Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 595
Filtrar
1.
BMC Med Genomics ; 17(1): 173, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956522

RESUMEN

BACKGROUND: Autosomal recessive non-syndromic hearing loss (NSHL) and cone dystrophies (CODs) are highly genetically and phenotypically heterogeneous disorders. In this study, we applied the whole exome sequencing (WES) to find the cause of HL and COD in an Iranian consanguineous family with three affected individuals. METHODS: Three members from an Iranian consanguineous family who were suffering from NSHL and visual impairment were ascertained in this study. Comprehensive clinical evaluations and genetic analysis followed by bioinformatic and co-segregation studies were performed to diagnose the cause of these phenotypes. Data were collected from 2020 to 2022. RESULTS: All cases showed congenital bilateral NSHL, decreased visual acuity, poor color discrimination, photophobia and macular atrophy. Moreover, cornea, iris and anterior vitreous were within normal limit in both eyes, decreased foveal sensitivity, central scotoma and generalized depression of visual field were seen in three cases. WES results showed two variants, a novel null variant (p.Trp548Ter) in the PDE6C gene causing COD type 4 (Achromatopsia) and a previously reported variant (p.Ile84Thr) in the PDZD7 gene causing NSHL. Both variants were found in the cis configuration on chromosome 10 with a genetic distance of about 8.3 cM, leading to their co-inheritance. However, two diseases could appear independently in subsequent generations due to crossover during meiosis. CONCLUSIONS: Here, we could successfully determine the etiology of a seemingly complex phenotype in two adjacent genes. We identified a novel variant in the PDE6C gene, related to achromatopsia. Interestingly, this variant could cooperatively cause visual disorders: cone dystrophy and cone-rod dystrophy.


Asunto(s)
Defectos de la Visión Cromática , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Linaje , Humanos , Defectos de la Visión Cromática/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Masculino , Femenino , Secuenciación del Exoma , Adulto , Pérdida Auditiva/genética , Mutación , Consanguinidad , Niño , Irán , Fenotipo , Proteínas del Ojo
2.
Nat Commun ; 15(1): 5943, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009597

RESUMEN

Inherited retinopathies are devastating diseases that in most cases lack treatment options. Disease-modifying therapies that mitigate pathophysiology regardless of the underlying genetic lesion are desirable due to the diversity of mutations found in such diseases. We tested a systems pharmacology-based strategy that suppresses intracellular cAMP and Ca2+ activity via G protein-coupled receptor (GPCR) modulation using tamsulosin, metoprolol, and bromocriptine coadministration. The treatment improves cone photoreceptor function and slows degeneration in Pde6ßrd10 and RhoP23H/WT retinitis pigmentosa mice. Cone degeneration is modestly mitigated after a 7-month-long drug infusion in PDE6A-/- dogs. The treatment also improves rod pathway function in an Rpe65-/- mouse model of Leber congenital amaurosis but does not protect from cone degeneration. RNA-sequencing analyses indicate improved metabolic function in drug-treated Rpe65-/- and rd10 mice. Our data show that catecholaminergic GPCR drug combinations that modify second messenger levels via multiple receptor actions provide a potential disease-modifying therapy against retinal degeneration.


Asunto(s)
Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Retinitis Pigmentosa , Animales , Ratones , Perros , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Mutación , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ratones Noqueados , Amaurosis Congénita de Leber/tratamiento farmacológico , Amaurosis Congénita de Leber/genética , Bromocriptina/farmacología , Bromocriptina/uso terapéutico , cis-trans-Isomerasas/genética , cis-trans-Isomerasas/metabolismo , Humanos , Quimioterapia Combinada , Ratones Endogámicos C57BL , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Femenino , AMP Cíclico/metabolismo , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/genética , Masculino , Calcio/metabolismo
3.
J Med Chem ; 67(11): 8569-8584, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38758695

RESUMEN

The trafficking chaperone PDE6D (or PDEδ) was proposed as a surrogate target for K-Ras, leading to the development of a series of inhibitors that block its prenyl binding pocket. These inhibitors suffered from low solubility and suspected off-target effects, preventing their clinical development. Here, we developed a highly soluble, low nanomolar PDE6D inhibitor (PDE6Di), Deltaflexin3, which has the lowest off-target activity as compared to three prominent reference compounds. Deltaflexin3 reduces Ras signaling and selectively decreases the growth of KRAS mutant and PDE6D-dependent cancer cells. We further show that PKG2-mediated phosphorylation of Ser181 lowers K-Ras binding to PDE6D. Thus, Deltaflexin3 combines with the approved PKG2 activator Sildenafil to more potently inhibit PDE6D/K-Ras binding, cancer cell proliferation, and microtumor growth. As observed previously, inhibition of Ras trafficking, signaling, and cancer cell proliferation remained overall modest. Our results suggest reevaluating PDE6D as a K-Ras surrogate target in cancer.


Asunto(s)
Proliferación Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Proteínas Proto-Oncogénicas p21(ras) , Citrato de Sildenafil , Humanos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Citrato de Sildenafil/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Mutación , Animales , Relación Estructura-Actividad , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/síntesis química
4.
Gene ; 922: 148562, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38754567

RESUMEN

BACKGROUND: Previously, we discovered a strain of Kunming mice, referred to as the KMush/ush strain, that exhibited notably abnormal electroretinogram (ERG) readings and elevated thresholds for auditory brainstem responses (ABRs), which resembled the characteristics of Usher Syndrome (USH). We successfully identified the pathogenic genes, Pde6b and Adgrv1, after KMush/ush crossbred with CBA/CaJ mice, referred to as CBA-1ush/ush, CBA-2ush/ush or CBA-2ush/ush. In this investigation, we crossbred KMush/ush and CBA/J mice to establish novel recombinant inbred lines and analysed their phenotypic and genotypic characteristics. METHODS: ERG readings, ABR testing, fundus morphology, histological examination of the retina and inner ear, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, western blotting, DNA sequence analysis and behavioural experiments were performed to assess the phenotypes and genotypes of the progeny lines. RESULTS: No obvious waveforms in the ERG were detected in F1 hybrid mice while normal ABR results were recorded. The F2 hybrids, which were called J1ush/ush or J2ush/ush, exhibited segregated hearing-loss phenotypes. J1ush/ush mice had a retinitis pigmentosa (RP) phenotype with elevated ABR thresholds, whereas J2ush/ush mice exhibited only the RP phenotype. Interestingly, J1ush/ush mice showed significantly higher ABR thresholds than wild-type mice at 28 days post born (P28), and RT-qPCR and DNA-sequencing analysis showed that Adgrv1 gene expression was significantly altered in J1ush/ush mice, but histological analysis showed no significant structural changes in the organ of Corti or spiral ganglia. Further elevation of ABR-related hearing thresholds by P56 manifested only as a reduced density of spiral ganglion cells, which differed significantly from the previous pattern of cochlear alterations in CBA-2ush/ush mice. CONCLUSIONS: We successfully introduced the hearing-loss phenotype of inbred mice with USH into CBA/J mice, which provides a good animal model for future studies on the important physiological roles of the Adgrv1 gene in inner-ear structure and for therapeutic studies targeting Adgrv1-mutated USH.


Asunto(s)
Modelos Animales de Enfermedad , Electrorretinografía , Potenciales Evocados Auditivos del Tronco Encefálico , Ratones Endogámicos CBA , Síndromes de Usher , Animales , Síndromes de Usher/genética , Síndromes de Usher/patología , Ratones , Masculino , Femenino , Fenotipo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Retina/patología , Retina/metabolismo , Cruzamientos Genéticos
5.
J Med Chem ; 67(10): 8396-8405, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38688030

RESUMEN

Retinitis pigmentosa (RP) is a form of retinal degeneration affecting a young population with an unmet medical need. Photoreceptor degeneration has been associated with increased guanosine 3',5'-cyclic monophosphate (cGMP), which reaches toxic levels for photoreceptors. Therefore, inhibitory cGMP analogues attract interest for RP treatments. Here we present the synthesis of dithio-CN03, a phosphorodithioate analogue of cGMP, prepared using the H-phosphonothioate route. Two crystal modifications were identified as a trihydrate and a tetrahydrofuran monosolvates. Dithio-CN03 featured a lower aqueous solubility than its RP-phosphorothioate counterpart CN03, a drug candidate, and this characteristic might be favorable for sustained-release formulations aimed at retinal delivery. Dithio-CN03 was tested in vitro for its neuroprotective effects in photoreceptor models of RP. The comparison of dithio-CN03 to CN03 and its diastereomer SP-CN03, and to their phosphate derivative oxo-CN03 identifies dithio-CN03 as the compound with the highest efficacy in neuroprotection and thus as a promising new candidate for the treatment of RP.


Asunto(s)
GMP Cíclico , Fármacos Neuroprotectores , Células Fotorreceptoras Retinianas Bastones , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Guanosina Monofosfato/química , Guanosina Monofosfato/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Degeneración Retiniana/tratamiento farmacológico , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/metabolismo , Relación Estructura-Actividad
6.
BMC Med Genomics ; 17(1): 88, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627714

RESUMEN

BACKGROUND: Liver cancer ranks sixth in incidence and third in mortality globally and hepatocellular carcinoma (HCC) accounts for 90% of it. Hypoxia, glycolysis, and lactate metabolism have been found to regulate the progression of HCC separately. However, there is a lack of studies linking the above three to predict the prognosis of HCC. The present study aimed to identify a hypoxia-glycolysis-lactate-related gene signature for assessing the prognosis of HCC. METHODS: This study collected 510 hypoxia-glycolysis-lactate genes from Molecular Signatures Database (MSigDB) and then classified HCC patients from TCGA-LIHC by analyzing their hypoxia-glycolysis-lactate genes expression. Differentially expressed genes (DEGs) were screened out to construct a gene signature by LASSO-Cox analysis. Univariate and multivariate regression analyses were used to evaluate the independent prognostic value of the gene signature. Analyses of immune infiltration, somatic cell mutations, and correlation heatmap were conducted by "GSVA" R package. Single-cell analysis conducted by "SingleR", "celldex", "Seurat", and "CellCha" R packages revealed how signature genes participated in hypoxia/glycolysis/lactate metabolism and PPI network identified hub genes. RESULTS: We classified HCC patients from TCGA-LIHC into two clusters and screened out DEGs. An 18-genes prognostic signature including CDCA8, CBX2, PDE6A, MED8, DYNC1LI1, PSMD1, EIF5B, GNL2, SEPHS1, CCNJL, SOCS2, LDHA, G6PD, YBX1, RTN3, ADAMTS5, CLEC3B, and UCK2 was built to stratify the risk of HCC. The risk score of the hypoxia-glycolysis-lactate gene signature was further identified as a valuable independent factor for estimating the prognosis of HCC. Then we found that the features of clinical characteristics, immune infiltration, somatic cell mutations, and correlation analysis differed between the high-risk and low-risk groups. Furthermore, single-cell analysis indicated that the signature genes could interact with the ligand-receptors of hepatocytes/fibroblasts/plasma cells to participate in hypoxia/glycolysis/lactate metabolism and PPI network identified potential hub genes in this process: CDCA8, LDHA, YBX1. CONCLUSION: The hypoxia-glycolysis-lactate-related gene signature we built could provide prognostic value for HCC and suggest several hub genes for future HCC studies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ácido Láctico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Pronóstico , Hipoxia , Proteínas del Ojo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Dineínas Citoplasmáticas
7.
Am J Ophthalmol ; 263: 1-10, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38364953

RESUMEN

PURPOSE: To analyze the clinical characteristics, natural history, and genetics of PDE6B-associated retinal dystrophy. DESIGN: Retrospective, observational cohort study. METHODS: Review of medical records and retinal imaging, including fundus autofluorescence (FAF) imaging and spectral-domain optical coherence tomography (SD-OCT) of patients with molecularly confirmed PDE6B-associated retinal dystrophy in a single tertiary referral center. Genetic results were reviewed, and the detected variants were assessed. RESULTS: Forty patients (80 eyes) were identified and evaluated longitudinally. The mean age (±SD, range) was 42.1 years (± 19.0, 10-86) at baseline, with a mean follow-up time of 5.2 years. Twenty-nine (72.5%) and 27 (67.5%) patients had no or mild visual acuity impairment at baseline and last visit, respectively. Best-corrected visual acuity (BCVA) was 0.56 ± 0.72 LogMAR (range -0.12 to 2.80) at baseline and 0.63 ± 0.73 LogMAR (range 0.0-2.80) at the last visit. BCVA was symmetrical in 87.5% of patients. A hyperautofluorescent ring was observed on FAF in 48 and 46 eyes at baseline and follow-up visit, respectively, with a mean area of 7.11 ± 4.13 mm2 at baseline and mean of 6.13 ± 3.62 mm2 at the follow-up visit. Mean horizontal ellipsoid zone width at baseline was 1946.1 ± 917.2 µm, which decreased to 1763.9 ± 827.9 µm at follow-up. Forty-four eyes had cystoid macular edema at baseline (55%), and 41 eyes (51.3%) at follow-up. There were statistically significant changes during the follow-up period in terms of BCVA and the ellipsoid zone width. Genetic analysis identified 43 variants in the PDE6B gene, including 16 novel variants. CONCLUSIONS: This study details the natural history of PDE6B-retinopathy in the largest cohort to date. Most patients had mild to no BCVA loss, with slowly progressive disease, based on FAF and OCT metrics. There is a high degree of disease symmetry and a wide window for intervention.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Angiografía con Fluoresceína , Distrofias Retinianas , Tomografía de Coherencia Óptica , Agudeza Visual , Humanos , Estudios Retrospectivos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Masculino , Femenino , Agudeza Visual/fisiología , Adulto , Persona de Mediana Edad , Adolescente , Anciano , Adulto Joven , Niño , Distrofias Retinianas/genética , Distrofias Retinianas/fisiopatología , Distrofias Retinianas/diagnóstico , Anciano de 80 o más Años , Estudios de Seguimiento , Mutación , Electrorretinografía , Análisis Mutacional de ADN
8.
BMC Ophthalmol ; 24(1): 55, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317096

RESUMEN

BACKGROUND: Inherited retinal degenerations (IRDs) are a group of rare genetic conditions affecting retina of the eye that range in prevalence from 1 in 2000 to 1 in 4000 people globally. This review is based on a retrospective analysis of research articles reporting IRDs associated genetic findings in Pakistani families between 1999 and April 2023. METHODS: Articles were retrieved through survey of online sources, notably, PubMed, Google Scholar, and Web of Science. Following a stringent selection criterion, a total of 126 research articles and conference abstracts were considered. All reported variants were cross-checked and validated for their correct genomic nomenclature using different online resources/databases, and their pathogenicity scores were explained as per ACMG guidelines. RESULTS: A total of 277 unique sequence variants in 87 distinct genes, previously known to cause IRDs, were uncovered. In around 70% cases, parents of the index patient were consanguineously married, and approximately 88.81% of the detected variants were found in a homozygous state. Overall, more than 95% of the IRDs cases were recessively inherited. Missense variants were predominant (41.88%), followed by Indels/frameshift (26.35%), nonsense (19.13%), splice site (12.27%) and synonymous change (0.36%). Non-syndromic IRDs were significantly higher than syndromic IRDs (77.32% vs. 22.68%). Retinitis pigmentosa (RP) was the most frequently observed IRD followed by Leber's congenital amaurosis (LCA). Altogether, mutations in PDE6A gene was the leading cause of IRDs in Pakistani families followed by mutations in TULP1 gene. CONCLUSION: In summary, Pakistani families are notable in expressing recessively inherited monogenic disorders including IRDs likely due to the highest prevalence of consanguinity in the country that leads to expression of rare pathogenic variants in homozygous state.


Asunto(s)
Distrofias Retinianas , Retinitis Pigmentosa , Humanos , Pakistán/epidemiología , Estudios Retrospectivos , Distrofias Retinianas/epidemiología , Distrofias Retinianas/genética , Retina/patología , Retinitis Pigmentosa/genética , Mutación , Linaje , Proteínas del Ojo/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética
9.
Exp Anim ; 73(2): 203-210, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38171880

RESUMEN

In CBA/J and C3H/HeJ mice, retinitis pigmentosa is inherited as an autosomal-recessive trait due to a mutation in Pde6b, which encodes cGMP phosphodiesterase subunit b. In these strains, the Y347X mutation in Pde6b leads to the upregulation of cGMP levels, increased Ca2+ influx induces rod death, and the outer segment and rod cells entirely disappeared by 35 days after birth. In the present study, we utilized the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9-mediated gene editing to repair the Y347X mutation in CBA/J and C3H/HeJ mice. Evaluation of the established CBA/J-Pde6bY347Y/Y347X and C3H/HeJ-Pde6bY347Y/Y347X mice, which were confirmed to have normal retinal layers by live fundoscopic imaging and histopathological analysis, revealed improved visual acuity based on the visual cliff and light/dark latency tests. Furthermore, our analyses revealed that the visible platform test was a more effective tool for testing visual behavior in these mice. The results suggest that the established strains can serve as control groups for CBA/J and C3H/HeJ in ophthalmology studies involving retinitis pigmentosa.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Ratones Endogámicos C3H , Ratones Endogámicos CBA , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Retinitis Pigmentosa/genética , Ratones , Edición Génica , Mutación , Modelos Animales de Enfermedad , Agudeza Visual/fisiología , Sistemas CRISPR-Cas , Retina/metabolismo
10.
J Biol Chem ; 300(1): 105576, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110033

RESUMEN

The sixth family phosphodiesterases (PDE6) are principal effector enzymes of the phototransduction cascade in rods and cones. Maturation of nascent PDE6 protein into a functional enzyme relies on a coordinated action of ubiquitous chaperone HSP90, its specialized cochaperone aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), and the regulatory Pγ-subunit of PDE6. Deficits in PDE6 maturation and function underlie severe visual disorders and blindness. Here, to elucidate the roles of HSP90, AIPL1, and Pγ in the maturation process, we developed the heterologous expression system of human cone PDE6C in insect cells allowing characterization of the purified enzyme. We demonstrate that in the absence of Pγ, HSP90, and AIPL1 convert the inactive and aggregating PDE6C species into dimeric PDE6C that is predominantly misassembled. Nonetheless, a small fraction of PDE6C is properly assembled and fully functional. From the analysis of mutant mice that lack both rod Pγ and PDE6C, we conclude that, in contrast to the cone enzyme, no maturation of rod PDE6AB occurs in the absence of Pγ. Co-expression of PDE6C with AIPL1 and Pγ in insect cells leads to a fully mature enzyme that is equivalent to retinal PDE6. Lastly, using immature PDE6C and purified chaperone components, we reconstituted the process of the client maturation in vitro. Based on this analysis we propose a scheme for the PDE6 maturation process.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Células Fotorreceptoras Retinianas Conos , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ceguera/genética , Línea Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/deficiencia , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Mutación , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/deficiencia , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Células Fotorreceptoras Retinianas Conos/química , Células Fotorreceptoras Retinianas Conos/metabolismo
11.
J Biol Chem ; 300(2): 105608, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159849

RESUMEN

Phototransduction in retinal rods occurs when the G protein-coupled photoreceptor rhodopsin triggers the activation of phosphodiesterase 6 (PDE6) by GTP-bound alpha subunits of the G protein transducin (GαT). Recently, we presented a cryo-EM structure for a complex between two GTP-bound recombinant GαT subunits and native PDE6, that included a bivalent antibody bound to the C-terminal ends of GαT and the inhibitor vardenafil occupying the active sites on the PDEα and PDEß subunits. We proposed GαT-activated PDE6 by inducing a striking reorientation of the PDEγ subunits away from the catalytic sites. However, questions remained including whether in the absence of the antibody GαT binds to PDE6 in a similar manner as observed when the antibody is present, does GαT activate PDE6 by enabling the substrate cGMP to access the catalytic sites, and how does the lipid membrane enhance PDE6 activation? Here, we demonstrate that 2:1 GαT-PDE6 complexes form with either recombinant or retinal GαT in the absence of the GαT antibody. We show that GαT binding is not necessary for cGMP nor competitive inhibitors to access the active sites; instead, occupancy of the substrate binding sites enables GαT to bind and reposition the PDE6γ subunits to promote catalytic activity. Moreover, we demonstrate by reconstituting GαT-stimulated PDE6 activity in lipid bilayer nanodiscs that the membrane-induced enhancement results from an increase in the apparent binding affinity of GαT for PDE6. These findings provide new insights into how the retinal G protein stimulates rapid catalytic turnover by PDE6 required for dim light vision.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Modelos Moleculares , Transducina , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Guanosina Trifosfato/metabolismo , Células Fotorreceptoras Retinianas Bastones/enzimología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transducina/química , Transducina/genética , Transducina/metabolismo , Animales , Bovinos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estructura Cuaternaria de Proteína , Unión Proteica/efectos de los fármacos , Dominio Catalítico , 1-Metil-3-Isobutilxantina/farmacología , Membrana Dobles de Lípidos/metabolismo , Activación Enzimática
12.
J Genet Genomics ; 51(2): 208-221, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38157933

RESUMEN

Inherited retinal dystrophies (IRDs) are major causes of visual impairment and irreversible blindness worldwide, while the precise molecular and genetic mechanisms are still elusive. N6-methyladenosine (m6A) modification is the most prevalent internal modification in eukaryotic mRNA. YTH domain containing 2 (YTHDC2), an m6A reader protein, has recently been identified as a key player in germline development and human cancer. However, its contribution to retinal function remains unknown. Here, we explore the role of YTHDC2 in the visual function of retinal rod photoreceptors by generating rod-specific Ythdc2 knockout mice. Results show that Ythdc2 deficiency in rods causes diminished scotopic ERG responses and progressive retinal degeneration. Multi-omics analysis further identifies Ppef2 and Pde6b as the potential targets of YTHDC2 in the retina. Specifically, via its YTH domain, YTHDC2 recognizes and binds m6A-modified Ppef2 mRNA at the coding sequence and Pde6b mRNA at the 5'-UTR, resulting in enhanced translation efficiency without affecting mRNA levels. Compromised translation efficiency of Ppef2 and Pde6b after YTHDC2 depletion ultimately leads to decreased protein levels in the retina, impaired retinal function, and progressive rod death. Collectively, our finding highlights the importance of YTHDC2 in visual function and photoreceptor survival, which provides an unreported elucidation of IRD pathogenesis via epitranscriptomics.


Asunto(s)
Células Fotorreceptoras de Vertebrados , Degeneración Retiniana , Animales , Humanos , Ratones , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , ARN Helicasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Invest Ophthalmol Vis Sci ; 64(11): 18, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37578425

RESUMEN

Purpose: Verifying whether specific genotypes causing retinitis pigmentosa (RP) show differences in the preservation of rod and cone function measured by chromatic pupil campimetry (CPC). Methods: Sixty-three RP eyes (37 male, 14-58 years) were measured using CPC with specific photopic and scotopic protocols, and the relative maximal constriction amplitudes and latencies to constriction onset were analyzed per genotype (RP due to variants in EYS, n = 14; PDE6A, n = 10; RPE65, n = 15; USH2A, n = 10; and RPGR, n = 14). Correlation analyses between the pupillary responses were performed with age, full-field stimulus threshold (FST), and optical coherence tomography (OCT) for cones and rods, respectively, to the genotype. Results: Pupillary responses were most severely reduced in RPE65-RP. Patients with disease-associated variants in EYS and USH2A were accompanied with better-preserved rod function compared with the other subgroups, reaching statistical significance between EYS and RPE65. Cone function was statistically significantly correlated with age in USH2A-RP with an annual decline of 2.4%. Correlations of pupillary responses were found with FST but barely with the ellipsoid zone area in OCT. Latency was significantly more prolonged in RPE65-RP compared with the other genotypes for cones. Conclusions: Rod and cone function measured objectively by CPC showed a different preservation between genotypes in RP. However, heterogeneity inside the same genotype was present. CPC data correlated with FST, but structural OCT parameters seem to be limited indicators for photoreceptor function in RP. Prolonged time dynamics for cones in RPE65 mutations suggest an impact on cone processing and might provide additional information in the evaluation of therapy effects.


Asunto(s)
Retinitis Pigmentosa , Pruebas del Campo Visual , Humanos , Masculino , Pupila , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Células Fotorreceptoras Retinianas Conos/fisiología , Genotipo , Electrorretinografía/métodos , Proteínas del Ojo/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética
14.
Hum Mol Genet ; 32(17): 2735-2750, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37384398

RESUMEN

Phosphodiesterase-6 (PDE6) is the key phototransduction effector enzyme residing in the outer segment (OS) of photoreceptors. Cone PDE6 is a tetrameric protein consisting of two inhibitory subunits (γ') and two catalytic subunits (α'). The catalytic subunit of cone PDE6 contains a C-terminus prenylation motif. Deletion of PDE6α' C-terminal prenylation motif is linked to achromatopsia (ACHM), a type of color blindness in humans. However, mechanisms behind the disease and roles for lipidation of cone PDE6 in vision are unknown. In this study, we generated two knock-in mouse models expressing mutant variants of cone PDE6α' lacking the prenylation motif (PDE6α'∆C). We find that the C-terminal prenylation motif is the primary determinant for the association of cone PDE6 protein with membranes. Cones from PDE6α'∆C homozygous mice are less sensitive to light, and their response to light is delayed, whereas cone function in heterozygous PDE6α'∆C/+ mice is unaffected. Surprisingly, the expression level and assembly of cone PDE6 protein were unaltered in the absence of prenylation. Unprenylated assembled cone PDE6 in PDE6α'∆C homozygous animals is mislocalized and enriched in the cone inner segment and synaptic terminal. Interestingly, the disk density and the overall length of cone OS in PDE6α'∆C homozygous mutants are altered, highlighting a novel structural role for PDE6 in maintaining cone OS length and morphology. The survival of cones in the ACHM model generated in this study bodes well for gene therapy as a treatment option for restoring vision in patients with similar mutations in the PDE6C gene.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Células Fotorreceptoras Retinianas Conos , Humanos , Ratones , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Fototransducción , Prenilación
15.
Indian J Ophthalmol ; 71(6): 2512-2520, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37322672

RESUMEN

Purpose: Inherited retinal dystrophies (IRD) are a heterogeneous group of retinal diseases leading to progressive loss of photoreceptors through apoptosis. Retinitis pigmentosa (RP) is considered the most common form of IRD. Panel-based testing in RP has proven effective in identifying the causative genetic mutations in 70% and 80% of the patients. This is a retrospective, observational, single-center study of 107 RP patients who had undergone next-generation sequencing-based targeted gene panel testing for IRD genes. These patients were inspected for common phenotypic features to arrive at meaningful genotype-phenotype correlation. Methods: Patients underwent complete ophthalmic examination, and blood was collected from the proband for DNA extraction after documenting the pedigree. Targeted Next Generation Sequencing (NGS) was done by panel-based testing for IRD genes followed by co-segregation analysis wherever applicable. Results: Of the 107 patients, 72 patients had pathogenic mutations. The mean age of onset of symptoms was 14 ± 12 years (range: 5-55). Mean (Best Corrected Visual Acuity) BCVA was 6/48 (0.9 logMAR) (range 0.0-3.0). At presentation, over one-third of eyes had BCVA worse than 6/60 (<1 logMAR). Phenotype analysis with the gene defects showed overlapping features, such as peripheral well-defined chorioretinal atrophic patches in patients with CERKL, PROM1, and RPE65 gene mutations and large macular lesions in patients with RDH12 and CRX gene mutations, respectively. Nummular or clump-like pigmentation was noted in CRB1, TTC8, PDE6A, and PDE6B. Conclusion: NGS-based genetic testing can help clinicians to diagnose RP more accurately, and phenotypic correlations can also help in better patient counselling with respect to prognosis and guidance regarding ongoing newer gene-based therapies.


Asunto(s)
Distrofias Retinianas , Retinitis Pigmentosa , Humanos , Pruebas Genéticas , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Fenotipo , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Oxidorreductasas de Alcohol/genética
16.
Eur Rev Med Pharmacol Sci ; 27(11): 4876-4882, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37318461

RESUMEN

OBJECTIVE: The aim of this study was to identify the hub genes and uncover the molecular mechanisms of diabetic retinopathy (DR). MATERIALS AND METHODS: We used the Gene Expression Omnibus (GEO) dataset GSE60436 in our study. After screening for differentially expressed genes (DEGs), we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis. Subsequently, a protein-protein interaction (PPI) network was constructed using the Search Tool for Retrieval of Interacting Genes (STRING) database and visualized using the Cytoscape software. Finally, we identified 10 hub genes by cytoHubba plugin. RESULTS: A total of 592 DEGs were identified, including 203 up-regulated genes and 389 downregulated genes. The DEGs were mainly enriched in visual perception, photoreceptor outer segment membrane, retinal binding, and PI3K-Akt signaling pathway. By constructing a protein-protein interaction (PPI) network, 10 central genes were finally identified, including CNGA1, PDE6G, RHO, ABCA4, PDE6A, PDE6B, NRL, RPE65, GUCA1B and AIPL1. CONCLUSIONS: CNGA1, PDE6G, RHO, ABCA4, PDE6A, PDE6B, NRL, RPE65, GUCA1B, and AIPL1 may be potential biomarkers and therapeutic targets for DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Retinopatía Diabética/genética , Fosfatidilinositol 3-Quinasas , Biología Computacional/métodos , Transportadoras de Casetes de Unión a ATP , Proteínas del Ojo/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Proteínas Adaptadoras Transductoras de Señales
17.
J Biol Chem ; 299(6): 104809, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37172722

RESUMEN

Heat shock protein 90 (HSP90) is an abundant molecular chaperone that regulates the stability of a small set of proteins essential in various cellular pathways. Cytosolic HSP90 has two closely related paralogs: HSP90α and HSP90ß. Due to the structural and sequence similarities of cytosolic HSP90 paralogs, identifying the unique functions and substrates in the cell remains challenging. In this article, we assessed the role of HSP90α in the retina using a novel HSP90α murine knockout model. Our findings show that HSP90α is essential for rod photoreceptor function but was dispensable in cone photoreceptors. In the absence of HSP90α, photoreceptors developed normally. We observed rod dysfunction in HSP90α knockout at 2 months with the accumulation of vacuolar structures, apoptotic nuclei, and abnormalities in the outer segments. The decline in rod function was accompanied by progressive degeneration of rod photoreceptors that was complete at 6 months. The deterioration in cone function and health was a "bystander effect" that followed the degeneration of rods. Tandem mass tag proteomics showed that HSP90α regulates the expression levels of <1% of the retinal proteome. More importantly, HSP90α was vital in maintaining rod PDE6 and AIPL1 cochaperone levels in rod photoreceptor cells. Interestingly, cone PDE6 levels were unaffected. The robust expression of HSP90ß paralog in cones likely compensates for the loss of HSP90α. Overall, our study demonstrated the critical need for HSP90α chaperone in the maintenance of rod photoreceptors and showed potential substrates regulated by HSP90α in the retina.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Regulación Enzimológica de la Expresión Génica , Proteínas HSP90 de Choque Térmico , Células Fotorreceptoras Retinianas Bastones , Animales , Ratones , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Proteínas HSP90 de Choque Térmico/deficiencia , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/enzimología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Subunidades de Proteína , Supervivencia Celular
18.
Ophthalmic Res ; 66(1): 878-884, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37094557

RESUMEN

INTRODUCTION: Retinitis pigmentosa (RP) is a rare degenerative retinal disease caused by mutations in approximately seventy genes. Currently, despite the availability of large-scale DNA sequencing technologies, ∼30-40% of patients still cannot be diagnosed at the molecular level. In this study, we investigated a novel intronic deletion of PDE6B, encoding the beta subunit of phosphodiesterase 6 in association with recessive RP. METHODS: Three unrelated consanguineous families were recruited from the northwestern part of Pakistan. Whole exome sequencing was performed for the proband of each family, and the data were analyzed according to an in-house computer pipeline. Relevant DNA variants in all available members of these families were assessed through Sanger sequencing. A minigene-based splicing assay was also performed. RESULTS: The clinical phenotype for all patients was compatible with rod cone degeneration, with the onset during childhood. Whole exome sequencing revealed a homozygous 18 bp intronic deletion (NM_000283.3:c.1921-20_1921-3del) in PDE6B, which co-segregated with disease in 10 affected individuals. In vitro splicing tests showed that this deletion causes aberrant RNA splicing of the gene, leading to the in-frame deletion of 6 codons and, likely, to disease. CONCLUSION: Our findings further expand the mutational spectrum of the PDE6B gene.


Asunto(s)
Retinitis Pigmentosa , Humanos , Análisis Mutacional de ADN , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Mutación , Empalme del ARN , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Linaje , Proteínas del Ojo/genética
19.
BMC Ophthalmol ; 23(1): 116, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959549

RESUMEN

BACKGROUND: Retinitis pigmentosa (RP) is one of the most frequent hereditary retinal diseases that often starts with night blindness and eventually leads to legal blindness. Our study aimed to identify the underlying genetic cause of autosomal recessive retinitis pigmentosa (arRP) in a consanguineous Pakistani family. METHODS: Following a detailed ophthalmological examination of the patients by an ophthalmologist, whole-exome sequencing was performed on the proband's DNA to delineate the genetic cause of RP in the family. In-depth computational methods, in-silico analysis, and familial co-segregation study were performed for variant detection and validation. RESULTS: We studied an inbred Pakistani family with two siblings affected by retinitis pigmentosa. The proband, a 32 years old female, was clinically diagnosed with RP at the age of 6 years. A classical night blindness symptom was reported in the proband since her early childhood. OCT report showed a major reduction in the outer nuclear layer and the ellipsoid zone width, leading to the progression of the disease. Exome sequencing revealed a novel homozygous missense mutation (c.938C > T;p.Thr313Ile) in exon 12 of the PDE6B gene. The mutation p.Thr313Ile co-segregated with RP phenotype in the family. The altered residue (p.Thr313) was super conserved evolutionarily across different vertebrate species, and all available in silico tools classified the mutation as highly pathogenic. CONCLUSION: We present a novel homozygous pathogenic mutation in the PDE6B gene as the underlying cause of arRP in a consanguineous Pakistani family. Our findings highlight the importance of missense mutations in the PDE6B gene and expand the known mutational repertoire of PDE6B-related RP.


Asunto(s)
Ceguera Nocturna , Retinitis Pigmentosa , Preescolar , Femenino , Humanos , Consanguinidad , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Análisis Mutacional de ADN , Proteínas del Ojo/genética , Mutación , Ceguera Nocturna/genética , Pakistán , Linaje , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Homocigoto
20.
Cells ; 12(2)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36672247

RESUMEN

Mutations in PDE6D impair the function of its cognate protein, phosphodiesterase 6D (PDE6D), in prenylated protein trafficking towards the ciliary membrane, causing the human ciliopathy Joubert Syndrome (JBTS22) and retinal degeneration in mice. In this study, we purified the prenylated cargo of PDE6D by affinity proteomics to gain insight into PDE6D-associated disease mechanisms. By this approach, we have identified a specific set of PDE6D-interacting proteins that are involved in photoreceptor integrity, GTPase activity, nuclear import, or ubiquitination. Among these interacting proteins, we identified novel ciliary cargo proteins of PDE6D, including FAM219A, serine/threonine-protein kinase NIM1 (NIM1K), and ubiquitin-like protein 3 (UBL3). We show that NIM1K and UBL3 localize inside the cilium in a prenylation-dependent manner. Furthermore, UBL3 also localizes in vesicle-like structures around the base of the cilium. Through affinity proteomics of UBL3, we confirmed its strong interaction with PDE6D and its association with proteins that regulate small extracellular vesicles (sEVs) and ciliogenesis. Moreover, we show that UBL3 localizes in specific photoreceptor cilium compartments in a prenylation-dependent manner. Therefore, we propose that UBL3 may play a role in the sorting of proteins towards the photoreceptor outer segment, further explaining the development of PDE6D-associated retinal degeneration.


Asunto(s)
Cilios , Degeneración Retiniana , Humanos , Animales , Ratones , Cilios/metabolismo , Degeneración Retiniana/metabolismo , Proteínas/metabolismo , Retina/metabolismo , Transporte de Proteínas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...