Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 216(12): 2800-2818, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31537641

RESUMEN

Infection of T cells by Epstein-Barr virus (EBV) causes chronic active EBV infection (CAEBV) characterized by T cell lymphoproliferative disorders (T-LPD) of unclear etiology. Here, we identified two homozygous biallelic loss-of-function mutations in PIK3CD and TNFRSF9 in a patient who developed a fatal CAEBV. The mutation in TNFRSF9 gene coding CD137/4-1BB, a costimulatory molecule expressed by antigen-specific activated T cells, resulted in a complete loss of CD137 expression and impaired T cell expansion toward CD137 ligand-expressing cells. Isolated as observed in one sibling, CD137 deficiency resulted in persistent EBV-infected T cells but without clinical manifestations. The mutation in PIK3CD gene that encodes the catalytic subunit p110δ of the PI3K significantly reduced its kinase activity. Deficient T cells for PIK3CD exhibited reduced AKT signaling, while calcium flux, RAS-MAPK activation, and proliferation were increased, suggestive of an imbalance between the PLCγ1 and PI3K pathways. These skewed signals in T cells may sustain accumulation of EBV-infected T cells, a process controlled by the CD137-CD137L pathway, highlighting its critical role in immunity to EBV.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Infecciones por Virus de Epstein-Barr/etiología , Herpesvirus Humano 4/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/deficiencia , Activación Viral/genética , Activación Viral/inmunología , Fosfatidilinositol 3-Quinasa Clase I/química , Susceptibilidad a Enfermedades , Infecciones por Virus de Epstein-Barr/diagnóstico , Mutación de Línea Germinal , Histocitoquímica , Homocigoto , Humanos , Inmunofenotipificación , Mutación con Pérdida de Función , Activación de Linfocitos , Trastornos Linfoproliferativos/diagnóstico , Trastornos Linfoproliferativos/etiología , Trastornos Linfoproliferativos/metabolismo , Modelos Moleculares , Linaje , Fosfolipasa C gamma/metabolismo , Conformación Proteica , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas S6 Ribosómicas/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal , Relación Estructura-Actividad , Linfocitos T/virología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/química
3.
Am J Transplant ; 19(6): 1820-1830, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30748099

RESUMEN

Chronic graft-versus-host disease (cGVHD) is a leading cause of morbidity and mortality following allotransplant. Activated donor effector T cells can differentiate into pathogenic T helper (Th)-17 cells and germinal center (GC)-promoting T follicular helper (Tfh) cells, resulting in cGVHD. Phosphoinositide-3-kinase-δ (PI3Kδ), a lipid kinase, is critical for activated T cell survival, proliferation, differentiation, and metabolism. We demonstrate PI3Kδ activity in donor T cells that become Tfh cells is required for cGVHD in a nonsclerodermatous multiorgan system disease model that includes bronchiolitis obliterans (BO), dependent upon GC B cells, Tfhs, and counterbalanced by T follicular regulatory cells, each requiring PI3Kδ signaling for function and survival. Although B cells rely on PI3Kδ pathway signaling and GC formation is disrupted resulting in a substantial decrease in Ig production, PI3Kδ kinase-dead mutant donor bone marrow-derived GC B cells still supported BO cGVHD generation. A PI3Kδ-specific inhibitor, compound GS-649443, that has superior potency to idelalisib while maintaining selectivity, reduced cGVHD in mice with active disease. In a Th1-dependent and Th17-associated scleroderma model, GS-649443 effectively treated mice with active cGVHD. These data provide a foundation for clinical trials of US Food and Drug Administration (FDA)-approved PI3Kδ inhibitors for cGVHD therapy in patients.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/enzimología , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Animales , Linfocitos B/inmunología , Trasplante de Médula Ósea/efectos adversos , Bronquiolitis Obliterante/tratamiento farmacológico , Bronquiolitis Obliterante/enzimología , Bronquiolitis Obliterante/etiología , Enfermedad Crónica , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Fosfatidilinositol 3-Quinasa Clase I/genética , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Esclerodermia Localizada/tratamiento farmacológico , Esclerodermia Localizada/enzimología , Esclerodermia Localizada/etiología , Linfocitos T Colaboradores-Inductores/inmunología
4.
Cardiovasc Res ; 115(8): 1343-1356, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496354

RESUMEN

AIMS: Cardiac remodelling in the ischaemic heart determines prognosis in patients with ischaemic heart disease (IHD), while enhancement of angiogenesis and cell survival has shown great potential for IHD despite translational challenges. Phosphoinositide 3-kinase (PI3K)/Akt signalling pathways play a critical role in promoting angiogenesis and cell survival. However, the effect of PI3Kß in the ischaemic heart is poorly understood. This study investigates the role of endothelial and cardiomyocyte (CM) PI3Kß in post-infarct cardiac remodelling. METHODS AND RESULTS: PI3Kß catalytic subunit-p110ß level was increased in infarcted murine and human hearts. Using cell type-specific loss-of-function approaches, we reported novel and distinct actions of p110ß in endothelial cells (ECs) vs. CMs in response to myocardial ischaemic injury. Inactivation of endothelial p110ß resulted in marked resistance to infarction and adverse cardiac remodelling with decreased mortality, improved systolic function, preserved microvasculature, and enhanced Akt activation. Cultured ECs with p110ß knockout or inhibition displayed preferential PI3Kα/Akt/endothelial nitric oxide synthase signalling that consequently promoted protective signalling and angiogenesis. In contrast, mice with CM p110ß-deficiency exhibited adverse post-infarct ventricular remodelling with larger infarct size and deteriorated cardiac function, which was due to enhanced susceptibility of CMs to ischaemia-mediated cell death. Disruption of CM p110ß signalling compromised nuclear p110ß and phospho-Akt levels leading to perturbed gene expression and elevated pro-cell death protein levels, increasing the susceptibility to CM death. A similar divergent response of PI3Kß endothelial and CM mutant mice was seen using a model of myocardial ischaemia-reperfusion injury. CONCLUSION: These data demonstrate novel, differential, and cell-specific functions of PI3Kß in the ischaemic heart. While the loss of endothelial PI3Kß activity produces cardioprotective effects, CM PI3Kß is protective against myocardial ischaemic injury.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Células Endoteliales/enzimología , Infarto del Miocardio/enzimología , Daño por Reperfusión Miocárdica/enzimología , Miocitos Cardíacos/enzimología , Remodelación Ventricular , Animales , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Fosfatidilinositol 3-Quinasa Clase I/genética , Modelos Animales de Enfermedad , Células Endoteliales/patología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/patología , Neovascularización Fisiológica , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1121-1131, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29902570

RESUMEN

Phosphoinositides are bioactive lipids essential in the regulation of cell signaling as well as cytoskeleton and membrane dynamics. Their metabolism is highly active in blood platelets where they play a critical role during activation, at least through two well identified pathways involving phospholipase C and phosphoinositide 3-kinases (PI3K). Here, using a sensitive high-performance liquid chromatography-mass spectrometry method recently developed, we monitored for the first time the profiling of phosphatidylinositol (PI), PIP, PIP2 and PIP3 molecular species (fatty-acyl profiles) in human and mouse platelets during the course of stimulation by thrombin and collagen-related peptide. Furthermore, using class IA PI3K p110α or p110ß deficient mouse platelets and a pharmacological inhibitor, we show the crucial role of p110ß and the more subtle role of p110α in the production of PIP3 molecular species following stimulation. This comprehensive platelet phosphoinositides profiling provides important resources for future studies and reveals new information on phosphoinositides biology, similarities and differences in mouse and human platelets and unexpected dramatic increase in low-abundance molecular species of PIP2 during stimulation, opening new perspectives in phosphoinositide signaling in platelets.


Asunto(s)
Plaquetas/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Plaquetas/citología , Plaquetas/metabolismo , Proteínas Portadoras/farmacología , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Inhibidores Enzimáticos/farmacología , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/farmacología , Activación Plaquetaria/efectos de los fármacos , Cultivo Primario de Células , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/deficiencia , Subunidades de Proteína/genética , Pirimidinonas/farmacología , Trombina/farmacología , ortoaminobenzoatos/farmacología
7.
Artículo en Inglés | MEDLINE | ID: mdl-28847905

RESUMEN

RAS proteins are key signaling switches essential for control of proliferation, differentiation, and survival of eukaryotic cells. RAS proteins are mutated in 30% of human cancers. In addition, mutations in upstream or downstream signaling components also contribute to oncogenic activation of the pathway. RAS proteins exert their functions through activation of several signaling pathways and dissecting the contributions of these effectors in normal cells and in cancer is an ongoing challenge. In this review, we summarize our current knowledge about how RAS regulates type I phosphatidylinositol 3-kinase (PI3K), one of the main RAS effectors. RAS signaling through PI3K is necessary for normal lymphatic vasculature development and for RAS-induced transformation in vitro and in vivo, especially in lung cancer, where it is essential for tumor initiation and necessary for tumor maintenance.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/metabolismo , Animales , Diferenciación Celular , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Fosfatidilinositol 3-Quinasa Clase I/genética , Humanos , Ratones , Mutación , Neovascularización Patológica/metabolismo , Fosfatidilinositol 3-Quinasas/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal
8.
Proc Natl Acad Sci U S A ; 113(40): 11255-11260, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27621448

RESUMEN

Pregnancy success and life-long health depend on a cooperative interaction between the mother and the fetus in the allocation of resources. As the site of materno-fetal nutrient transfer, the placenta is central to this interplay; however, the relative importance of the maternal versus fetal genotypes in modifying the allocation of resources to the fetus is unknown. Using genetic inactivation of the growth and metabolism regulator, Pik3ca (encoding PIK3CA also known as p110α, α/+), we examined the interplay between the maternal genome and the fetal genome on placental phenotype in litters of mixed genotype generated through reciprocal crosses of WT and α/+ mice. We demonstrate that placental growth and structure were impaired and associated with reduced growth of α/+ fetuses. Despite its defective development, the α/+ placenta adapted functionally to increase the supply of maternal glucose and amino acid to the fetus. The specific nature of these changes, however, depended on whether the mother was α/+ or WT and related to alterations in endocrine and metabolic profile induced by maternal p110α deficiency. Our findings thus show that the maternal genotype and environment programs placental growth and function and identify the placenta as critical in integrating both intrinsic and extrinsic signals governing materno-fetal resource allocation.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Feto/metabolismo , Genoma , Intercambio Materno-Fetal/genética , Placenta/metabolismo , Transducción de Señal , 3-O-Metilglucosa/metabolismo , Animales , Transporte Biológico , Peso Corporal , Linaje de la Célula/genética , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Sistema Endocrino/metabolismo , Activación Enzimática , Femenino , Desarrollo Fetal , Regulación del Desarrollo de la Expresión Génica , Hígado/anatomía & histología , Metabolómica , Ratones Noqueados , Modelos Biológicos , Tamaño de los Órganos , Placenta/anatomía & histología , Embarazo , beta-Alanina/análogos & derivados , beta-Alanina/metabolismo
9.
PLoS One ; 11(7): e0159310, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27442134

RESUMEN

The catalytical isoforms p110γ and p110δ of phosphatidylinositide 3-kinase γ (PI3Kγ) and PI3Kδ play an important role in the pathogenesis of asthma. Two key elements in allergic asthma are increased levels of eosinophils and IgE. Dual pharmacological inhibition of p110γ and p110δ reduces asthma-associated eosinophilic lung infiltration and ameliorates disease symptoms, whereas the absence of enzymatic activity in p110γKOδD910A mice increases IgE and basal eosinophil counts. This suggests that long-term inhibition of p110γ and p110δ might exacerbate asthma. Here, we analysed mice genetically deficient for both catalytical subunits (p110γ/δ-/-) and determined basal IgE and eosinophil levels and the immune response to ovalbumin-induced asthma. Serum concentrations of IgE, IL-5 and eosinophil numbers were significantly increased in p110γ/δ-/- mice compared to single knock-out and wildtype mice. However, p110γ/δ-/- mice were protected against OVA-induced infiltration of eosinophils, neutrophils, T and B cells into lung tissue and bronchoalveolar space. Moreover, p110γ/δ-/- mice, but not single knock-out mice, showed a reduced bronchial hyperresponsiveness. We conclude that increased levels of eosinophils and IgE in p110γ/δ-/- mice do not abolish the protective effect of p110γ/δ-deficiency against OVA-induced allergic airway inflammation.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Eosinofilia/enzimología , Eosinofilia/inmunología , Inmunoglobulina E/biosíntesis , Ovalbúmina/inmunología , Neumonía/enzimología , Neumonía/inmunología , Animales , Linfocitos B/inmunología , Hiperreactividad Bronquial/sangre , Hiperreactividad Bronquial/complicaciones , Hiperreactividad Bronquial/enzimología , Hiperreactividad Bronquial/inmunología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Recuento de Células , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Eosinofilia/sangre , Eosinofilia/complicaciones , Eosinófilos/inmunología , Células Caliciformes/patología , Hipersensibilidad/sangre , Hipersensibilidad/complicaciones , Hipersensibilidad/enzimología , Hipersensibilidad/inmunología , Interleucina-5/sangre , Pulmón/inmunología , Pulmón/patología , Metaplasia , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neumonía/sangre , Neumonía/complicaciones , Linfocitos T/inmunología
10.
J Am Chem Soc ; 138(28): 8667-9, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27387838

RESUMEN

Short interfering RNAs (siRNAs) are promising therapeutics that make use of the RNA interference (RNAi) pathway, but liabilities arising from the native RNA structure necessitate chemical modification for drug development. Advances in the structural characterization of components of the human RNAi pathway have enabled structure-guided optimization of siRNA properties. Here we report the 2.3 Å resolution crystal structure of human Argonaute 2 (hAgo2), a key nuclease in the RNAi pathway, bound to an siRNA guide strand bearing an unnatural triazolyl nucleotide at position 1 (g1). Unlike natural nucleotides, this analogue inserts deeply into hAgo2's central RNA binding cleft and thus is able to modulate pairing between guide and target RNAs. The affinity of the hAgo2-siRNA complex for a seed-only matched target was significantly reduced by the triazolyl modification, while the affinity for a fully matched target was unchanged. In addition, siRNA potency for off-target repression was reduced (4-fold increase in IC50) by the modification, while on-target knockdown was improved (2-fold reduction in IC50). Controlling siRNA on-target versus microRNA (miRNA)-like off-target potency by projection of substituent groups into the hAgo2 central cleft from g1 is a new approach to enhance siRNA selectivity with a strong structural rationale.


Asunto(s)
ARN Interferente Pequeño/genética , Proteínas Argonautas/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Fosfatidilinositol 3-Quinasa Clase I/genética , Humanos , Nucleótidos/química , Interferencia de ARN , ARN Interferente Pequeño/química , Triazoles/química
11.
Thromb Haemost ; 115(6): 1138-46, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-26818901

RESUMEN

Antiphospholipid syndrome (APS) is an autoimmune disease characterised by the presence of antiphospholipid antibodies (aPL) associated with increased thrombotic risk and pregnancy morbidity. Although aPL are heterogeneous auto-antibodies, the major pathogenic target is the plasma protein ß2-glycoprotein 1. The molecular mechanisms of platelet activation by aPL remain poorly understood. Here, we explored the role of the class IA phosphoinositide 3-kinase (PI3K) α and ß isoforms in platelet activation by aPL. Compared to control IgG from healthy individuals, the IgG fraction isolated from patients with APS potentiates platelet aggregation induced by low dose of thrombin in vitro and increases platelet adhesion and thrombus growth on a collagen matrix under arterial shear rate through a mechanism involving glycoprotein Ib (GPIb) and Toll Like Receptor 2 (TLR-2). Using isoforms-selective pharmacological PI3K inhibitors and mice with megakaryocyte/platelet lineage-specific inactivation of class IA PI3K isoforms, we demonstrate a critical role of the PI3Kß and PI3Kα isoforms in platelet activation induced by aPL. Our data show that aPL potentiate platelet activation through GPIbα and TLR-2 via a mechanism involving the class IA PI3Kα and ß isoforms, which represent new potential therapeutic targets in the prevention or treatment of thrombotic events in patients with APS.


Asunto(s)
Anticuerpos Antifosfolípidos/sangre , Síndrome Antifosfolípido/sangre , Síndrome Antifosfolípido/inmunología , Fosfatidilinositol 3-Quinasa Clase Ia/sangre , Activación Plaquetaria/inmunología , Animales , Estudios de Casos y Controles , Fosfatidilinositol 3-Quinasa Clase I/sangre , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Fosfatidilinositol 3-Quinasa Clase I/genética , Inhibidores Enzimáticos/farmacología , Humanos , Inmunoglobulina G/sangre , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidores de las Quinasa Fosfoinosítidos-3 , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Trombosis/sangre , Trombosis/etiología , Trombosis/inmunología , Receptor Toll-Like 2/sangre
12.
Blood ; 125(5): 881-8, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25398937

RESUMEN

Class IA phosphoinositide 3-kinase ß (PI3Kß) is considered a potential drug target in arterial thrombosis, which is a major cause of death worldwide. Here we show that a striking phenotype of mice with selective p110ß deletion in the megakaryocyte lineage is thrombus instability at a high shear rate, which is an effect that is not detected in the absence of p110α in platelets. The high shear rate-dependent thrombus instability in the absence of p110ß is observed both ex vivo and in vivo with the formation of platelet emboli. Moreover, PI3Kß is required for the recruitment of new platelets to a growing thrombus when a pathological high shear is applied. Treatment of human blood with AZD6482, a selective PI3Kß inhibitor, phenocopies p110ß deletion in mouse platelets, which highlights the role of the kinase activity of p110ß. Within the growing platelet thrombus, p110ß inactivation impairs the activating phosphorylations of Akt and the inhibitory phosphorylation of GSK3. In accord with these data, pharmacologic inhibition of GSK3 restores thrombus stability. Thus, platelet PI3Kß is not essential for thrombus growth and stability at normal arterial shear but has a specific and critical role in maintaining the integrity of the formed thrombus on elevation of shear rate, suggesting a potential risk of embolization on treatment with PI3Kß inhibitors.


Asunto(s)
Plaquetas/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Glucógeno Sintasa Quinasa 3/genética , Trombosis/genética , Animales , Plaquetas/efectos de los fármacos , Plaquetas/patología , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Mecanotransducción Celular , Ratones , Ratones Transgénicos , Fosforilación/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Pirimidinonas/farmacología , Estrés Mecánico , Trombosis/enzimología , Trombosis/patología , ortoaminobenzoatos/farmacología
13.
J Clin Invest ; 124(8): 3601-11, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25003191

RESUMEN

Direct interaction of RAS with the PI3K p110α subunit mediates RAS-driven tumor development: however, it is not clear how p110α/RAS-dependant signaling mediates interactions between tumors and host tissues. Here, using a murine tumor cell transfer model, we demonstrated that disruption of the interaction between RAS and p110α within host tissue reduced tumor growth and tumor-induced angiogenesis, leading to improved survival of tumor-bearing mice, even when this interaction was intact in the transferred tumor. Furthermore, functional interaction of RAS with p110α in host tissue was required for efficient establishment and growth of metastatic tumors. Inhibition of RAS and p110α interaction prevented proper VEGF-A and FGF-2 signaling, which are required for efficient angiogenesis. Additionally, disruption of the RAS and p110α interaction altered the nature of tumor-associated macrophages, inducing expression of markers typical for macrophage populations with reduced tumor-promoting capacity. Together, these results indicate that a functional RAS interaction with PI3K p110α in host tissue is required for the establishment of a growth-permissive environment for the tumor, particularly for tumor-induced angiogenesis. Targeting the interaction of RAS with PI3K has the potential to impair tumor formation by altering the tumor-host relationship, in addition to previously described tumor cell-autonomous effects.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/metabolismo , Neovascularización Patológica/etiología , Neovascularización Patológica/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/metabolismo , Animales , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Fosfatidilinositol 3-Quinasa Clase I/genética , Ratones , Ratones Noqueados , Ratones Mutantes , Neoplasias Experimentales/secundario , Fosfatidilinositol 3-Quinasas/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Mapas de Interacción de Proteínas , Transducción de Señal
14.
Mol Cell ; 50(1): 29-42, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23434372

RESUMEN

Autophagy is an evolutionarily conserved membrane trafficking process. Induction of autophagy in response to nutrient limitation or cellular stress occurs by similar mechanisms in organisms from yeast to mammals. Unlike yeast, metazoan cells rely more on growth factor signaling for a wide variety of cellular activities including nutrient uptake. How growth factor availability regulates autophagy is poorly understood. Here we show that, upon growth factor limitation, the p110ß catalytic subunit of the class IA phosphoinositide 3-kinases (PI3Ks) dissociates from growth factor receptor complexes and increases its interaction with the small GTPase Rab5. This p110ß-Rab5 association maintains Rab5 in its guanosine triphosphate (GTP)-bound state and enhances the Rab5-Vps34 interaction that promotes autophagy. p110ß mutants that fail to interact with Rab5 are defective in autophagy promotion. Hence, in mammalian cells, p110ß acts as a molecular sensor for growth factor availability and induces autophagy by activating a Rab5-mediated signaling cascade.


Asunto(s)
Autofagia , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Mutación , Fosfatidilinositol 3-Quinasas/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal , Transfección
15.
Circ Heart Fail ; 5(4): 523-34, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22705768

RESUMEN

BACKGROUND: Numerous molecular and biochemical changes have been linked with the cardioprotective effects of exercise, including increases in antioxidant enzymes, heat shock proteins, and regulators of cardiac myocyte proliferation. However, a master regulator of exercise-induced protection has yet to be identified. Here, we assess whether phosphoinositide 3-kinase (PI3K) p110α is essential for mediating exercise-induced cardioprotection, and if so, whether its activation independent of exercise can restore function of the failing heart. METHODS AND RESULTS: Cardiac-specific transgenic (Tg) mice with elevated or reduced PI3K(p110α) activity (constitutively active PI3K [caPI3K] and dominant negative PI3K, respectively) and non-Tg controls were subjected to 4 weeks of exercise training followed by 1 week of pressure overload (aortic-banding) to induce pathological remodeling. Aortic-banding in untrained non-Tg controls led to pathological cardiac hypertrophy, depressed systolic function, and lung congestion. This phenotype was attenuated in non-Tg controls that had undergone exercise before aortic-banding. Banded caPI3K mice were protected from pathological remodeling independent of exercise status, whereas exercise provided no protection in banded dominant negative PI3K mice, suggesting that PI3K is necessary for exercise-induced cardioprotection. Tg overexpression of heat shock protein 70 could not rescue the phenotype of banded dominant negative PI3K mice, and deletion of heat shock protein 70 from banded caPI3K mice had no effect. Next, we used a gene therapy approach (recombinant adeno-associated viral vector 6) to deliver caPI3K expression cassettes to hearts of mice with established cardiac dysfunction caused by aortic-banding. Mice treated with recombinant adeno-associated viral 6-caPI3K vectors had improved heart function after 10 weeks. CONCLUSIONS: PI3K(p110α) is essential for exercise-induced cardioprotection and delivery of caPI3K vector can improve function of the failing heart.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Terapia Genética , Insuficiencia Cardíaca/prevención & control , Hipertrofia Ventricular Izquierda/prevención & control , Miocardio/enzimología , Esfuerzo Físico , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Fosfatidilinositol 3-Quinasa Clase I/genética , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Genotipo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Contracción Miocárdica , Miocardio/patología , Fenotipo , Recuperación de la Función , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...