Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Biol Chem ; 297(6): 101348, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34715131

RESUMEN

During signal transduction, the G protein, Gαq, binds and activates phospholipase C-ß isozymes. Several diseases have been shown to manifest upon constitutively activating mutation of Gαq, such as uveal melanoma. Therefore, methods are needed to directly inhibit Gαq. Previously, we demonstrated that a peptide derived from a helix-turn-helix (HTH) region of PLC-ß3 (residues 852-878) binds Gαq with low micromolar affinity and inhibits Gαq by competing with full-length PLC-ß isozymes for binding. Since the HTH peptide is unstructured in the absence of Gαq, we hypothesized that embedding the HTH in a folded protein might stabilize the binding-competent conformation and further improve the potency of inhibition. Using the molecular modeling software Rosetta, we searched the Protein Data Bank for proteins with similar HTH structures near their surface. The candidate proteins were computationally docked against Gαq, and their surfaces were redesigned to stabilize this interaction. We then used yeast surface display to affinity mature the designs. The most potent design bound Gαq/i with high affinity in vitro (KD = 18 nM) and inhibited activation of PLC-ß isozymes in HEK293 cells. We anticipate that our genetically encoded inhibitor will help interrogate the role of Gαq in healthy and disease model systems. Our work demonstrates that grafting interaction motifs into folded proteins is a powerful approach for generating inhibitors of protein-protein interactions.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Péptidos/farmacología , Clonación Molecular , Bases de Datos de Proteínas , Diseño de Fármacos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Péptidos/química , Péptidos/genética , Fosfolipasa C beta/antagonistas & inhibidores , Fosfolipasa C beta/química , Fosfolipasa C beta/metabolismo , Unión Proteica , Ingeniería de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología
2.
J Biol Chem ; 296: 100702, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33901492

RESUMEN

Phospholipase C ß (PLCß), which is activated by the Gq family of heterotrimeric G proteins, hydrolyzes the inner membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2), generating diacylglycerol and inositol 1,4,5-triphosphate (IP3). Because Gq and PLCß regulate many crucial cellular processes and have been identified as major disease drivers, activation and termination of PLCß signaling by the Gαq subunit have been extensively studied. Gq-coupled receptor activation induces intense and transient PIP2 hydrolysis, which subsequently recovers to a low-intensity steady-state equilibrium. However, the molecular underpinnings of this equilibrium remain unclear. Here, we explored the influence of signaling crosstalk between Gq and Gi/o pathways on PIP2 metabolism in living cells using single-cell and optogenetic approaches to spatially and temporally constrain signaling. Our data suggest that the Gßγ complex is a component of the highly efficient lipase GαqGTP-PLCß-Gßγ. We found that over time, Gßγ dissociates from this lipase complex, leaving the less-efficient GαqGTP-PLCß lipase complex and allowing the significant partial recovery of PIP2 levels. Our findings also indicate that the subtype of the Gγ subunit in Gßγ fine-tunes the lipase activity of Gq-PLCß, in which cells expressing Gγ with higher plasma membrane interaction show lower PIP2 recovery. Given that Gγ shows cell- and tissue-specific subtype expression, our findings suggest the existence of tissue-specific distinct Gq-PLCß signaling paradigms. Furthermore, these results also outline a molecular process that likely safeguards cells from excessive Gq signaling.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa C beta/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos , Hidrólisis , Modelos Moleculares , Fosfolipasa C beta/química , Unión Proteica , Conformación Proteica , Transducción de Señal
3.
Chem Phys Lipids ; 235: 105050, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422547

RESUMEN

Phospholipase C (PLC) ß and ε enzymes hydrolyze phosphatidylinositol (PI) lipids in response to direct interactions with heterotrimeric G protein subunits and small GTPases, which are activated downstream of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). PI hydrolysis generates second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC), thereby regulating numerous physiological processes. PLCß and PLCε share a highly conserved core required for lipase activity, but use different strategies and structural elements to autoinhibit basal activity, bind membranes, and engage G protein activators. In this review, we discuss recent structural insights into these enzymes and the implications for how they engage membranes alone or in complex with their G protein regulators.


Asunto(s)
Membrana Celular/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Fosfolipasa C beta/metabolismo , Membrana Celular/química , Humanos , Modelos Moleculares , Fosfoinositido Fosfolipasa C/química , Fosfolipasa C beta/química , Conformación Proteica
4.
Structure ; 28(7): 810-819.e5, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32402248

RESUMEN

Phospholipase C (PLC) enzymes hydrolyze phosphoinositide lipids to inositol phosphates and diacylglycerol. Direct activation of PLCß by Gαq and/or Gßγ subunits mediates signaling by Gq and some Gi coupled G-protein-coupled receptors (GPCRs), respectively. PLCß isoforms contain a unique C-terminal extension, consisting of proximal and distal C-terminal domains (CTDs) separated by a flexible linker. The structure of PLCß3 bound to Gαq is known, however, for both Gαq and Gßγ; the mechanism for PLCß activation on membranes is unknown. We examined PLCß2 dynamics on membranes using hydrogen-deuterium exchange mass spectrometry (HDX-MS). Gßγ caused a robust increase in dynamics of the distal C-terminal domain (CTD). Gαq showed decreased deuterium incorporation at the Gαq binding site on PLCß. In vitro Gßγ-dependent activation of PLC is inhibited by the distal CTD. The results suggest that disruption of autoinhibitory interactions with the CTD leads to increased PLCß hydrolase activity.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/química , Fosfolipasa C beta/química , Regulación Alostérica , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Fosfolipasa C beta/metabolismo , Unión Proteica , Células Sf9 , Spodoptera
5.
Protein Sci ; 29(6): 1258-1268, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31867822

RESUMEN

Some proteins can serve multiple functions depending on different cellular conditions. An example of a bifunctional protein is inositide-specific mammalian phospholipase Cß (PLCß). PLCß is activated by G proteins in response to hormones and neurotransmitters to increase intracellular calcium. Recently, alternate cellular function(s) of PLCß have become uncovered. However, the conditions that allow these different functions to be operative are unclear. Like many mammalian proteins, PLCß has a conserved catalytic core along with several regulatory domains. These domains modulate the intensity and duration of calcium signals in response to external sensory information, and allow this enzyme to inhibit protein translation in a noncatalytic manner. In this review, we first describe PLCß's cellular functions and regulation of the switching between these functions, and then discuss the thermodynamic considerations that offer insight into how cells manage multiple and competitive associations allowing them to rapidly shift between functional states.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Fosfolipasa C beta/metabolismo , Animales , Proteínas de Unión al GTP/química , Células HEK293 , Humanos , Modelos Moleculares , Células PC12 , Fosfolipasa C beta/química , Ratas
6.
Biochemistry ; 58(32): 3454-3467, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31322863

RESUMEN

Phospholipase Cß (PLCß) enzymes are peripheral membrane proteins required for normal cardiovascular function. PLCß hydrolyzes phosphatidylinositol 4,5-bisphosphate, producing second messengers that increase intracellular Ca2+ level and activate protein kinase C. Under basal conditions, PLCß is autoinhibited by its C-terminal domains and by the X-Y linker, which contains a stretch of conserved acidic residues required for interfacial activation. Following stimulation of G protein-coupled receptors, the heterotrimeric G protein subunit Gαq allosterically activates PLCß and helps orient the activated complex at the membrane for efficient lipid hydrolysis. However, the molecular basis for how the PLCß X-Y linker, its C-terminal domains, Gαq, and the membrane coordinately regulate activity is not well understood. Using compressed lipid monolayers and atomic force microscopy, we found that a highly conserved acidic region of the X-Y linker is sufficient to regulate adsorption. Regulation of adsorption and activity by the X-Y linker also occurs independently of the C-terminal domains. We next investigated whether Gαq-dependent activation of PLCß altered interactions with the model membrane. Gαq increased PLCß adsorption in a manner that was independent of the PLCß regulatory elements and targeted adsorption to specific regions of the monolayer in the absence of the C-terminal domains. Thus, the mechanism of Gαq-dependent activation likely includes a spatial component.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Lípidos/química , Fosfolipasa C beta/metabolismo , Adsorción , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Modelos Moleculares , Fosfolipasa C beta/química , Unión Proteica , Conformación Proteica
7.
Am J Respir Cell Mol Biol ; 59(4): 428-436, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29668297

RESUMEN

The lungs of patients with cystic fibrosis (CF) are characterized by an exaggerated inflammation driven by secretion of IL-8 from bronchial epithelial cells and worsened by Pseudomonas aeruginosa infection. To identify novel antiinflammatory molecular targets, we previously performed a genetic study of 135 genes of the immune response, which identified the c.2534C>T (p.S845L) variant of phospholipase C-ß3 (PLCB3) as being significantly associated with mild progression of pulmonary disease. Silencing PLCB3 revealed that it potentiates the Toll-like receptor's inflammatory signaling cascade originating from CF bronchial epithelial cells. In the present study, we investigated the role of the PLCB3-S845L variant together with two synthetic mutants paradigmatic of impaired catalytic activity or lacking functional activation in CF bronchial epithelial cells. In experiments in which cells were exposed to P. aeruginosa, the supernatant of mucopurulent material from the airways of patients with CF or different agonists revealed that PLCB3-S845L has defects of 1) agonist-induced Ca2+ release from endoplasmic reticulum and rise of Ca2+ concentration, 2) activation of conventional protein kinase C isoform ß, and 3) induction of IL-8 release. These results, besides identifying S845L as a loss-of-function variant, strengthen the importance of targeting PLCB3 to mitigate the CF inflammatory response in bronchial epithelial cells without blunting the immune response.


Asunto(s)
Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Interleucina-8/metabolismo , Fosfolipasa C beta/deficiencia , Pseudomonas aeruginosa/fisiología , Bronquios/patología , Señalización del Calcio , Línea Celular , Simulación por Computador , Humanos , Moco/metabolismo , Mutación/genética , Fosfolipasa C beta/química , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Serina/metabolismo , Relación Estructura-Actividad
8.
Biochemistry ; 56(41): 5604-5614, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28945350

RESUMEN

Phospholipase Cß (PLCß) enzymes hydrolyze phosphatidylinositol 4,5-bisphosphate to produce second messengers that regulate intracellular Ca2+, cell proliferation, and survival. Their activity is dependent upon interfacial activation that occurs upon localization to cell membranes. However, the molecular basis for how these enzymes productively interact with the membrane is poorly understood. Herein, atomic force microscopy demonstrates that the ∼300-residue C-terminal domain promotes adsorption to monolayers and is required for spatial organization of the protein on the monolayer surface. PLCß variants lacking this C-terminal domain display differences in their distribution on the surface. In addition, a previously identified autoinhibitory helix that binds to the PLCß catalytic core negatively impacts membrane binding, providing an additional level of regulation for membrane adsorption. Lastly, defects in phosphatidylinositol 4,5-bisphosphate hydrolysis also alter monolayer adsorption, reflecting a role for the active site in this process. Together, these findings support a model in which multiple elements of PLCß modulate adsorption, distribution, and catalysis at the cell membrane.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa C beta/metabolismo , Adsorción , Sustitución de Aminoácidos , Dominio Catalítico , Activación Enzimática , Estabilidad de Enzimas , Fluorometría , Eliminación de Gen , Humanos , Hidrólisis , Membrana Dobles de Lípidos/química , Liposomas , Microscopía de Fuerza Atómica , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfolipasa C beta/química , Fosfolipasa C beta/genética , Mutación Puntual , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
9.
J Biol Chem ; 292(40): 16787-16801, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28842497

RESUMEN

Upon activation by the Gq family of Gα subunits, Gßγ subunits, and some Rho family GTPases, phospholipase C-ß (PLC-ß) isoforms hydrolyze phosphatidylinositol 4,5-bisphosphate to the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. PLC-ß isoforms also function as GTPase-activating proteins, potentiating Gq deactivation. To elucidate the mechanism of this mutual regulation, we measured the thermodynamics and kinetics of PLC-ß3 binding to Gαq FRET and fluorescence correlation spectroscopy, two physically distinct methods, both yielded Kd values of about 200 nm for PLC-ß3-Gαq binding. This Kd is 50-100 times greater than the EC50 for Gαq-mediated PLC-ß3 activation and for the Gαq GTPase-activating protein activity of PLC-ß. The measured Kd was not altered either by the presence of phospholipid vesicles, phosphatidylinositol 4,5-bisphosphate and Ca2+, or by the identity of the fluorescent labels. FRET-based kinetic measurements were also consistent with a Kd of 200 nm We determined that PLC-ß3 hysteresis, whereby PLC-ß3 remains active for some time following either Gαq-PLC-ß3 dissociation or PLC-ß3-potentiated Gαq deactivation, is not sufficient to explain the observed discrepancy between EC50 and Kd These results indicate that the mechanism by which Gαq and PLC-ß3 mutually regulate each other is far more complex than a simple, two-state allosteric model and instead is probably kinetically determined.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Modelos Químicos , Fosfolipasa C beta/química , Regulación Alostérica/fisiología , Calcio/química , Calcio/metabolismo , Activación Enzimática , Transferencia Resonante de Energía de Fluorescencia , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Unión Proteica
10.
J Biol Chem ; 292(32): 13133-13142, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28615442

RESUMEN

Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gßγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein Gß1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gß1 revealed that Gß1 interacts with the PP1c α, ß, and γ1 isoforms. Purified PP1c bound to recombinant Gß1-GST protein, and PP1c co-immunoprecipitated with Gß1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gß1 complex, which correlated with an association of PP1c with phospholipase C ß3 (PLCß3), along with a concomitant dephosphorylation of the inhibitory Ser1105 residue in PLCß3. siRNA-mediated depletion of GNB1 (encoding Gß1) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα-/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gßγ. Finally, disruption of PP1c-Gß1 complexes with myristoylated Gß1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gß1 protein enlists PP1c to modulate GPCR signaling in platelets.


Asunto(s)
Plaquetas/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Megacariocitos/metabolismo , Modelos Moleculares , Fosfolipasa C beta/metabolismo , Proteína Fosfatasa 1/metabolismo , Transducción de Señal , Sustitución de Aminoácidos , Animales , Plaquetas/enzimología , Células de la Médula Ósea/citología , Células de la Médula Ósea/enzimología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Cruzamientos Genéticos , Femenino , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/genética , Proteínas de Unión al GTP Heterotriméricas/antagonistas & inhibidores , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Masculino , Megacariocitos/citología , Megacariocitos/enzimología , Ratones Noqueados , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Fosfolipasa C beta/química , Fosfolipasa C beta/genética , Agregación Plaquetaria , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Técnicas del Sistema de Dos Híbridos
11.
J Biol Chem ; 291(21): 11394-406, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27002154

RESUMEN

Mammalian phospholipase C-ß (PLC-ß) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-ß, there is a lack of consensus regarding the Gßγ binding site in PLC-ß. Using FRET between cerulean fluorescent protein-labeled Gßγ and the Alexa Fluor 594-labeled PLC-ß pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gßγ binding region in PLC-ß3. We show that the isolated PH domain can compete with full-length PLC-ß3 for binding Gßγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-ß PH domain as the Gßγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-ß, necessitating conformational rearrangement to allow Gßγ binding. Blocking PH domain motion in PLC-ß by cross-linking it to the EF hand domain inhibits stimulation by Gßγ without altering basal activity or Gαq response. The fraction of PLC-ß cross-linked is proportional to the fractional loss of Gßγ response. Cross-linked PLC-ß does not bind Gßγ in a FRET-based Gßγ-PLC-ß binding assay. We propose that unliganded PLC-ß exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-ß modulates Gßγ access to its binding site.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Fosfolipasa C beta/química , Fosfolipasa C beta/metabolismo , Sitios de Unión , Proteínas Sanguíneas/química , Transferencia Resonante de Energía de Fluorescencia , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Humanos , Modelos Moleculares , Fosfolipasa C beta/genética , Fosfoproteínas/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
12.
J Mol Cell Cardiol ; 93: 12-7, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26906633

RESUMEN

The activity of phospholipase Cß1b (PLCß1b) is selectively elevated in failing myocardium and cardiac expression of PLCß1b causes contractile dysfunction. PLCß1b can be selectively inhibited by expressing a peptide inhibitor that prevents sarcolemmal localization. The inhibitory peptide, PLCß1b-CT was expressed in heart from a mini-gene using adeno-associated virus (rAAV6-PLCß1b-CT). rAAV6-PLCß1b-CT, or blank virus, was delivered IV (4×10(9)vg/g body weight) and trans-aortic-constriction (TAC) or sham-operation was performed 8weeks later. Expression of PLCß1b-CT prevented the loss of contractile function, eliminated lung congestion and improved survival following TAC with either a 'moderate' or 'severe' pressure gradient. Hypertrophy was attenuated but not eliminated. Expression of the PLCß1b-CT peptide 2-3weeks after TAC reduced contractile dysfunction and lung congestion, without limiting hypertrophy. PLCß1b inhibition ameliorates pathological responses following acute pressure overload. The targeting of PLCß1b to the sarcolemma provides the basis for the development of a new class of inotropic agent.


Asunto(s)
Expresión Génica , Contracción Muscular/genética , Fragmentos de Péptidos/genética , Fosfolipasa C beta/metabolismo , Dominios y Motivos de Interacción de Proteínas , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Cardiomegalia/diagnóstico , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Cardiomegalia/metabolismo , Dependovirus/genética , Ecocardiografía , Vectores Genéticos/genética , Hemodinámica , Masculino , Ratones , Contracción Muscular/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/genética , Miocardio/metabolismo , Miocardio/patología , Fragmentos de Péptidos/farmacología , Fosfolipasa C beta/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Transducción Genética
13.
Sci Rep ; 5: 12628, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26243281

RESUMEN

Phosphoinositide-specific phospholipase C (PLC) is an important family of enzymes constituting a junction between phosphoinositide lipid signaling and the trans-membrane signal transduction processes that are crucial to many living cells. However, the regulatory mechanism of PLC is not yet understood in detail. To address this issue, activity studies were carried out using lipid vesicles in a model system that was specifically designed to study protein-protein and lipid-protein interactions in concert. Evidence was found for a direct interaction between PLC and the GTPases that mediate phospholipase activation. Furthermore, for the first time, the relationships between PLC activity and substrate presentation in lipid vesicles of various sizes, as well as lipid composition and membrane mechanical properties, were analyzed. PLC activity was found to depend upon the electrostatic potential and the stored curvature elastic stress of the lipid membranes.


Asunto(s)
Membrana Dobles de Lípidos/química , Fosfolipasa C beta/química , Dimiristoilfosfatidilcolina/química , Elasticidad , Electroquímica , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Prenilación de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Proteínas de Unión al GTP rac/química , Proteína RCA2 de Unión a GTP
14.
J Biol Chem ; 289(43): 29545-57, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25193662

RESUMEN

All peripheral membrane proteins must negotiate unique constraints intrinsic to the biological interface of lipid bilayers and the cytosol. Phospholipase C-ß (PLC-ß) isozymes hydrolyze the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to propagate diverse intracellular responses that underlie the physiological action of many hormones, neurotransmitters, and growth factors. PLC-ß isozymes are autoinhibited, and several proteins, including Gαq, Gßγ, and Rac1, directly engage distinct regions of these phospholipases to release autoinhibition. To understand this process, we used a novel, soluble analog of PIP2 that increases in fluorescence upon cleavage to monitor phospholipase activity in real time in the absence of membranes or detergents. High concentrations of Gαq or Gß1γ2 did not activate purified PLC-ß3 under these conditions despite their robust capacity to activate PLC-ß3 at membranes. In addition, mutants of PLC-ß3 with crippled autoinhibition dramatically accelerated the hydrolysis of PIP2 in membranes without an equivalent acceleration in the hydrolysis of the soluble analog. Our results illustrate that membranes are integral for the activation of PLC-ß isozymes by diverse modulators, and we propose a model describing membrane-mediated allosterism within PLC-ß isozymes.


Asunto(s)
Membrana Celular/enzimología , Fosfolipasa C beta/metabolismo , Regulación Alostérica , Animales , Biocatálisis , Células COS , Chlorocebus aethiops , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Genes Reporteros , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Hidrólisis , Isoenzimas/química , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa C beta/química , Fosfolipasa C beta/aislamiento & purificación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Solubilidad
15.
Biochem Biophys Res Commun ; 446(2): 638-43, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24642259

RESUMEN

The formation of CXCR2-NHERF1-PLCß3 macromolecular complex in pancreatic cancer cells regulates CXCR2 signaling activity and plays an important role in tumor proliferation and invasion. We previously have shown that disruption of the NHERF1-mediated CXCR2-PLCß3 interaction abolishes the CXCR2 signaling cascade and inhibits pancreatic tumor growth in vitro and in vivo. Here we report the crystal structure of the NHERF1 PDZ1 domain in complex with the C-terminal PLCß3 sequence. The structure reveals that the PDZ1-PLCß3 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four PLCß3 residues contributing to specific interactions. We also show that PLCß3 can bind both NHERF1 PDZ1 and PDZ2 in pancreatic cancer cells, consistent with the observation that the peptide binding pockets of these PDZ domains are highly structurally conserved. This study provides an understanding of the structural basis for the PDZ-mediated NHERF1-PLCß3 interaction that could prove valuable in selective drug design against CXCR2-related cancers.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Fosfolipasa C beta/metabolismo , Fosfolipasa C beta/ultraestructura , Fosfoproteínas/metabolismo , Fosfoproteínas/ultraestructura , Receptores de Interleucina-8B/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/ultraestructura , Sitios de Unión , Línea Celular Tumoral , Cristalografía/métodos , Humanos , Modelos Químicos , Modelos Moleculares , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/ultraestructura , Fosfolipasa C beta/química , Fosfoproteínas/química , Unión Proteica , Conformación Proteica , Receptores de Interleucina-8B/ultraestructura , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/química
16.
Biochemistry ; 53(2): 293-9, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24367999

RESUMEN

γ-Synuclein is expressed at high levels in neuronal cells and in multiple invasive cancers. Like its family member α-synuclein, γ-synuclein is thought to be natively unfolded but does not readily form fibrils. The function of γ-synuclein is unknown, but we have found that it interacts strongly with the enzyme phospholipase Cß (PLCß), altering its interaction with G proteins. As a first step in determining its role, we have characterized its oligomerization using fluorescence homotransfer, photon-counting histogram analysis, and native gel electrophoresis. We found that when its expressed in Escherichia coli and purified, γ-synuclein appears monomeric on chromatographs under denaturing conditions, but under native conditions, it appears as oligomers of varying sizes. We followed the monomer-to-tetramer association by labeling the protein with fluorescein and following the concentration-dependent loss in fluorescence anisotropy resulting from fluorescence homotransfer. We also performed photon-counting histogram analysis at increasing concentrations of fluorescein-labeled γ-synuclein and found concentration-dependent oligomerization. Addition of PLCß2, a strong γ-synuclein binding partner whose cellular expression is correlated with γ-synuclein, results in disruption of γ-synuclein oligomers. Similarly, its binding to lipid membranes promotes the monomer form. When we exogenously express γ-synuclein or microinject purified protein into cells, the protein appears monomeric. Our studies show that even though purified γ-synuclein form oligomers, when binding partners are present, as in cells, it dissociates to a monomer to bind these partners, which in turn may modify protein function and integrity.


Asunto(s)
Células/metabolismo , gamma-Sinucleína/química , gamma-Sinucleína/metabolismo , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Fosfolipasa C beta/química , Fosfolipasa C beta/metabolismo , Soluciones , gamma-Sinucleína/aislamiento & purificación
17.
Mol Pharmacol ; 84(4): 488-500, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23880553

RESUMEN

Phospholipase C (PLC) enzymes convert phosphatidylinositol-4,5-bisphosphate into the second messengers diacylglycerol and inositol-1,4,5-triphosphate. The production of these molecules promotes the release of intracellular calcium and activation of protein kinase C, which results in profound cellular changes. The PLCß subfamily is of particular interest given its prominent role in cardiovascular and neuronal signaling and its regulation by G protein-coupled receptors, as PLCß is the canonical downstream target of the heterotrimeric G protein Gαq. However, this is not the only mechanism regulating PLCß activity. Extensive structural and biochemical evidence has revealed regulatory roles for autoinhibitory elements within PLCß, Gßγ, small molecular weight G proteins, and the lipid membrane itself. Such complex regulation highlights the central role that this enzyme plays in cell signaling. A better understanding of the molecular mechanisms underlying the control of its activity will greatly facilitate the search for selective small molecule modulators of PLCß.


Asunto(s)
Fosfolipasa C beta/química , Fosfolipasa C beta/fisiología , Animales , Humanos , Isoenzimas/química , Isoenzimas/fisiología , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiología
18.
Nat Struct Mol Biol ; 20(3): 355-62, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23377541

RESUMEN

Phospholipase C-ß (PLCß) is directly activated by Gαq, but the molecular basis for how its distal C-terminal domain (CTD) contributes to maximal activity is poorly understood. Herein we present both the crystal structure and cryo-EM three-dimensional reconstructions of human full-length PLCß3 in complex with mouse Gαq. The distal CTD forms an extended monomeric helical bundle consisting of three antiparallel segments with structural similarity to membrane-binding bin-amphiphysin-Rvs (BAR) domains. Sequence conservation of the distal CTD suggests putative membrane and protein interaction sites, the latter of which bind the N-terminal helix of Gαq in both the crystal structure and cryo-EM reconstructions. Functional analysis suggests that the distal CTD has roles in membrane targeting and in optimizing the orientation of the catalytic core at the membrane for maximal rates of lipid hydrolysis.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Fosfolipasa C beta/química , Animales , Dominio Catalítico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Ratones , Modelos Moleculares , Fosfolipasa C beta/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína
19.
Cell Signal ; 25(1): 255-63, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23006664

RESUMEN

Phospholipase C (PLC) ß isoforms are implicated in various physiological processes and pathologies. However, mechanistic insight into the localization and activation of each of the isoforms is limited. Therefore, it is crucial to gain more in-depth knowledge as to the regulation of the different isoforms. Here we describe the subcellular location of full-length PLCß isozymes and their C-terminal (CT) domains. Strikingly, we found isoforms PLCß1 and PLCß4 to be enriched at the plasma membrane, contrary to isoforms PLCß2 and PLCß3. We determined that the CT domain is an inhibitor of Gq-mediated increases in intracellular calcium, the potency of its effect being dependent upon the CT domain isoform used. Furthermore, ratiometric fluorescence resonance energy transfer (FRET) imaging was used to study the kinetics of the Gαq-CTßx interactions. By the use of recently developed tools, which enable the on-demand activation of Gαq, we could show that the interaction between constitutively active Gαq and PLCß3 prolongs the residence time of PLCß3 at the plasma membrane. These findings suggest that under physiological circumstances, PLCß3 and Gαq interact in a kiss-and-run fashion, likely due to the GTPase-activating activity of PLCß towards Gαq.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Fosfolipasa C beta/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Membrana Celular/metabolismo , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Células HeLa , Humanos , Cinética , Fosfolipasa C beta/química , Fosfolipasa C beta/genética , Unión Proteica , Estructura Terciaria de Proteína , Ratas
20.
Immunol Res ; 56(1): 9-19, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22638704

RESUMEN

Rapid progress has recently been made regarding how phospholipase C (PLC)-ß functions downstream of G protein-coupled receptors and how PLC-ß functions in the nucleus. PLC-ß has also been shown to interplay with tyrosine kinase-based signaling pathways, specifically to inhibit Stat5 activation by recruiting the protein-tyrosine phosphatase SHP-1. In this regard, a new multimolecular signaling platform, named SPS complex, has been identified. The SPS complex has important regulatory roles in tumorigenesis and immune cell activation. Furthermore, a growing body of work suggests that PLC-ß also participates in the differentiation and activation of immune cells that control both the innate and adaptive immune systems.


Asunto(s)
Fosfolipasa C beta/inmunología , Factor de Transcripción STAT5/inmunología , Animales , Carcinogénesis/inmunología , Proteínas de Unión al GTP/inmunología , Humanos , Inmunidad , Inmunomodulación , Complejos Multiproteicos/inmunología , Células Mieloides/enzimología , Fosfolipasa C beta/química , Isoformas de Proteínas/química , Isoformas de Proteínas/inmunología , Transducción de Señal/inmunología , Familia-src Quinasas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...