Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 75(5): 1043-1057.e8, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31402097

RESUMEN

The plasma membrane (PM) is composed of a complex lipid mixture that forms heterogeneous membrane environments. Yet, how small-scale lipid organization controls physiological events at the PM remains largely unknown. Here, we show that ORP-related Osh lipid exchange proteins are critical for the synthesis of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], a key regulator of dynamic events at the PM. In real-time assays, we find that unsaturated phosphatidylserine (PS) and sterols, both Osh protein ligands, synergistically stimulate phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity. Biophysical FRET analyses suggest an unconventional co-distribution of unsaturated PS and phosphatidylinositol 4-phosphate (PI4P) species in sterol-containing membrane bilayers. Moreover, using in vivo imaging approaches and molecular dynamics simulations, we show that Osh protein-mediated unsaturated PI4P and PS membrane lipid organization is sensed by the PIP5K specificity loop. Thus, ORP family members create a nanoscale membrane lipid environment that drives PIP5K activity and PI(4,5)P2 synthesis that ultimately controls global PM organization and dynamics.


Asunto(s)
Proteínas Portadoras/metabolismo , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Apoptosis ; 22(11): 1344-1352, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28879546

RESUMEN

The Fas/FasL system plays a critical role in death by apoptosis and immune escape of cancer cells. The Fas receptor being ubiquitously expressed in tissues, its apoptotic-inducing function, initiated upon FasL binding, is tightly regulated by several negative regulatory mechanisms to prevent inappropriate cell death. One of them, involving the non-receptor tyrosine kinase Btk, was reported mainly in B cells and only poorly described. We report here that Btk negatively regulates, through its tyrosine kinase activity, the FasL-mediated cell death in epithelial cell lines from colon cancer origin. More importantly, we show that Btk interacts not only with Fas but also with the phosphatidylinositol-4-phosphate 5-kinase, PIP5K1γ, which, upon stimulation by Fas ligand, is responsible of a rapid and transient synthesis of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). This production requires both the presence and the tyrosine kinase activity of Btk, and participates in the negative regulation of FasL-mediated cell death since knocking down PIP5K1γ expression significantly strengthens the apoptotic signal upon FasL engagement. Altogether, our data demonstrate the cooperative role of Btk and PIP5K1γ in a FasL-induced PI(4,5)P2 production, both proteins participating to the threshold setting of FasL-induced apoptotic commitment in colorectal cell lines.


Asunto(s)
Muerte Celular/efectos de los fármacos , Proteína Ligando Fas/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Tirosina Quinasas/genética , Receptor fas/genética , Agammaglobulinemia Tirosina Quinasa , Muerte Celular/genética , Línea Celular , Línea Celular Tumoral , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Proteína Ligando Fas/genética , Proteína Ligando Fas/metabolismo , Regulación de la Expresión Génica , Células HT29 , Humanos , Células Asesinas Naturales , Linfocitos/citología , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Receptor fas/metabolismo
4.
Sci Rep ; 7(1): 9438, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28842595

RESUMEN

HGF and its receptor c-Met are critical molecules in various biological processes. Others and we have previously shown that the small GTPase Arf6 plays a pivotal role in HGF signaling in hepatocytes. However, the molecular mechanism of how Arf6 regulates HGF signaling is unclear. Here, we show that Arf6 plays an important role in HGF-stimulated hepatocyte proliferation and liver regeneration through the phosphatidylinositol 4,5-bisphosphate (PIP2)-producing enzyme PIP5K1A. We find that knockdown of Arf6 and PIP5K1A in HepG2 cells inhibits HGF-stimulated proliferation, Akt activation, and generation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and its precursor PIP2. Interestingly, PIP5K1A is recruited to c-Met upon HGF stimulation in an Arf6 activity-dependent manner. Finally, we show that hepatocyte proliferation and liver regeneration after partial hepatectomy are suppressed in Pip5k1a knockout mice. These results provide insight into the molecular mechanism for HGF-stimulated hepatocyte proliferation and liver regeneration: Arf6 recruits PIP5K1A to c-Met and activates it upon HGF stimulation to produce PIP2 and subsequently PIP3, which in turn activates Akt to promote hepatocyte proliferation, thereby accelerating liver regeneration after liver injury.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Hepatocitos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Femenino , Factor de Crecimiento de Hepatocito/farmacología , Hepatocitos/efectos de los fármacos , Regeneración Hepática , Ratones , Ratones Noqueados , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/efectos de los fármacos
5.
J Leukoc Biol ; 100(6): 1363-1373, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27418354

RESUMEN

LPS binds sequentially to CD14 and TLR4/MD2 receptor triggering production of proinflammatory mediators. The LPS-induced signaling is controlled by a plasma membrane lipid PI(4,5)P2 and its derivatives. Here, we show that stimulation of murine peritoneal macrophages with LPS induces biphasic accumulation of PI(4,5)P2 with peaks at 10 and 60-90 min that were still seen after silencing of TLR4 expression. In contrast, the PI(4,5)P2 elevation was abrogated when CD14 was removed from the cell surface. To assess the contribution of CD14 and TLR4 to the LPS-induced PI(4,5)P2 changes, we used HEK293 transfectants expressing various amounts of CD14 and TLR4. In cells with a low content of CD14 and high of TLR4, no accumulation of PI(4,5)P2 occurred. With an increasing amount of CD14 and concomitant decrease of TLR4, 2 peaks of PI(4,5)P2 accumulation appeared, eventually approaching those found in LPS-stimulated cells expressing CD14 alone. Mutation of the signaling domain of TLR4 let us conclude that the receptor activity can modulate PI(4,5)P2 accumulation in cells when expressed in high amounts compared with CD14. Among the factors limiting PI(4,5)P2 accumulation are its hydrolysis, phosphorylation, and availability of its precursor, PI(4)P. Inhibition of PLC and PI3K or overexpression of PI4K IIα that produces PI(4)P promoted PI(4,5)P2 elevation in LPS-stimulated cells. The elevation of PI(4,5)P2 was dispensable for TLR4 signaling yet enhanced its magnitude. Taken together, these data suggest that LPS-induced accumulation of PI(4,5)P2 that maximizes TLR4 signaling is controlled by CD14, whereas TLR4 can fine tune the process by affecting the PI(4,5)P2 turnover.


Asunto(s)
Receptores de Lipopolisacáridos/fisiología , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Receptor Toll-Like 4/fisiología , Animales , Genes Reporteros , Células HEK293 , Humanos , Lipopolisacáridos/farmacología , Lipoilación , Activación de Linfocitos , Activación de Macrófagos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Menor/metabolismo , FN-kappa B/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Organismos Libres de Patógenos Específicos , Receptor Toll-Like 4/antagonistas & inhibidores
6.
Biochem Soc Trans ; 44(1): 228-33, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26862209

RESUMEN

Ptdns(4,5)P2 is a minor structural lipid of the plasma membrane (PM), but a master regulator of PM function. Serving either as a substrate for the generation of second messengers, or more commonly as a ligand triggering protein recruitment or activation, it regulates most aspects of PM function. Understanding how this relatively simple biological macromolecule can regulate such a vast array of different functions in parallel, is the key to understanding the biology of the PM as a whole, in both health and disease. In this review, potential mechanisms are discussed that might explain how a lipid can separately regulate so many protein complexes. The focus is on the spatial distribution of the lipid molecules, their metabolism and their interactions. Open questions that still need to be resolved are highlighted, as are potential experimental approaches that might shed light on the mechanisms at play. Moreover, the broader question is raised as to whether PtdIns(4,5)P2 should be thought of as a bona fide signalling molecule or more of a simple lipid cofactor or perhaps both, depending on the context of the particular function in question.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/biosíntesis
7.
J Biol Chem ; 290(34): 20893-20903, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26157143

RESUMEN

Phosphoinositide signaling has been implicated in the regulation of numerous cellular processes including cytoskeletal dynamics, cellular motility, vesicle trafficking, and gene transcription. Studies have also shown that nuclear phosphoinositide(s) regulates processes such as mRNA export, cell cycle progression, gene transcription, and DNA repair. We have shown previously that the nuclear form of phosphatidylinositol-4-phosphate 5-kinase 1α (PIP5K), the enzyme responsible for phosphatidylinositol 4,5-bisphosphate synthesis, is modified by small ubiquitin-like modifier (SUMO)-1. In this study, we have shown that due to the site-specific Lys to Ala mutations of PIP5K at Lys-244 and Lys-490, it is unable to localize in the nucleus and nucleolus, respectively. Furthermore, by using chromatin immunoprecipitation assays, we have observed that PIP5K associates with the chromatin silencing complex constituted of H3K9me3 and heterochromatin protein 1α at multiple ribosomal DNA (rDNA) loci. These interactions followed a definite cyclical pattern of occupancy (mostly G1) and release from the rDNA loci (G1/S) throughout the cell cycle. Moreover, the immunoprecipitation results clearly demonstrate that PIP5K SUMOylated at Lys-490 interacts with components of the chromatin silencing machinery, H3K9me3 and heterochromatin protein 1α. However, PIP5K does not interact with the gene activation signature protein H3K4me3. This study, for the first time, demonstrates that PIP5K, an enzyme actively associated with lipid modification pathway, has additional roles in rDNA silencing.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN Ribosómico/metabolismo , Epigénesis Genética , Histonas/metabolismo , Lisina/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ciclo Celular , Línea Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , ADN Ribosómico/genética , Silenciador del Gen , Células HEK293 , Heterocromatina/química , Heterocromatina/metabolismo , Histonas/genética , Humanos , Células MCF-7 , Metilación , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal , Sumoilación
8.
Int J Biochem Cell Biol ; 45(7): 1293-301, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23542014

RESUMEN

Phosphatidylinositol 5-phosphate 4-kinases (PIP4Ks) phosphorylate phosphatidylinositol 5-phosphate (PI5P) to generate phosphatidylinositol 4,5-bisphosphate; their most likely function is the regulation of the levels of PI5P, a putative signalling intermediate. There are three mammalian PIP4Ks isoforms (α, ß and γ), but their physiological roles remain poorly understood. In the present study, we identified the zebrafish orthologue (zPIP4Kα) of the high-activity human PIP4K α isoform and analyzed its role in embryonic development. RT-PCR analysis and whole-mount in situ hybridization experiments showed that zPIP4Kα is maternally expressed. At later embryonic stages, high PIP4Kα expression was detected in the head and the pectoral fins. Knockdown of zPIP4Kα by antisense morpholino oligonucleotides led to severe morphological abnormalities, including midbody winding defects at 48hpf. The abnormal phenotype could be rescued, at least in large part, by injection of human PIP4Kα mRNA. Our results reveal a key role for PIP4Kα and its activity in vertebrate tissue homeostasis and organ development.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Datos de Secuencia Molecular , Morfolinos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Isoformas de Proteínas , Proteínas de Pez Cebra/genética
9.
Mol Pharmacol ; 83(4): 793-804, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23313938

RESUMEN

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a versatile phospholipid that participates in many membrane-associated signaling processes. PI(4,5)P2 production at the plasma membrane (PM) depends on levels of its precursor, phosphatidylinositol 4-phosphate (PI4P), synthesized principally by two intracellular enzymes, PI4-kinases IIIα and IIIb; the former is preferentially inhibited by phenylarsine oxide (PAO). We found that PAO and quercetin, another lipid kinase inhibitor, rapidly inhibit Ca(2+) responses to antigen in IgE-sensitized rat basophilic leukemia mast cells. Quercetin also rapidly inhibits store-operated Ca(2+) influx stimulated by thapsigargin. In addition, quercetin and PAO effectively inhibit antigen-stimulated ruffling and spreading in these cells, and they inhibit endocytosis of crosslinked IgE receptor complexes, evidently by inhibiting pinching off of endocytic vesicles containing the clustered IgE receptors. A minimal model to account for these diverse effects is inhibition of PI(4,5)P2 synthesis by PAO and quercetin. To characterize the direct effects of these agents on PI(4,5)P2 synthesis, we monitored the reappearance of the PI(4,5)P2-specific PH domain PH-phospholipase C δ-EGFP at the PM after Ca(2+) ionophore (A23187)-induced PI(4,5)P2 hydrolysis, followed by Ca(2+) chelation with excess EGTA. Resynthesized PI(4,5)P2 initially appears as micron-sized patches near the PM. Addition of quercetin subsequent to A23187-induced PI(4,5)P2 hydrolysis reduces PI(4,5)P2 resynthesis in PM-associated patches, and PAO reduces PI(4,5)P2 at the PM while enhancing PI(4,5)P2 accumulation at the Golgi complex. Taken together, these results provide evidence that PI4P generated by PI4-kinase IIIα is dynamically coupled to PI(4,5)P2 pools at the PM that are important for downstream signaling processes activated by IgE receptors.


Asunto(s)
Mastocitos/metabolismo , Fosfatidilinositol 4,5-Difosfato/antagonistas & inhibidores , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Receptores de IgE/fisiología , Transducción de Señal/fisiología , Animales , Arsenicales/farmacología , Línea Celular Tumoral , Mastocitos/efectos de los fármacos , Mastocitos/fisiología , Fosfatidilinositoles/antagonistas & inhibidores , Fosfatidilinositoles/biosíntesis , Quercetina/farmacología , Ratas , Receptores de IgE/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Oncogene ; 32(28): 3390-6, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22907437

RESUMEN

It has been shown that inhibition of GTPase-activating protein of ADP-ribosylation factor (Arf), ArfGAP, with a small molecule (QS11) results in synergistic activation of Wnt/ß-catenin signaling. However, the role of Arf in Wnt/ß-catenin signaling has not yet been elucidated. Here, we show that activation of Arf is essential for Wnt/ß-catenin signaling. The level of the active form of Arf (Arf-GTP) transiently increased in the presence of Wnt, and this induction event was abrogated by blocking the interaction between Wnt and Frizzled (Fzd). In addition, knockdown of Fzds, Dvls or LRP6 blocked the Wnt-mediated activation of Arf. Consistently, depletion of Arf led to inhibition of Wnt-mediated membrane PtdIns (4,5)P2 (phosphatidylinositol 4, 5-bisphosphate) synthesis and LRP6 phosphorylation. Overall, our data suggest that transient activation of Arf modulates LRP6 phosphorylation for the transduction of Wnt/ß-catenin signaling.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Transducción de Señal , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Factor 1 de Ribosilacion-ADP/deficiencia , Factor 1 de Ribosilacion-ADP/genética , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/deficiencia , Factores de Ribosilacion-ADP/genética , Animales , Receptores Frizzled/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosforilación , Factores de Tiempo
11.
J Neurosci ; 32(46): 16296-305, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23152613

RESUMEN

Long-term facilitation in Aplysia is accompanied by the growth of new synaptic connections between the sensory and motor neurons of the gill-withdrawal reflex. One of the initial steps leading to the growth of these synapses is the internalization, induced by 5-HT, of the transmembrane isoform of Aplysia cell-adhesion molecule (TM-apCAM) from the plasma membrane of sensory neurons (Bailey et al., 1992). However, the mechanisms that govern the internalization of TM-apCAM and how this internalization is coupled to the molecular events that initiate the structural changes are not fully understood. Here, we report that the synthesis of membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], which is known to be mediated by a signaling cascade through Aplysia Sec7 protein (ApSec7) and phosphatidylinositol-4-phosphate 5-kinase type I α (PIP5KIα) is required for both the internalization of TM-apCAM and the initiation of synaptic growth during 5-HT-induced long-term facilitation. Pharmacological blockade of PI(4,5)P(2) synthesis by the application of the inhibitor phenylarsine oxide blocked the internalization of apCAM. Furthermore, perturbation of the endogenous activation of ApSec7 and its downstream target PIP5KIα also blocked 5-HT-mediated internalization of TM-apCAM and synaptic growth. Finally, long-term facilitation was specifically impaired by blocking the ApSec7 signaling pathway at sensory-to-motor neuron synapses. These data indicate that the ApSec7/PIP5KIα signaling pathway is actively recruited during learning-related 5-HT signaling and acts as a key regulator of apCAM internalization associated with the formation of new synaptic connections during long-term facilitation.


Asunto(s)
Aplysia/fisiología , Vías Biosintéticas/fisiología , Moléculas de Adhesión Celular/fisiología , Aprendizaje/fisiología , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfatidilinositol 4,5-Difosfato/fisiología , Sinapsis/fisiología , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/fisiología , Clonación Molecular , Técnicas de Cocultivo , Factores de Intercambio de Guanina Nucleótido/fisiología , Inmunohistoquímica , Potenciación a Largo Plazo/fisiología , Microinyecciones , Datos de Secuencia Molecular , Mutación/genética , Mutación/fisiología , Neuritas/fisiología , Técnicas de Placa-Clamp , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Receptoras Sensoriales/fisiología , Serotonina/farmacología , Transducción de Señal/fisiología
12.
J Cell Biol ; 198(4): 711-30, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22891265

RESUMEN

Membrane lipids have been implicated in many critical cellular processes, yet little is known about the role of asymmetric lipid distribution in cell morphogenesis. The phosphoinositide bis-phosphate PI(4,5)P(2) is essential for polarized growth in a range of organisms. Although an asymmetric distribution of this phospholipid has been observed in some cells, long-range gradients of PI(4,5)P(2) have not been observed. Here, we show that in the human pathogenic fungus Candida albicans a steep, long-range gradient of PI(4,5)P(2) occurs concomitant with emergence of the hyphal filament. Both sufficient PI(4)P synthesis and the actin cytoskeleton are necessary for this steep PI(4,5)P(2) gradient. In contrast, neither microtubules nor asymmetrically localized mRNAs are critical. Our results indicate that a gradient of PI(4,5)P(2), crucial for filamentous growth, is generated and maintained by the filament tip-localized PI(4)P-5-kinase Mss4 and clearing of this lipid at the back of the cell. Furthermore, we propose that slow membrane diffusion of PI(4,5)P(2) contributes to the maintenance of such a gradient.


Asunto(s)
Citoesqueleto de Actina/fisiología , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Hifa/crecimiento & desarrollo , Fosfatidilinositol 4,5-Difosfato/biosíntesis , 1-Fosfatidilinositol 4-Quinasa/biosíntesis , 1-Fosfatidilinositol 4-Quinasa/genética , Citoesqueleto de Actina/enzimología , Candida albicans/genética , Polaridad Celular/fisiología , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Hifa/enzimología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
13.
Science ; 337(6095): 727-30, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22722250

RESUMEN

The quantitatively minor phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P(2)] fulfills many cellular functions in the plasma membrane (PM), whereas its synthetic precursor, phosphatidylinositol 4-phosphate (PI4P), has no assigned PM roles apart from PI(4,5)P(2) synthesis. We used a combination of pharmacological and chemical genetic approaches to probe the function of PM PI4P, most of which was not required for the synthesis or functions of PI(4,5)P(2). However, depletion of both lipids was required to prevent PM targeting of proteins that interact with acidic lipids or activation of the transient receptor potential vanilloid 1 cation channel. Therefore, PI4P contributes to the pool of polyanionic lipids that define plasma membrane identity and to some functions previously attributed specifically to PI(4,5)P(2), which may be fulfilled by a more general polyanionic lipid requirement.


Asunto(s)
Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Células COS , Chlorocebus aethiops , Endocitosis , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Fosfatidilinositol 4,5-Difosfato/antagonistas & inhibidores , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Polielectrolitos , Polímeros , Receptor Muscarínico M1/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Electricidad Estática , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo
14.
EMBO J ; 31(13): 2882-94, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22562153

RESUMEN

Phosphatidylinositol-4,5-bisphosphate, PtdIns(4,5)P(2), is an essential signalling lipid that regulates key processes such as endocytosis, exocytosis, actin cytoskeletal organization and calcium signalling. Maintaining proper levels of PtdIns(4,5)P(2) at the plasma membrane (PM) is crucial for cell survival and growth. We show that the conserved PtdIns(4)P 5-kinase, Mss4, forms dynamic, oligomeric structures at the PM that we term PIK patches. The dynamic assembly and disassembly of Mss4 PIK patches may provide a mechanism to precisely modulate Mss4 kinase activity, as needed, for localized regulation of PtdIns(4,5)P(2) synthesis. Furthermore, we identify a tandem PH domain-containing protein, Opy1, as a novel Mss4-interacting protein that partially colocalizes with PIK patches. Based upon genetic, cell biological, and biochemical data, we propose that Opy1 functions as a coincidence detector of the Mss4 PtdIns(4)P 5-kinase and PtdIns(4,5)P(2) and serves as a negative regulator of PtdIns(4,5)P(2) synthesis at the PM. Our results also suggest that additional conserved tandem PH domain-containing proteins may play important roles in regulating phosphoinositide signalling.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal/fisiología
15.
Subcell Biochem ; 58: 1-24, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22403072

RESUMEN

Phosphatidylinositol 4-phosphate (PtdIns4P) is a quantitatively minor membrane phospholipid which is the precursor of PtdIns(4,5)P (2) in the classical agonist-regulated phospholipase C signalling pathway. However, PtdIns4P also governs the recruitment and function of numerous trafficking molecules, principally in the Golgi complex. The majority of phosphoinositides (PIs) phosphorylated at the D4 position of the inositol headgroup are derived from PtdIns4P and play roles in a diverse array of fundamental cellular processes including secretion, cell migration, apoptosis and mitogenesis; therefore, PtdIns4P biosynthesis can be regarded as key point of regulation in many PI-dependent processes.Two structurally distinct sequence families, the type II and type III PtdIns 4-kinases, are responsible for PtdIns4P synthesis in eukaryotic organisms. These important proteins are differentially expressed, localised and regulated by distinct mechanisms, indicating that the enzymes perform non-redundant roles in trafficking and signalling. In recent years, major advances have been made in our understanding of PtdIns4K biology and here we summarise current knowledge of PtdIns4K structure, function and regulation.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Células Eucariotas/enzimología , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfatos de Fosfatidilinositol/metabolismo , Sistemas de Mensajero Secundario , 1-Fosfatidilinositol 4-Quinasa/química , 1-Fosfatidilinositol 4-Quinasa/clasificación , 1-Fosfatidilinositol 4-Quinasa/genética , Animales , Apoptosis , Movimiento Celular , Células Eucariotas/citología , Regulación de la Expresión Génica , Aparato de Golgi/enzimología , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
16.
Eukaryot Cell ; 11(5): 590-600, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22447923

RESUMEN

Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae, the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P(2) production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vías Secretoras , Vesículas Secretoras/metabolismo , Membrana Celular/metabolismo , Polaridad Celular , Electroforesis en Gel de Poliacrilamida , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Inmunoprecipitación , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatos de Fosfatidilinositol/biosíntesis , Fosfatos de Fosfatidilinositol/genética , Plásmidos/metabolismo , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Unión al GTP rab/metabolismo
17.
J Cell Biochem ; 113(1): 80-92, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21898535

RESUMEN

Upon bacterial infection lipopolysaccharide (LPS) induces migration of monocytes/macrophages to the invaded region and production of pro-inflammatory mediators. We examined mechanisms of LPS-stimulated motility and found that LPS at 100 ng/ml induced rapid elongation and ruffling of macrophage-like J774 cells. A wound-healing assay revealed that LPS also activated directed cell movement that was followed by TNF-α production. The CD14 and TLR4 receptors of LPS translocated to the leading lamella of polarized cells, where they transiently colocalized triggering local accumulation of actin filaments and phosphatidylinositol 4,5-bisphosphate. Fractionation of Triton X-100 cell lysates revealed that LPS induced polymerization of cytoskeletal actin filaments by 50%, which coincided with the peak of cell motility. This microfilament population appeared at the expense of short filaments composing the plasma membrane skeleton of unstimulated cells and actin monomers consisting prior to the LPS stimulation about 60% of cellular actin. Simultaneously with actin polymerization, LPS stimulated phosphorylation of two actin-regulatory proteins, paxillin on tyrosine 118 by 80% and N-WASP on serine 484/485 by 20%, and these events preceded activation of NF-κB. LPS-induced protein phosphorylation and reorganization of the actin cytoskeleton were inhibited by PP2, a drug affecting activity of tyrosine kinases of the Src family. The data indicate that paxillin and N-WASP are involved in the reorganization of actin cytoskeleton driving motility of LPS-stimulated cells. Disturbances of actin organization induced by cytochalasin D did not inhibit TNF-α production suggesting that LPS-induced cell motility is not required for TNF-α release.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Citocalasina D/farmacología , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/inmunología , Ratones , FN-kappa B/metabolismo , Paxillin/metabolismo , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosforilación , Pirimidinas/farmacología , Transducción de Señal/inmunología , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
18.
Curr Biol ; 21(23): 1979-87, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22119528

RESUMEN

BACKGROUND: PLC-ß signaling is generally thought to be mediated by allosteric activation by G proteins and Ca(2+). Although availability of the phosphatidylinositol-4,5-biphosphate (PIP(2)) substrate is limiting in some cases, its production has not been shown to be independently regulated as a signaling mechanism. WNK1 protein kinase is known to regulate ion homeostasis and cause hypertension when expression is increased by gene mutations. However, its signaling functions remain largely elusive. RESULTS: Using diacylglycerol-stimulated TRPC6 and inositol trisphosphate-mediated Ca(2+) transients as cellular biosensors, we show that WNK1 stimulates PLC-ß signaling in cells by promoting the synthesis of PIP(2) via stimulation of phosphatidylinositol 4-kinase IIIα. WNK1 kinase activity is not required. Stimulation of PLC-ß by WNK1 and by Gα(q) are synergistic; WNK1 activity is essential for regulation of PLC-ß signaling by G(q)-coupled receptors, and basal input from G(q) is necessary for WNK1 signaling via PLC-ß. WNK1 further amplifies PLC-ß signaling when it is phosphorylated by Akt kinase in response to insulin-like growth factor. CONCLUSIONS: WNK1 is a novel regulator of PLC-ß that acts by controlling substrate availability. WNK1 thereby coordinates signaling between G protein and Akt kinase pathways. Because PIP(2) is itself a signaling molecule, regulation of PIP(2) synthesis by WNK1 also allows the cell to initiate PLC signaling while independently controlling the effects of PIP(2) on other targets. These findings describe a new signaling pathway for Akt-activating growth factors, a mechanism for G protein-growth factor crosstalk, and a means to independently control PLC signaling and PIP(2) availability.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfolipasa C beta/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Calcio/metabolismo , ADN Complementario/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Antígenos de Histocompatibilidad Menor , Oligonucleótidos Antisentido/genética , Técnicas de Placa-Clamp , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , Ratas , Transducción de Señal/genética , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6 , Proteína Quinasa Deficiente en Lisina WNK 1
19.
EMBO J ; 30(22): 4539-53, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21926969

RESUMEN

The 90-kDa isoform of the lipid kinase PIP kinase Type I γ (PIPKIγ) localizes to focal adhesions (FAs), where it provides a local source of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). Although PtdIns(4,5)P(2) regulates the function of several FA-associated molecules, the role of the FA-specific pool of PtdIns(4,5)P(2) is not known. We report that the genetic ablation of PIPKIγ specifically from FAs results in defective integrin-mediated adhesion and force coupling. Adhesion defects in cells deficient in FAPtdIns(4,5)P(2) synthesis are corrected within minutes while integrin-actin force coupling remains defective over a longer period. Talin and vinculin, but not kindlin, are less efficiently recruited to new adhesions in these cells. These data demonstrate that the specific depletion of PtdIns(4,5)P(2) from FAs temporally separates integrin-ligand binding from integrin-actin force coupling by regulating talin and vinculin recruitment. Furthermore, it suggests that force coupling relies heavily on locally generated PtdIns(4,5)P(2) rather than bulk membrane PtdIns(4,5)P(2).


Asunto(s)
Adhesiones Focales/metabolismo , Integrinas/metabolismo , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Proteínas Portadoras/metabolismo , Adhesión Celular/genética , Células Cultivadas , Adhesiones Focales/química , Proteínas de la Membrana/metabolismo , Ratones , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Unión Proteica , Talina/metabolismo , Vinculina/metabolismo
20.
Mol Cell Biol ; 31(22): 4524-37, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21930784

RESUMEN

Phagocytosis is a primary innate response of both macrophages and neutrophils involving the formation of filamentous actin (F-actin)-rich protrusions that are extended around opsonized pathogens to form a phagocytic cup, resulting in their subsequent internalization. The molecular mechanism for this is still not completely understood. We now show for the first time that phospholipase D2 (PLD2) binds to growth factor receptor-bound protein 2 (Grb2) and to the Wiskott-Aldrich syndrome protein (WASp) to form a heterotrimer complex, PLD2-Grb2-WASp, and present the mechanism of interaction. Grb2 binds to the Y169/Y179 residues of PLD2 using its only SH2 domain, and it interacts with the poly-proline region of WASp using its two SH3 domains. The PLD2-Grb2-WASp heterotrimer can be visualized in early phagocytic cups of macrophages ingesting opsonized red blood cells, where it associates with polymerized actin. Cup colocalization and phagocytosis are disrupted with mutants that alter binding at either of the two proteins or by silencing Grb2 with RNA interference (RNAi). WASp association to PLD2-K758R, a lipase-inactive mutant, still occurs, albeit at lower levels, indicating that PLD2 plays a second role in phagocytosis, which is the production of phosphatidic acid (PA) and activation of phosphatidylinositol 5-kinase (PI5K) with subsequent synthesis of phosphatidylinositol 4,5-bisphosphate (PIP(2)). The latter can be blocked with RNAi, which negates phagocytosis. Lastly, a constitutively "open" active form of WASp (WASp-L270P) brings phagocytosis to its maximum level, which can be mimicked with WASp-WT plus PLD2 or plus PA. Since neither a protein-protein disruption nor lack of PLD activity completely negates cup formation or phagocytosis, we posit a two-step mechanism: PLD2 anchors WASp at the phagocytic cup through Grb2 following protein-protein interactions and also activates it, making key lipids available locally. The heterotrimer PLD2-Grb2-WASp then enables actin nucleation at the phagocytic cup and phagocytosis, which are at the center of the innate immune system function.


Asunto(s)
Proteína Adaptadora GRB2/metabolismo , Leucocitos/fisiología , Fagocitosis , Fosfolipasa D/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Eritrocitos , Proteína Adaptadora GRB2/genética , Leucocitos/inmunología , Leucocitos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ácidos Fosfatidicos/biosíntesis , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Multimerización de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...