Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(9): 168553, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548260

RESUMEN

The catalytic cycle of Enzyme I (EI), a phosphotransferase enzyme responsible for converting phosphoenolpyruvate (PEP) into pyruvate, is characterized by a series of local and global conformational rearrangements. This multistep process includes a monomer-to-dimer transition, followed by an open-to-closed rearrangement of the dimeric complex upon PEP binding. In the present study, we investigate the thermodynamics of EI dimerization using a range of high-pressure solution NMR techniques complemented by SAXS experiments. 1H-15N TROSY and 1H-13C methyl TROSY NMR spectra combined with 15N relaxation measurements revealed that a native-like engineered variant of full-length EI fully dissociates into stable monomeric state above 1.5 kbar. Conformational ensembles of EI monomeric state were generated via a recently developed protocol combining coarse-grained molecular simulations with experimental backbone residual dipolar coupling measurements. Analysis of the structural ensembles provided detailed insights into the molecular mechanisms driving formation of the catalytically competent dimeric state, and reveals that each step of EI catalytical cycle is associated with a significant reduction in either inter- or intra-domain conformational entropy. Altogether, this study completes a large body work conducted by our group on EI and establishes a comprehensive structural and dynamical description of the catalytic cycle of this prototypical multidomain, oligomeric enzyme.


Asunto(s)
Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato , Fosfotransferasas (Aceptor del Grupo Nitrogenado) , Multimerización de Proteína , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/química , Conformación Proteica , Dispersión del Ángulo Pequeño , Termodinámica , Difracción de Rayos X
2.
Chembiochem ; 23(20): e202200285, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-35943842

RESUMEN

Phosphonates are produced across all domains of life and used widely in medicine and agriculture. Biosynthesis almost universally originates from the enzyme phosphoenolpyruvate mutase (Ppm), EC 5.4.2.9, which catalyzes O-P bond cleavage in phosphoenolpyruvate (PEP) and forms a high energy C-P bond in phosphonopyruvate (PnPy). Mechanistic scrutiny of this unusual intramolecular O-to-C phosphoryl transfer began with the discovery of Ppm in 1988 and concluded in 2008 with computational evidence supporting a concerted phosphoryl transfer via a dissociative metaphosphate-like transition state. This mechanism deviates from the standard 'in-line attack' paradigm for enzymatic phosphoryl transfer that typically involves a phosphoryl-enzyme intermediate, but definitive evidence is sparse. Here we review the experimental evidence leading to our current mechanistic understanding and highlight the roles of previously underappreciated conserved active site residues. We then identify remaining opportunities to evaluate overlooked residues and unexamined substrates/inhibitors.


Asunto(s)
Organofosfonatos , Fosfotransferasas (Fosfomutasas) , Fosfoenolpiruvato/química , Fosfotransferasas (Fosfomutasas)/química , Catálisis
3.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 4): 177-184, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35400670

RESUMEN

A structure-function characterization of Synechococcus elongatus enolase (SeEN) is presented, representing the first structural report on a cyanobacterial enolase. X-ray crystal structures of SeEN in its apoenzyme form and in complex with phosphoenolpyruvate are reported at 2.05 and 2.30 Šresolution, respectively. SeEN displays the typical fold of enolases, with a conformationally flexible loop that closes the active site upon substrate binding, assisted by two metal ions that stabilize the negatively charged groups. The enzyme exhibits a catalytic efficiency of 1.2 × 105 M-1 s-1 for the dehydration of 2-phospho-D-glycerate, which is comparable to the kinetic parameters of related enzymes. These results expand the understanding of the biophysical features of these enzymes, broadening the toolbox for metabolic engineering applications.


Asunto(s)
Fosfopiruvato Hidratasa , Synechococcus , Cristalografía por Rayos X , Fosfoenolpiruvato/química , Fosfopiruvato Hidratasa/química
4.
Protein Sci ; 30(9): 1833-1853, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34076313

RESUMEN

When amino acids vary during evolution, the outcome can be functionally neutral or biologically-important. We previously found that substituting a subset of nonconserved positions, "rheostat" positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether "phylogenetic" patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10-15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non-neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously-identified hLPYK rheostat, "toggle" (most substitution abolished function), and "neutral" (all substitutions were like wild-type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12-13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co-evolutionary or eigenvector centrality measures of evolutionary change.


Asunto(s)
Sustitución de Aminoácidos , ADN/química , Proteínas de Escherichia coli/química , Evolución Molecular , Represoras Lac/química , Piruvato Quinasa/química , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Sitios de Unión , Clonación Molecular , Biología Computacional/métodos , ADN/genética , ADN/metabolismo , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Represoras Lac/genética , Represoras Lac/metabolismo , Modelos Moleculares , Mutación , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Termodinámica
5.
Arch Biochem Biophys ; 695: 108633, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33075302

RESUMEN

A linked-function theory for allostery allows for a differentiation between those protein-ligand interactions that contribute the most to ligand binding and those protein-ligand interactions that contribute to the allosteric mechanism. This potential distinction is the basis for analogue studies used to determine which chemical moieties on the allosteric effector contribute to allostery. Although less recognized, the same separation of functions is possible for substrate-enzyme interactions. When evaluating allosteric regulation in human liver pyruvate kinase, the use of a range of monovalent cations (K+, NH4+, Rb+, Cs+, cyclohexylammonium+ and Tris+) altered substrate (phosphoenolpyruvate; PEP) affinity, but maintained similar allosteric responses to the allosteric activator, fructose-1,6-bisphosphate (Fru-1,6-BP). Because crystal structures indicate that the active site monovalent cation interacts directly with the phosphate moiety of the bound PEP substrate, we questioned if the phosphate moiety might contribute to substrate binding, but not to the allosteric mechanism. Here, we demonstrate that the binding of oxalate, a non-phosphorylated substrate/product analogue, is allosterically enhanced by Fru-1,6-BP. That observation is consistent with the concept that the phosphate moiety of PEP is not required for the allosteric function, even though that moiety likely contributes to determining substrate affinity.


Asunto(s)
Fructosadifosfatos/química , Hígado/enzimología , Fosfoenolpiruvato/química , Piruvato Quinasa/química , Regulación Alostérica , Fructosadifosfatos/metabolismo , Humanos , Fosfoenolpiruvato/metabolismo , Piruvato Quinasa/metabolismo
6.
Biochem J ; 477(11): 2095-2114, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32459324

RESUMEN

Activation of phosphoenolpyruvate carboxylase (PEPC) enzymes by glucose 6-phosphate (G6P) and other phospho-sugars is of major physiological relevance. Previous kinetic, site-directed mutagenesis and crystallographic results are consistent with allosteric activation, but the existence of a G6P-allosteric site was questioned and competitive activation-in which G6P would bind to the active site eliciting the same positive homotropic effect as the substrate phosphoenolpyruvate (PEP)-was proposed. Here, we report the crystal structure of the PEPC-C4 isozyme from Zea mays with G6P well bound into the previously proposed allosteric site, unambiguously confirming its existence. To test its functionality, Asp239-which participates in a web of interactions of the protein with G6P-was changed to alanine. The D239A variant was not activated by G6P but, on the contrary, inhibited. Inhibition was also observed in the wild-type enzyme at concentrations of G6P higher than those producing activation, and probably arises from G6P binding to the active site in competition with PEP. The lower activity and cooperativity for the substrate PEP, lower activation by glycine and diminished response to malate of the D239A variant suggest that the heterotropic allosteric activation effects of free-PEP are also abolished in this variant. Together, our findings are consistent with both the existence of the G6P-allosteric site and its essentiality for the activation of PEPC enzymes by phosphorylated compounds. Furthermore, our findings suggest a central role of the G6P-allosteric site in the overall kinetics of these enzymes even in the absence of G6P or other phospho-sugars, because of its involvement in activation by free-PEP.


Asunto(s)
Glucosa-6-Fosfato/química , Fosfoenolpiruvato Carboxilasa/química , Fosfoenolpiruvato/química , Proteínas de Plantas/química , Zea mays/enzimología , Regulación Alostérica , Dominio Catalítico , Glucosa-6-Fosfato/metabolismo , Cinética , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética
7.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140296, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676451

RESUMEN

Entamoeba histolytica infection is highly prevalent in developing countries across the globe. The ATP synthesis in this pathogen is solely dependent on the glycolysis pathway where pyruvate kinase (Pyk) catalyzes the final reaction. Here, we have cloned, overexpressed and purified the pyruvate kinase (EhPyk) from E. histolytica. EhPyk is the shortest currently known Pyk till date as it contains only two of the three characterized domains when compared to the other homologues and our phylogenetic analysis places it on a distinct branch from the known type I/II Pyks. Our purification results suggested that it exists as a homodimer in solution. The kinetic characterization showed that EhPyk has maximum activity at pH 7.5 where it exhibited Michaelis-Menten's kinetics for phosphoenolpyruvate with a Km of 0.23 mM, and it lost its activity at both the acidic pH 4.0 and basic pH 10.0. We also determined the key secondary structural elements of EhPyk at different pH values. MD simulation of EhPyk structure at different pH values suggested that it is most stable at pH 7.0, while least stable at pH 10.0 followed by pH 4.0. Together, our computational simulations correlate well with the experimental studies. In summary, this study expands the current understanding of the EhPyk identified earlier in the amoebic genome and provides the first characterization of this bacterially expressed protein.


Asunto(s)
Entamoeba histolytica/enzimología , Proteínas Protozoarias/química , Piruvato Quinasa/química , Estabilidad de Enzimas , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Fosfoenolpiruvato/química , Filogenia , Proteínas Protozoarias/genética , Piruvato Quinasa/genética
8.
Biochemistry ; 58(35): 3669-3682, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31386812

RESUMEN

Cancer cells regulate key enzymes in the glycolytic pathway to control the glycolytic flux, which is necessary for their growth and proliferation. One of the enzymes is pyruvate kinase muscle isoform 2 (PKM2), which is allosterically regulated by various small molecules. Using detailed biochemical and kinetic studies, we demonstrate that cysteine inhibits wild-type (wt) PKM2 by shifting from an active tetramer to a mixture of a tetramer and a less active dimer/monomer equilibrium and that the inhibition is dependent on cysteine concentration. The cysteine-mediated PKM2 inhibition is reversed by fructose 1,6-bisphosphate, an allosteric activator of PKM2. Furthermore, kinetic studies using two dimeric PKM2 variants, S437Y PKM2 and G415R PKM2, show that the reversal is caused by the tetramerization of wtPKM2. The crystal structure of the wtPKM2-Cys complex was determined at 2.25 Å, which showed that cysteine is held to the amino acid binding site via its main chain groups, similar to that observed for phenylalanine, alanine, serine, and tryptophan. Notably, ligand binding studies using fluorescence and isothermal titration calorimetry show that the presence of phosphoenolpyruvate alters the binding affinities of amino acids for wtPKM2 and vice versa, thereby unravelling the existence of a functionally bidirectional coupling between the amino acid binding site and the active site of wtPKM2.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Cisteína/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Hormonas Tiroideas/química , Sustitución de Aminoácidos/genética , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Catálisis , Dominio Catalítico/genética , Cristalografía por Rayos X , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ligandos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Unión Proteica , Conformación Proteica , Serina/genética , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Tirosina/genética , Proteínas de Unión a Hormona Tiroide
9.
Nat Commun ; 10(1): 1558, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952857

RESUMEN

Cofactor F420 plays critical roles in primary and secondary metabolism in a range of bacteria and archaea as a low-potential hydride transfer agent. It mediates a variety of important redox transformations involved in bacterial persistence, antibiotic biosynthesis, pro-drug activation and methanogenesis. However, the biosynthetic pathway for F420 has not been fully elucidated: neither the enzyme that generates the putative intermediate 2-phospho-L-lactate, nor the function of the FMN-binding C-terminal domain of the γ-glutamyl ligase (FbiB) in bacteria are known. Here we present the structure of the guanylyltransferase FbiD and show that, along with its archaeal homolog CofC, it accepts phosphoenolpyruvate, rather than 2-phospho-L-lactate, as the substrate, leading to the formation of the previously uncharacterized intermediate dehydro-F420-0. The C-terminal domain of FbiB then utilizes FMNH2 to reduce dehydro-F420-0, which produces mature F420 species when combined with the γ-glutamyl ligase activity of the N-terminal domain. These new insights have allowed the heterologous production of F420 from a recombinant F420 biosynthetic pathway in Escherichia coli.


Asunto(s)
Vías Biosintéticas , Escherichia coli/metabolismo , Riboflavina/análogos & derivados , Modelos Moleculares , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Células Procariotas/metabolismo , Riboflavina/biosíntesis
10.
J Biotechnol ; 267: 19-28, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29301095

RESUMEN

Indirubin is an indole alkaloid that can be used to treat various diseases including granulocytic leukemia, cancer, and Alzheimer's disease. Microbial production of indirubin has so far been achieved by supplementation of rather expensive substrates such as indole or tryptophan. Here, we report the development of metabolically engineered Escherichia coli strain capable of producing indirubin directly from glucose. First, the Methylophaga aminisulfidivorans flavin-containing monooxygenase (FMO) and E. coli tryptophanase (TnaA) were introduced into E. coli in order to complete the biosynthetic pathway from tryptophan to indirubin. Further engineering was performed through rational strategies including disruption of the regulatory repressor gene trpR and removal of feedback inhibitions on AroG and TrpE. Then, combinatorial approach was employed by systematically screening eight genes involved in the common aromatic amino acid pathway. Moreover, availability of the aromatic precursor substrates, phosphoenolpyruvate and erythrose-4-phosphate, was enhanced by inactivating the pykF (pyruvate kinase I) and pykA (pyruvate kinase II) genes, and by overexpressing the tktA gene (encoding transketolase), respectively. Fed-batch fermentation of the final engineered strain led to production of 0.056 g/L of indirubin directly from glucose. The metabolic engineering and synthetic biology strategies reported here thus allows microbial fermentative production of indirubin from glucose.


Asunto(s)
Ingeniería Metabólica , Oxigenasas/genética , Triptofanasa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Glucosa/biosíntesis , Glucosa/química , Indoles/química , Indoles/metabolismo , Ingeniería Metabólica/métodos , Oxigenasas/metabolismo , Fosfoenolpiruvato/química , Piscirickettsiaceae/enzimología , Piruvato Quinasa/química , Piruvato Quinasa/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Especificidad por Sustrato , Transcetolasa/química , Transcetolasa/genética
11.
Protein Sci ; 26(8): 1667-1673, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28470715

RESUMEN

Pyruvate phosphate dikinase (PPDK) is an essential enzyme of both the C4 photosynthetic pathway and cellular energy metabolism of some bacteria and unicellular protists. In C4 plants, it catalyzes the ATP- and Pi -dependent formation of phosphoenolpyruvate (PEP) while in bacteria and protozoa the ATP-forming direction is used. PPDK is composed out of three distinct domains and exhibits one of the largest single domain movements known today during its catalytic cycle. However, little information about potential intermediate steps of this movement was available. A recent study resolved a discrete intermediate step of PPDK's swiveling movement, shedding light on the details of this intriguing mechanism. Here we present an additional structural intermediate that possibly represents another crucial step in the catalytic cycle of PPDK, providing means to get a more detailed understanding of PPDK's mode of function.


Asunto(s)
Flaveria/química , Fosfoenolpiruvato/química , Proteínas de Plantas/química , Piruvato Ortofosfato Diquinasa/química , Biocatálisis , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Flaveria/enzimología , Expresión Génica , Modelos Moleculares , Fosfoenolpiruvato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Termodinámica
12.
Nat Chem ; 9(4): 310-317, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28338685

RESUMEN

Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions.


Asunto(s)
Evolución Química , Glucólisis , Origen de la Vida , Fosfoenolpiruvato/química , Triosas/química , Estructura Molecular , Fosforilación
13.
Sci Rep ; 7: 45389, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28358005

RESUMEN

Pyruvate phosphate dikinase (PPDK) is a vital enzyme in cellular energy metabolism catalyzing the ATP- and Pi-dependent formation of phosphoenolpyruvate from pyruvate in C4 -plants, but the reverse reaction forming ATP in bacteria and protozoa. The multi-domain enzyme is considered an efficient molecular machine that performs one of the largest single domain movements in proteins. However, a comprehensive understanding of the proposed swiveling domain motion has been limited by not knowing structural intermediates or molecular dynamics of the catalytic process. Here, we present crystal structures of PPDKs from Flaveria, a model genus for studying the evolution of C4 -enzymes from phylogenetic ancestors. These structures resolve yet unknown conformational intermediates and provide the first detailed view on the large conformational transitions of the protein in the catalytic cycle. Independently performed unrestrained MD simulations and configurational free energy calculations also identified these intermediates. In all, our experimental and computational data reveal strict coupling of the CD swiveling motion to the conformational state of the NBD. Moreover, structural asymmetries and nucleotide binding states in the PPDK dimer support an alternate binding change mechanism for this intriguing bioenergetic enzyme.


Asunto(s)
Flaveria/enzimología , Proteínas de Plantas/metabolismo , Piruvato Ortofosfato Diquinasa/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Proteínas de Plantas/química , Análisis de Componente Principal , Conformación Proteica , Piruvato Ortofosfato Diquinasa/química , Piruvato Ortofosfato Diquinasa/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
14.
Biochemistry ; 56(4): 592-601, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28045507

RESUMEN

3-Deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthase catalyzes an aldol-like reaction of phosphoenolpyruvate (PEP) with erythrose 4-phosphate (E4P) to form DAHP in the first step of the shikimate biosynthetic pathway. DAHP oxime, in which an oxime replaces the ketone, is a potent inhibitor, with Ki = 1.5 µM. Linear free energy relationship (LFER) analysis of DAHP oxime inhibition using DAHP synthase mutants revealed an excellent correlation between transition state stabilization and inhibition. The equations of LFER analysis were rederived to formalize the possibility of proportional, rather than equal, changes in the free energies of transition state stabilization and inhibitor binding, in accord with the fact that the majority of LFER analyses in the literature demonstrate nonunity slopes. A slope of unity, m = 1, indicates that catalysis and inhibitor binding are equally sensitive to perturbations such as mutations or modified inhibitor/substrate structures. Slopes <1 or >1 indicate that inhibitor binding is less sensitive or more sensitive, respectively, to perturbations than is catalysis. LFER analysis using the tetramolecular specificity constant, that is, plotting log(KM,MnKM,PEPKM,E4P/kcat) versus log(Ki), revealed a slope, m, of 0.34, with r2 = 0.93. This provides evidence that DAHP oxime is mimicking the first irreversible transition state of the DAHP synthase reaction, presumably phosphate departure from the tetrahedral intermediate. This is evidence that the oxime group can act as a functional, as well as structural, mimic of phosphate groups.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Oximas/química , Proteínas Recombinantes de Fusión/química , Fosfatos de Azúcar/química , 3-Desoxi-7-Fosfoheptulonato Sintasa/química , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biocatálisis , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Imitación Molecular , Mutación , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ácido Shikímico/química , Ácido Shikímico/metabolismo , Fosfatos de Azúcar/metabolismo , Termodinámica
15.
Arch Biochem Biophys ; 607: 1-6, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27477958

RESUMEN

The allosteric coupling free energy between ligands fructose-6-phosphate (Fru-6-P) and phospho(enol)pyruvate (PEP) for phosphofructokinase-1 (PFK) from the moderate thermophile, Bacillus stearothermophilus (BsPFK), results from compensating enthalpy and entropy components. In BsPFK the positive coupling free energy that defines inhibition is opposite in sign from the negative enthalpy term and is therefore determined by the larger absolute value of the negative entropy term. Variants of BsPFK were made to determine the effect of adding small cavities to the structure on the allosteric function of the enzyme. The BsPFK Ile → Val (cavity containing) mutants have varied values for the coupling free energy between PEP and Fru-6-P, indicating that the modifications altered the effectiveness of PEP as an inhibitor. Notably, the mutation I153V had a substantial positive impact on the magnitude of inhibition by PEP. Van't Hoff analysis determined that this is the result of decreased entropy-enthalpy compensation with a larger change in the enthalpy term compared to the entropy term.


Asunto(s)
Proteínas Bacterianas/química , Geobacillus stearothermophilus/enzimología , Fosfofructoquinasas/química , Sitio Alostérico , Proteínas Bacterianas/genética , Catálisis , Cristalografía por Rayos X , Fructosafosfatos/química , Geobacillus stearothermophilus/genética , Concentración de Iones de Hidrógeno , Cinética , Conformación Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fosfoenolpiruvato/química , Fosfofructoquinasas/genética , Temperatura
16.
Arch Biochem Biophys ; 606: 26-33, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27431058

RESUMEN

Although oxidative stress is known to impede the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, the nutritionally-versatile microbe, Pseudomonas fluorescens has been shown to proliferate in the presence of hydrogen peroxide (H2O2) and nitrosative stress. In this study we demonstrate the phospho-transfer system that enables this organism to generate ATP was similar irrespective of the carbon source utilized. Despite the diminished activities of enzymes involved in the TCA cycle and in the electron transport chain (ETC), the ATP levels did not appear to be significantly affected in the stressed cells. Phospho-transfer networks mediated by acetate kinase (ACK), adenylate kinase (AK), and nucleoside diphosphate kinase (NDPK) are involved in maintaining ATP homeostasis in the oxidatively-challenged cells. This phospho-relay machinery orchestrated by substrate-level phosphorylation is aided by the up-regulation in the activities of such enzymes like phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK), and phosphoenolpyruvate synthase (PEPS). The enhanced production of phosphoenolpyruvate (PEP) and pyruvate further fuel the synthesis of ATP. Taken together, this metabolic reconfiguration enables the organism to fulfill its ATP need in an O2-independent manner by utilizing an intricate phospho-wire module aimed at maximizing the energy potential of PEP with the participation of AMP.


Asunto(s)
Adenosina Trifosfato/química , Pseudomonas fluorescens/metabolismo , Adenosina Monofosfato/química , Ciclo del Ácido Cítrico , Densitometría , Transporte de Electrón , Homeostasis , Peróxido de Hidrógeno/química , Lípidos/química , Oxidación-Reducción , Fosforilación Oxidativa , Estrés Oxidativo , Oxígeno/química , Fosfoenolpiruvato/química , Fosforilación , Fosfotransferasas (Aceptores Pareados)/metabolismo , Piruvato Ortofosfato Diquinasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2457-70, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627653

RESUMEN

Staphylococcus aureus is a Gram-positive bacterium with strong pathogenicity that causes a wide range of infections and diseases. Enolase is an evolutionarily conserved enzyme that plays a key role in energy production through glycolysis. Additionally, enolase is located on the surface of S. aureus and is involved in processes leading to infection. Here, crystal structures of Sa_enolase with and without bound phosphoenolpyruvate (PEP) are presented at 1.6 and 2.45 Šresolution, respectively. The structure reveals an octameric arrangement; however, both dimeric and octameric conformations were observed in solution. Furthermore, enzyme-activity assays show that only the octameric variant is catalytically active. Biochemical and structural studies indicate that the octameric form of Sa_enolase is enzymatically active in vitro and likely also in vivo, while the dimeric form is catalytically inactive and may be involved in other biological processes.


Asunto(s)
Proteínas Bacterianas/química , Fosfoenolpiruvato/química , Fosfopiruvato Hidratasa/química , Staphylococcus aureus/química , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Fosfoenolpiruvato/metabolismo , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/enzimología
18.
Int J Mol Sci ; 16(7): 14490-510, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26121302

RESUMEN

Streptococcus iniae is a major fish pathogen that can also cause human bacteremia, cellulitis and meningitis. Screening for and identification of protective antigens plays an important role in developing therapies against S. iniae infections. In this study, we indicated that the α-enolase of S. iniae was not only distributed in the cytoplasm and associated to cell walls, but was also secreted to the bacterial cell surface. The functional identity of the purified recombinant α-enolase protein was verified by its ability to catalyze the conversion of 2-phosphoglycerate (2-PGE) to phosphoenolpyruvate (PEP), and both the recombinant and native proteins interacted with human plasminogen. The rabbit anti-rENO serum blockade assay shows that α-enolase participates in S. iniae adhesion to and invasion of BHK-21 cells. In addition, the recombinant α-enolase can confer effective protection against S. iniae infection in mice, which suggests that α-enolase has potential as a vaccine candidate in mammals. We conclude that S. iniae α-enolase is a moonlighting protein that also associates with the bacterial outer surface and functions as a protective antigen in mice.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Streptococcus/enzimología , Secuencia de Aminoácidos , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Adhesión Celular , Línea Celular , Movimiento Celular , Clonación Molecular , Cricetinae , Cricetulus , Ácidos Glicéricos/química , Ratones , Datos de Secuencia Molecular , Fosfoenolpiruvato/química , Fosfopiruvato Hidratasa/química , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/inmunología , Streptococcus/genética , Streptococcus/inmunología
19.
Nat Commun ; 6: 5960, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25581904

RESUMEN

Enzyme I (EI), the first component of the bacterial phosphotransfer signal transduction system, undergoes one of the largest substrate-induced interdomain rearrangements documented to date. Here we characterize the perturbations generated by two small molecules, the natural substrate phosphoenolpyruvate and the inhibitor α-ketoglutarate, on the structure and dynamics of EI using NMR, small-angle X-ray scattering and biochemical techniques. The results indicate unambiguously that the open-to-closed conformational switch of EI is triggered by complete suppression of micro- to millisecond dynamics within the C-terminal domain of EI. Indeed, we show that a ligand-induced transition from a dynamic to a more rigid conformational state of the C-terminal domain stabilizes the interface between the N- and C-terminal domains observed in the structure of the closed state, thereby promoting the resulting conformational switch and autophosphorylation of EI. The mechanisms described here may be common to several other multidomain proteins and allosteric systems.


Asunto(s)
Proteínas Bacterianas/química , Enzimas/química , Escherichia coli/enzimología , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/química , Sitio Alostérico , Dominio Catalítico , Ácidos Cetoglutáricos/química , Sustancias Macromoleculares , Espectroscopía de Resonancia Magnética , Mutación , Fosfoenolpiruvato/química , Fosforilación , Unión Proteica , Multimerización de Proteína , Dispersión de Radiación , Transducción de Señal , Rayos X
20.
Protein Expr Purif ; 110: 7-13, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25573389

RESUMEN

The cDNA encoding for a Solanum tuberosum cytosolic pyruvate kinase 1 (PKc1) highly expressed in tuber tissue was cloned in the bacterial expression vector pProEX HTc. The construct carried a hexahistidine tag in N-terminal position to facilitate purification of the recombinant protein. Production of high levels of soluble recombinant PKc1 in Escherichia coli was only possible when using a co-expression strategy with the chaperones GroES-GroEL. Purification of the protein by Ni(2 +) chelation chromatography yielded a single protein with an apparent molecular mass of 58kDa and a specific activity of 34unitsmg(-1) protein. The recombinant enzyme had an optimum pH between 6 and 7. It was relatively heat stable as it retained 80% of its activity after 2min at 75°C. Hyperbolic saturation kinetics were observed with ADP and UDP whereas sigmoidal saturation was observed during analysis of phosphoenolpyruvate binding. Among possible effectors tested, aspartate and glutamate had no effect on enzyme activity, whereas α-ketoglutarate and citrate were the most potent inhibitors. When tested on phosphoenolpyruvate saturation kinetics, these latter compounds increased S0.5. These findings suggest that S. tuberosum PKc1 is subject to a strong control by respiratory metabolism exerted via citrate and other tricarboxylic acid cycle intermediates.


Asunto(s)
Citosol/química , Fosfoenolpiruvato/química , Proteínas de Plantas/aislamiento & purificación , Piruvato Quinasa/aislamiento & purificación , Solanum tuberosum/química , Adenosina Difosfato/química , Ácido Cítrico/química , Clonación Molecular , Citosol/enzimología , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Concentración de Iones de Hidrógeno , Ácidos Cetoglutáricos/química , Cinética , Peso Molecular , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/biosíntesis , Piruvato Quinasa/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Solanum tuberosum/enzimología , Uridina Difosfato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...