética , Fosfolipasas A2 Citosólicas/genética , Replicación Viral/genética , Animales , Acuicultura , Araquidonato 5-Lipooxigenasa/genética , Peces/genética , Glicerofosfolípidos/genética , Iridovirus/patogenicidad , Fosfatidilcolinas/genética , Fosfatidilserinas/genética , Singapur
5.
J Biol Chem ; 297(6): 101398, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774525

RESUMEN

Many studies have confirmed the enzymatic activity of a mammalian phosphatidylcholine (PC) phospholipase C (PLC) (PC-PLC), which produces diacylglycerol (DAG) and phosphocholine through the hydrolysis of PC in the absence of ceramide. However, the protein(s) responsible for this activity have never yet been identified. Based on the fact that tricyclodecan-9-yl-potassium xanthate can inhibit both PC-PLC and sphingomyelin synthase (SMS) activities, and SMS1 and SMS2 have a conserved catalytic domain that could mediate a nucleophilic attack on the phosphodiester bond of PC, we hypothesized that both SMS1 and SMS2 might have PC-PLC activity. In the present study, we found that purified recombinant SMS1 and SMS2 but not SMS-related protein have PC-PLC activity. Moreover, we prepared liver-specific Sms1/global Sms2 double-KO mice. We found that liver PC-PLC activity was significantly reduced and steady-state levels of PC and DAG in the liver were regulated by the deficiency, in comparison with control mice. Using adenovirus, we expressed Sms1 and Sms2 genes in the liver of the double-KO mice, respectively, and found that expressed SMS1 and SMS2 can hydrolyze PC to produce DAG and phosphocholine. Thus, SMS1 and SMS2 exhibit PC-PLC activity in vitro and in vivo.


Asunto(s)
Hígado/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Fosfolipasas de Tipo C , Animales , Células COS , Chlorocebus aethiops , Ratones , Ratones Noqueados , Fosfatidilcolinas/química , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Dominios Proteicos , Proteínas Recombinantes , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
6.
Int J Biol Macromol ; 188: 272-282, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364943

RESUMEN

Choline kinase (CK) gene plays an important role in plants growth, development and resistance to stress. It mainly regulates the biosynthesis of phosphatidylcholine. This study aims to explore the structure-function relationship, and to provide a framework for functional validation and biochemical characterization of various CK genes. Our analysis showed that 87 CK genes were identified in cotton and 7 diploid plants, of which 43 genes encode CK proteins in 4 cotton species, and 13 genes were identified in Gossypium hirsutum. Most of GhCK genes are affected by the abiotic stress conditions, indicating the importance of CK proteins for plant development and response to abiotic stress. RT-qPCR analysis showed the tissue specificity of GhCK genes in response to Cd2+ and other abiotic stresses. Under Cd2+ stress, the expression level of GhCK gene family members has undergone different changes. The expression level of GhCK5 was enhanced, indicating that Cd2+ stress caused the increase of phosphatidylcholine content, which in turn reacted on the plant cell membrane, finally reached the absorption of Cd2+ into plant cells to repair Cd2+ the purpose of contaminated soil. This study will further broaden our understanding of the association between evolution and function of the GhCK gene family.


Asunto(s)
Colina Quinasa/genética , Genoma de Planta/genética , Gossypium/genética , Fosfatidilcolinas/genética , Regulación de la Expresión Génica de las Plantas/genética , Familia de Multigenes/genética , Fosfatidilcolinas/biosíntesis , Filogenia , Estrés Fisiológico/genética
7.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209301

RESUMEN

ABCB4 (ATP-binding cassette subfamily B member 4) is an ABC transporter expressed at the canalicular membrane of hepatocytes where it ensures phosphatidylcholine secretion into bile. Genetic variations of ABCB4 are associated with several rare cholestatic diseases. The available treatments are not efficient for a significant proportion of patients with ABCB4-related diseases and liver transplantation is often required. The development of novel therapies requires a deep understanding of the molecular mechanisms regulating ABCB4 expression, intracellular traffic, and function. Using an immunoprecipitation approach combined with mass spectrometry analyses, we have identified the small GTPase RAB10 as a novel molecular partner of ABCB4. Our results indicate that the overexpression of wild type RAB10 or its dominant-active mutant significantly increases the amount of ABCB4 at the plasma membrane expression and its phosphatidylcholine floppase function. Contrariwise, RAB10 silencing induces the intracellular retention of ABCB4 and then indirectly diminishes its secretory function. Taken together, our findings suggest that RAB10 regulates the plasma membrane targeting of ABCB4 and consequently its capacity to mediate phosphatidylcholine secretion.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Membrana Celular/metabolismo , Hepatocitos/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transporte Biológico Activo , Membrana Celular/genética , Células HEK293 , Células HeLa , Humanos , Fosfatidilcolinas/genética , Proteínas de Unión al GTP rab/genética
8.
Biochim Biophys Acta Biomembr ; 1863(8): 183625, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33891910

RESUMEN

Cholesterol (Chol) content in most cellular membranes does not exceed 50 mol%, only in the eye lens's fiber cell plasma membrane, its content surpasses 50 mol%. At this high concentration, Chol induces the formation of pure cholesterol bilayer domains (CBDs), which coexist with the surrounding phospholipid-cholesterol domain (PCD). Here, we applied atomic force microscopy to study the mechanical properties of Chol/phosphatidylcholine membranes where the Chol content was increased from 0 to 75 mol%, relevant to eye lens membranes. The surface roughness of the membrane decreases with an increase of Chol content until it reaches 60 mol%, and roughness increases with a further increment in Chol content. We propose that the increased roughness at higher Chol content results from the formation of CBDs. Force spectroscopy on the membrane with Chol content of 50 mol% or lesser exhibited single breakthrough events, whereas two distinct puncture events were observed for membranes with the Chol content greater than 50 mol%. We propose that the first puncture force corresponds to the membranes containing coexisting PCD and CBDs. In contrast, the second puncture force corresponds to the "CBD water pocket" formed due to coexisting CBDs and PCD. Membrane area compressibility modulus (KA) increases with an increase in Chol content until it reaches 60 mol%, and with further increment in Chol content, CBDs are formed, and KA starts to decrease. Our results report the increase in membrane roughness and decrease KA at very high Chol content (>60 mol%) relevant to the eye lens membrane.


Asunto(s)
Membrana Celular/química , Colesterol/química , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Membrana Celular/genética , Membrana Celular/ultraestructura , Colesterol/metabolismo , Humanos , Cristalino/química , Cristalino/metabolismo , Membrana Dobles de Lípidos/metabolismo , Microscopía de Fuerza Atómica , Fosfatidilcolinas/química , Fosfatidilcolinas/genética , Fosfolípidos/genética , Dominios Proteicos/genética
9.
Biochim Biophys Acta Biomembr ; 1863(8): 183626, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33901442

RESUMEN

Recently, we reported that a ternary lipid bilayer comprising phosphatidylethanolamine (PE), phosphatidylcholine (PC), which were both derived from chicken egg, and cholesterol (Chol) generates microdomains that function as specific fusion sites for proteoliposomes. Chol-induced microdomain formation in a completely miscible lipid bilayer is an exceptional phenomenon. Numerous studies have elucidated the formation of domains in liquid ordered (Lo) and liquid disordered (Ld) phases of ternary bilayers, which comprise two partially miscible lipids and Chol. Herein, we investigated the composition and mechanism of formation of these unique microdomains in supported lipid bilayers (SLBs) using a fluorescence microscope and an atomic force microscope (AFM). We prepared ternary SLBs using egg-derived PC (eggPC), Chol and three different types of PE: egg-derived PE, 1-palmitoyl-2-oleoyl-PE, and 1,2-didocosahexaenoyl-PE (diDHPE). Fluorescence microscopy observations revealed that fluid and continuous SLBs were formed at PE concentrations (CPE) of ≥6 mol%. Fluorescence recovery after photobleaching measurement revealed that the microdomain was more fluid than the surrounding region that showed typical diffusion coefficient of the Lo phase. The microdomains were observed as depressions in the AFM topographies. Their area fraction (θ) increased with CPE, and diDHPE produced a significantly large θ among the three PEs. The microdomains in the PE+eggPC+Chol-SLBs were rich in polyunsaturated PE and were in the Ld-like phase. Associating eggPC and Chol caused polyunsaturated PE to segregate, resulting in a microdomain formation by conferring the umbrella effect on Chol, entropic effect of disordered acyl chains, and π-π interactions in the hydrophobic core.


Asunto(s)
Colesterol/química , Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Colesterol/genética , Membrana Dobles de Lípidos/metabolismo , Microdominios de Membrana/metabolismo , Microdominios de Membrana/ultraestructura , Microscopía Fluorescente , Fosfatidilcolinas/química , Fosfatidilcolinas/genética , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/genética , Fosfolípidos/química , Fosfolípidos/genética
10.
Biochemistry ; 60(8): 559-562, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33569952

RESUMEN

Membrane fusion is an important step for the entry of the lipid-sheathed viruses into the host cells. The fusion process is being carried out by fusion proteins present in the viral envelope. The class I virus contains a 20-25 amino acid sequence at its N-terminal of the fusion domain, which is instrumental in fusion and is called as a "fusion peptide". However, severe acute respiratory syndrome (SARS) coronaviruses contain more than one fusion peptide sequences. We have shown that the internal fusion peptide 1 (IFP1) of SARS-CoV-2 is far more efficient than its N-terminal counterpart (FP) to induce hemifusion between small unilamellar vesicles. Moreover, the ability of IFP1 to induce hemifusion formation increases dramatically with growing cholesterol content in the membrane. Interestingly, IFP1 is capable of inducing hemifusion but fails to open the pore.


Asunto(s)
Colesterol/metabolismo , Fusión de Membrana/fisiología , Fragmentos de Péptidos/metabolismo , SARS-CoV-2/metabolismo , Secuencia de Aminoácidos , COVID-19/genética , COVID-19/metabolismo , Colesterol/genética , Humanos , Fragmentos de Péptidos/genética , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , SARS-CoV-2/genética , Internalización del Virus
11.
J Biol Chem ; 296: 100315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33485966

RESUMEN

Lipid flipping in the membrane bilayers is a widespread eukaryotic phenomenon that is catalyzed by assorted P4-ATPases. Its occurrence, mechanism, and importance in apicomplexan parasites have remained elusive, however. Here we show that Toxoplasma gondii, an obligate intracellular parasite with high clinical relevance, can salvage phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) but not phosphatidylcholine (PtdCho) probes from its milieu. Consistently, the drug analogs of PtdCho are broadly ineffective in the parasite culture. NBD-PtdSer imported to the parasite interior is decarboxylated to NBD-PtdEtn, while the latter is not methylated to yield PtdCho, which confirms the expression of PtdSer decarboxylase but a lack of PtdEtn methyltransferase activity and suggests a role of exogenous lipids in membrane biogenesis of T. gondii. Flow cytometric quantitation of NBD-probes endorsed the selectivity of phospholipid transport and revealed a dependence of the process on energy and protein. Accordingly, our further work identified five P4-ATPases (TgP4-ATPase1-5), all of which harbor the signature residues and motifs required for phospholipid flipping. Of the four proteins expressed during the lytic cycle, TgP4-ATPase1 is present in the apical plasmalemma; TgP4-ATPase3 resides in the Golgi network along with its noncatalytic partner Ligand Effector Module 3 (TgLem3), whereas TgP4-ATPase2 and TgP4-ATPase5 localize in the plasmalemma as well as endo/cytomembranes. Last but not least, auxin-induced degradation of TgP4-ATPase1-3 impaired the parasite growth in human host cells, disclosing their crucial roles during acute infection. In conclusion, we show selective translocation of PtdEtn and PtdSer at the parasite surface and provide the underlying mechanistic and physiological insights in a model eukaryotic pathogen.


Asunto(s)
Adenosina Trifosfatasas/genética , Membrana Dobles de Lípidos/metabolismo , Toxoplasma/genética , Toxoplasmosis/genética , Adenosina Trifosfatasas/química , Membrana Celular/genética , Membrana Celular/metabolismo , Citometría de Flujo , Glicerofosfolípidos/metabolismo , Aparato de Golgi/química , Aparato de Golgi/enzimología , Humanos , Membrana Dobles de Lípidos/química , Lípidos/química , Lípidos/genética , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Toxoplasma/enzimología , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología
12.
J Biol Chem ; 296: 100095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33208465

RESUMEN

DNA damage triggers the cellular adaptive response to arrest proliferation and repair DNA damage; when damage is too severe to be repaired, apoptosis is initiated to prevent the spread of genomic insults. However, how cells endure DNA damage to maintain cell function remains largely unexplored. By using Caenorhabditis elegans as a model, we report that DNA damage elicits cell maintenance programs, including the unfolded protein response of the endoplasmic reticulum (UPRER). Mechanistically, sublethal DNA damage unexpectedly suppresses apoptotic genes in C. elegans, which in turn increases the activity of the inositol-requiring enzyme 1/X-box binding protein 1 (IRE-1/XBP-1) branch of the UPRER by elevating unsaturated phosphatidylcholine. In addition, UPRER activation requires silencing of the lipid regulator skinhead-1 (SKN-1). DNA damage suppresses SKN-1 activity to increase unsaturated phosphatidylcholine and activate UPRER. These findings reveal the UPRER activation as an organismal adaptive response that is important to maintain cell function during DNA damage.


Asunto(s)
Caenorhabditis elegans/metabolismo , Daño del ADN , Estrés del Retículo Endoplásmico , Fosfatidilcolinas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fosfatidilcolinas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/genética
13.
Plant Physiol Biochem ; 159: 148-159, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33360238

RESUMEN

We used electrospray ionization tandem mass spectrometry to profile glycerolipids in the TOC159 null mutant of Arabidopsis, which is referred to as plastid protein import 2, or ppi2. The goal was to evaluate the impact of a defective atToc159 receptor in the accumulation of plastid lipids. The ppi2 mutant is severely impaired in the accumulation of monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and phosphatidylglycerol (PG), which are major components of the thylakoid membranes. Major molecular species of MGDG and DGDG are drastically decreased, which is consistent with our previous findings of decreased levels of hexadecatrienoic and linolenic acids. Under normal growth conditions, the ppi2 mutant accumulated significantly lower levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI). In the cold-acclimated mutant, the amounts of PE and PI were similar to the wildtype level, which indicates that the ER pathway of lipid synthesis was functional in the mutant. The cold-acclimated ppi2 mutant accumulated increased amounts of phosphatidic acid (PA), which was mirrored by an increase in phospholipase Dα (PLDα) transcript levels. These data suggest that PLDα activity contributed to the accumulation of cold-induced PA in the ppi2 mutant. The accumulation of major molecular species in PA indicates that cold-induced PA originated from the degradation of both plastidial and extraplastidial lipids. Compared with the wildtype, the ppi2 mutant had a low double bond index and high acyl chain length, which is indicative of decreased membrane fluidity. Taken together, these data indicate that a defective atToc159 receptor severely impaired the plastid pathway of lipid synthesis, which negatively affected the synthesis and/or accumulation of PC.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , GTP Fosfohidrolasas , Metabolismo de los Lípidos , Proteínas de la Membrana , Fosfatidilcolinas , Plastidios , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Plastidios/genética , Plastidios/metabolismo
14.
Biochim Biophys Acta Biomembr ; 1862(9): 183328, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32343957

RESUMEN

Carbon nanoparticles (CNPs) are attractive materials for a great number of applications but there are serious concerns regarding their influence on health and environment. Here, our focus is on the behavior of fullerenes in lipid bilayers with varying lipid saturations, chain lengths and fullerene concentrations using coarse-grained molecular dynamics (CG-MD) simulations. Our findings show that the lipid saturation level is a key factor in determining how fullerenes behave and where the fullerenes are located inside a lipid bilayer. In saturated and monounsaturated bilayers fullerenes aggregated and formed clusters with some of them showing icosahedral structures. In polyunsaturated lipid bilayers, no such structures were observed: In polyunsaturated lipid bilayers at high fullerene concentrations, connected percolation-like networks of fullerenes spanning the whole lateral area emerged at the bilayer center. In other systems only separate isolated aggregates were observed. The effects of fullerenes on lipid bilayers depend strongly on fullerene aggregation. When fullerenes aggregate, their interactions with the lipid tails change.


Asunto(s)
Fulerenos/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Conformación Proteica , Simulación de Dinámica Molecular , Fosfatidilcolinas/genética , Agregado de Proteínas/genética
15.
Biochim Biophys Acta Gen Subj ; 1864(1): 129422, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31491457

RESUMEN

BACKGROUND: Previous studies suggested that fibrillar human IAPP (hIAPP) is more likely to deposit in ß-cells, resulting in ß-cell injury. However, the changes in the conformation of hIAPP in lipid environment and the mechanism involved in ß-cell damage are unclear. METHODS: Synthetic hIAPP was incubated with five types of free fatty acids and phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), which constitute the cell membrane. Thioflavin-T fluorescence assay was conducted to analyze the degree of hIAPP fibrosis, and circular dichroism spectroscopy was performed to detect the ß-fold formation of hIAPP. Furthermore, INS-1 cells were infected with human IAPP delivered by a GV230-EGFP plasmid. The effects of endogenous hIAPP overexpression induced by sodium palmitate on the survival, endoplasmic reticulum (ER) stress, and apoptosis of INS-1 cells were evaluated. RESULTS: The five types of free fatty acids can accelerate the fibrosis of hIAPP. Sodium palmitate also maintained the stability of fibrillar hIAPP. POPS, not POPC, accelerated hIAPP fibrosis. Treatment of INS-1 cells with sodium palmitate increased the expression of hIAPP, activated ER stress and ER stress-dependent apoptosis signaling pathways, and increased the apoptotic rate. CONCLUSION: Free fatty acids and anionic phospholipid can promote ß-fold formation and fibrosis in hIAPP. High lipid induced the overexpression of hIAPP and aggravated ER stress and apoptosis in INS-1 cells, which caused ß-cell death in high lipid environment. GENERAL SIGNIFICANCE: Our study reveals free fatty acids and hIAPP synergistically implicated in endoplasmic reticulum stress and apoptosis of islet ß-cells.


Asunto(s)
Apoptosis/genética , Fibrosis/genética , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Amiloide/genética , Amiloide/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Estrés del Retículo Endoplásmico/genética , Ácidos Grasos no Esterificados/genética , Ácidos Grasos no Esterificados/metabolismo , Fibrosis/metabolismo , Fibrosis/patología , Regulación de la Expresión Génica/genética , Humanos , Células Secretoras de Insulina/patología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/ultraestructura , Metabolismo de los Lípidos/genética , Lípidos/genética , Ácido Palmítico/metabolismo , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo , Conformación Proteica en Lámina beta , Pliegue de Proteína
16.
Biomolecules ; 9(11)2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726783

RESUMEN

Signal transduction through cellular membranes requires the highly specific and coordinated work of specialized proteins. Proper functioning of these proteins is provided by an interplay between them and the lipid environment. Liquid-ordered lipid domains are believed to be important players here, however, it is still unclear whether conditions for a phase separation required for lipid domain formation exist in cellular membranes. Moreover, membrane leaflets are compositionally asymmetric, that could be an obstacle for the formation of symmetric domains spanning the lipid bilayer. We theoretically show that the presence of protein in the membrane leads to the formation of a stable liquid-ordered lipid phase around it by the mechanism of protein wetting by lipids, even in the absence of conditions necessary for the global phase separation in the membrane. Moreover, we show that protein shape plays a crucial role in this process, and protein conformational rearrangement can lead to changes in the size and characteristics of surrounding lipid domains.


Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos/química , Lipogénesis/genética , Proteínas de la Membrana/química , Membrana Celular/química , Membrana Celular/genética , Lípidos/genética , Microdominios de Membrana/química , Microdominios de Membrana/genética , Proteínas de la Membrana/genética , Fosfatidilcolinas/química , Fosfatidilcolinas/genética , Conformación Proteica , Transporte de Proteínas/genética
17.
PLoS One ; 14(9): e0222353, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31532787

RESUMEN

Menopause is an endocrine-related transition that induces a number of physiological and potentially pathological changes in middle-aged and elderly women. The intention of this research was to investigate the influence of menopause on the intricate relationships between major biochemical metabolites. The study involved metabolic profiling of 186 metabolic markers measured in blood plasma collected from 120 healthy female participants. We developed a method of network analysis using differential correlation that enabled us to detect and characterize differences in metabolites and changes in inter-relationships in pre- and post-menopausal women. A topological analysis was performed on the differential network that uncovered metabolite differences in pre-and post-menopausal women. In this analysis, our method identified two key metabolites, sphingomyelins and phosphatidylcholines, which may be useful in directing further studies into menopause-specific differences in the metabolome, and how these differences may underlie the body's response to stress and disease following the transition from pre- to post-menopausal status for women.


Asunto(s)
Menopausia/genética , Menopausia/fisiología , Metaboloma/genética , Adulto , Anciano , Biomarcadores/sangre , Femenino , Humanos , Menopausia/sangre , Metabolómica/métodos , Persona de Mediana Edad , Fosfatidilcolinas/genética , Esfingomielinas/genética , Adulto Joven
18.
J Proteome Res ; 18(3): 1133-1144, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30706713

RESUMEN

Hyperlipidemia, characterized by high serum lipids, is a risk factor for cardiovascular disease. Recent studies have identified an important role for celastrol, a proteasome inhibitor isolated from Tripterygium wilfordii Hook. F., in obesity-related metabolic disorders. However, the exact influences of celastrol on lipid metabolism remain largely unknown. Celastrol inhibited the terminal differentiation of 3T3-L1 adipocytes and decreased the levels of triglycerides in wild-type mice. Lipidomics analysis revealed that celastrol increased the metabolism of lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs), sphingomyelins (SMs), and phosphatidylethanolamines (PEs). Further, celastrol reversed the tyloxapol-induced hyperlipidemia induced associated with increased plasma LPCs, PCs, SMs, and ceramides (CMs). Among these lipids, LPC(16:0), LPC(18:1), PC(22:2/15:0), and SM(d18:1/22:0) were also decreased by celastrol in cultured 3T3-L1 adipocytes, mice, and tyloxapol-treated mice. The mRNAs encoded by hepatic genes associated with lipid synthesis and catabolism, including Lpcat1, Pld1, Smpd3, and Sptc2, were altered in tyloxapol-induced hyperlipidemia, and significantly recovered by celastrol treatment. The effect of celastrol on lipid metabolism was significantly reduced in Fxr-null mice, resulting in decreased Cers6 and Acer2 mRNAs compared to wild-type mice. These results establish that FXR was responsible in part for the effects of celastrol in controlling lipid metabolism and contributing to the recovery of aberrant lipid metabolism in obesity-related metabolic disorders.


Asunto(s)
Hiperlipidemias/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Triterpenos/farmacología , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Dieta Alta en Grasa , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hiperlipidemias/inducido químicamente , Hiperlipidemias/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Lisofosfatidilcolinas/genética , Ratones , Triterpenos Pentacíclicos , Fosfatidilcolinas/genética , Fosfatidiletanolaminas/genética , Fosfolipasa D/genética , Polietilenglicoles/toxicidad , Esfingomielina Fosfodiesterasa/genética , Esfingomielinas/genética
19.
Front Immunol ; 9: 2448, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30410489

RESUMEN

Dietary choline can impact systemic immunity, but it remains unclear whether this is primarily via direct impacts on immune cells or secondary effects of altered metabolic function. To determine whether increased choline concentrations (3.2, 8.2, 13.2 µM) in cell culture alter the function of bovine innate and adaptive immune cells, we isolated cells from dairy cows in early and mid-lactation as models of immuno-compromised and competent cells, respectively. Phagocytic and killing capacity of isolated neutrophils were linearly diminished with increasing doses of choline. In contrast, lymphocyte proliferation was linearly enhanced with increasing doses of choline. Furthermore, increasing doses of choline increased the mRNA abundance of genes involved in the synthesis of choline products (betaine, phosphatidylcholine, and acetylcholine) as well as muscarinic and nicotinic acetylcholine receptors in a quadratic and linear fashion for neutrophils and monocytes, respectively. Phagocytic and killing capacity of neutrophils and proliferation of lymphocytes were not affected by stage of lactation or its interaction with choline or LPS. In neutrophils from early lactation cows, choline linearly increased the mRNA abundance of muscarinic and nicotinic cholinergic receptors, whereas choline-supplemented monocytes from mid-lactation cows linearly increased the mRNA abundance of several genes coding for choline metabolism enzymes. These data demonstrate that choline regulates the inflammatory response of immune cells and suggest that the mechanism may involve one or more of its metabolic products.


Asunto(s)
Colina/farmacología , Linfocitos/inmunología , Monocitos/inmunología , Neutrófilos/inmunología , ARN Mensajero/análisis , Acetilcolina/genética , Inmunidad Adaptativa/efectos de los fármacos , Animales , Betaína/metabolismo , Bovinos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colina/metabolismo , Femenino , Inmunidad Innata/efectos de los fármacos , Inflamación/inmunología , Lactancia , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Fosfatidilcolinas/genética , Receptores Muscarínicos/genética , Receptores Nicotínicos/genética
20.
PLoS One ; 13(11): e0206251, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30419037

RESUMEN

Particulate matter (PM) air pollution is a global environmental health problem contributing to more severe lung inflammation and injury. However, the molecular and cellular mechanisms of PM-induced exacerbation of lung barrier dysfunction and injury are not well understood. In the current study, we tested a hypothesis that PM exacerbates vascular barrier dysfunction via ROS-induced generation of truncated oxidized phospholipids (Tr-OxPLs). Treatment of human pulmonary endothelial cells with PM caused endothelial cell barrier disruption in a dose-dependent fashion. Biochemical analysis showed destabilization of cell junctions by PM via tyrosine phosphorylation and internalization of VE-cadherin. These events were accompanied by PM-induced generation of Tr-OxPLs, detected by mass spectrometry analysis. Furthermore, purified Tr-OxPLs: POVPC, PGPC and lyso-PC alone, caused a rapid increase in endothelial permeability and augmented pulmonary endothelial barrier dysfunction induced by submaximal doses of PM. In support of a role of TR-OxPLs-dependent mechanism in mediation of PM effects, ectopic expression of intracellular type 2 platelet-activating factor acetylhydrolase (PAFAH2), which specifically hydrolyzes Tr-OxPLs, significantly attenuated PM-induced endothelial hyperpermeability. In summary, this study uncovered a novel mechanism of PM-induced sustained dysfunction of pulmonary endothelial cell barrier which is driven by PM-induced generation of truncated products of phospholipid oxidation causing destabilization of cell junctions.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Pulmón/efectos de los fármacos , Fosfatidilcolinas/metabolismo , Neumonía/metabolismo , Contaminantes Atmosféricos/toxicidad , Permeabilidad Capilar/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Humanos , Pulmón/fisiopatología , Oxidación-Reducción , Material Particulado/toxicidad , Fosfatidilcolinas/genética , Fosforilación/efectos de los fármacos , Neumonía/inducido químicamente , Neumonía/fisiopatología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...