Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
BMC Cancer ; 23(1): 668, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460940

RESUMEN

BACKGROUND: Studies have shown that microRNA-191 (miR-191) is involved in the development and progression of a variety of tumors. However, the function and mechanism of miR-191 in oral squamous cell carcinoma (OSCC) have not been clarified. METHODS: The expression level of miR-191 in tumor tissues of patients with primary OSCC and OSCC cell lines were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. OSCC cells were treated with miR-191 enhancers and inhibitors to investigate the effects of elevated or decreased miR-191 expression on OSCC cells proliferation, migration, cell cycle, and tumorigenesis. The target gene of miR-191 in OSCC cells were analyzed by dual-Luciferase assay, and the downstream signaling pathway of the target genes was detected using western blot assay. RESULTS: The expression of miR-191 was significantly upregulated in OSCC tissues and cell lines. Upregulation of miR-191 promoted proliferation, migration, invasion, and cell cycle progression of OSCC cells, as well as tumor growth in nude mice. Meanwhile, reduced expression of miR-191 inhibited these processes. Phospholipase C delta1 (PLCD1) expression was significantly downregulated, and negatively correlated with the expression of miR-191 in OSCC tissues. Dual-Luciferase assays showed that miR-191-5p could bind to PLCD1 mRNA and regulate PLCD1 protein expression. Western blot assay showed that the miR-191 regulated the expression of ß-catenin and its downstream gene through targeting PLCD1. CONCLUSION: MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/ß-catenin signaling pathway. Thus, miR-191 may serve as a potential target for the treatment of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , MicroARNs , Neoplasias de la Boca , Animales , Ratones , Carcinoma de Células Escamosas/patología , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Boca/patología , Fosfolipasa C delta/genética , Fosfolipasa C delta/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Vía de Señalización Wnt/genética , Humanos
2.
Epigenetics ; 18(1): 2210339, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37166441

RESUMEN

The circular RNAs (circRNAs) involved in competitive endogenous RNA (ceRNA) mechanism are critical modulators affecting pathogenesis of thyroid carcinoma (TC). The study's goal was to investigate the effects of circ 0003747 on the biological progression of papillary thyroid cancer (PTC). Normal thyroid cells Nthy-ori3-1 and TC derived cell lines were used in our study. Sanger sequencing and RNase R treatment were utilized for validating the circular structure of circ_0003747. In our work, circ_0003747 was found to be highly expressed in TC cells. Circ_0003747 knockdown reduced TC cell viability, proliferation, migration, and invasion while increasing cell apoptosis. Circ_0003747 targeted and negatively regulated miR-338-3p expression. Besides, miR-338-3p interacted with PLCD3 to repress its expression. Overexpression of miR-338-3p inhibited TC cell progression, and PLCD3 reversed these effects. Furthermore, PLCD3 overexpression reversed the effects of circ_0003747 knockdown on TC cells. Additionally, the knockdown of circ_0003747 remarkably suppressed tumour size and growth, restrained PLCD3 expression and promoted miR-338-3p expression in nude mice. In conclusion, circ_0003747 facilitated the biological progression of TC by modulating the miR-338-3p/PLCD3 axis, and it may be a new target for TC treatment. [Figure: see text]Abbreviations: TC: Thyroid carcinoma; PTC: Papillary thyroid carcinoma; CircRNAs: Circular RNAs; MiRNA: MicroRNA; EMT: Epithelial-mesenchymal transition; HCC: Hepatocellular carcinoma; PLCD3: Phospholipase C Delta 3; CeRNA: Competitive endogenous RNA.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Circular , Neoplasias de la Tiroides , Animales , Ratones , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Metilación de ADN , Neoplasias Hepáticas/genética , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Fosfolipasa C delta/genética , Fosfolipasa C delta/metabolismo , ARN Circular/genética , Neoplasias de la Tiroides/genética , Humanos
4.
Appl Biochem Biotechnol ; 195(3): 1723-1735, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36367621

RESUMEN

Colon cancer (CC) is a common and lethal cancer to be further elucidated. Accumulating studies elaborated the crucial role of miRNAs differentially expressed in cancer cell growth. In the present study, differentially expressed miRNAs related to CC were screened by the bioinformatics methods on the strength of TCGA database. Highly expressed miR-17-3p was proved to notably influence CC cell proliferative, migratory, invasion, and apoptotic levels. By using TargetScan and miRTarBase databases, phospholipase C delta 1 (PLCD1) was predicted as a target downstream of miR-17-3p, and their binding site was predicted. Through TCGA database, low expression of PLCD1 and its significant negative correlation with miR-17-3p were identified in CC. Dual-luciferase reporter gene analysis ascertained the targeting relationship between miR-17-3p and PLCD1. Cell Counting Kit-8, colony formation, and transwell assays were introduced to detect CC cell malignant progression. Flow cytometry was applied to detect CC cell apoptosis. As result revealed, miR-17-3p was markedly highly expressed, and PLCD1, the target of miR-17-3p, was remarkably lowly expressed in CC cells. Forced expression of miR-17-3p facilitated CC cell proliferation, migration, invasion, and suppressed apoptosis. Biological roles of upregulating miR-17-3p in the colon cancer cells were markedly weakened by over-expressing PLCD1 simultaneously. MiR-17-3p regulated CC cell malignant progression, as well as apoptosis by targeting PLCD1. Moreover, KIF14 was extensively considered as an involved tumor-promoting gene that could be affected by miR-17-3p/PLCD1 axis based on BioGRID analysis and CO-IP assay. Concludingly, this study exhibited that miR-17-3p facilitated CC progression by PLCD1 downregulation.


Asunto(s)
Neoplasias del Colon , MicroARNs , Humanos , Fosfolipasa C delta/genética , Fosfolipasa C delta/metabolismo , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Neoplasias del Colon/genética , Fenotipo , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo
5.
Hum Cell ; 35(3): 924-935, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35301686

RESUMEN

Circular RNAs (circRNAs) are emerging as crucial regulators in tumorigenesis and aggressive progression. However, their biological roles in non-small cell lung cancer (NSCLC) remain largely unknown. Here, by performing circRNA high throughput sequencing in 4 paired NSCLC and normal tissues, we found a NSCLC-associated circRNA, circ-PLCD1, which was evidently downregulated in NSCLC tissues and cell lines. Circ-PLCD1 was transcriptionally activated by tumor-inhibiting protein p53, and exogenous expression of circ-PLCD1 inhibited NSCLC cell proliferation, invasion and induced apoptosis. Mechanistically, circ-PLCD1 acted as a competitive endogenous RNA (ceRNA) to sponge miR-375 and miR-1179 and elevate PTEN, a well-known inhibitor of oncogenic PI3K/AKT signaling, thereby repressing NSCLC tumorigenesis. Importantly, we also identified this ceRNA regulatory axis of circ-PLCD1/miR-375/miR-1179/PTEN in vivo by establishing a xenograft tumor model. Clinically, NSCLC patients with low circ-PLCD1 expression had larger tumor size, later clinical stage and shorter survival time than those with high circ-PLCD1 expression. Altogether, our findings reveal the important tumor suppressive role of circ-PLCD1 in NSCLC, reactivation of this circRNA may be considered as a novel therapeutic avenue for patient with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/patología , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasa C delta/genética , Fosfolipasa C delta/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , Transducción de Señal/genética
6.
Biochem Biophys Res Commun ; 582: 1-7, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34678590

RESUMEN

In early stage of diabetes, insulin secretion from pancreatic ß-cells is increased to deal with the elevated blood glucose. Previous studies have reported that islet-produced carbon monoxide (CO) is associated with increased glucose-stimulated insulin secretion from ß-cells. However, this compensatory mechanism by which CO may act to enhance ß-cell function remain unclear. In this study, we revealed that CO promoted intracellular calcium ([Ca2+]i) elevation and glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells in leptin receptor deficient db/db mice but not in C57 mice. The stimulatory effects of CO on ß-cell function in db/db mice was blocked by inhibition of Phospholipase C (PLC) signaling pathway. We further demonstrated that CO triggered [Ca2+]i transients and enhanced GSIS in C57 islets when ß-cells overexpressed with PLCγ1 and PLCδ1, but not PLCß1. On the other hand, reducing PLCγ1 and PLCδ1 expressions in db/db islets dramatically attenuated the stimulatory effects of CO on ß-cell function, whereas interfering PLCß1 expression had no effects on CO-induced ß-cell function enhancement. Our findings showing that CO elevated [Ca2+]i and enhanced GSIS by activating PLC signaling through PLCγ1 and PLCδ1 isoforms in db/db pancreatic ß-cells may suggest an important mechanism by which CO promotes ß-cell function to prevent hyperglycemia. Our study may also provide new insights into the therapy for type II diabetes and offer a potential target for therapeutic applications of CO.


Asunto(s)
Calcio/metabolismo , Monóxido de Carbono/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Fosfolipasa C delta/genética , Fosfolipasa C gamma/genética , Animales , Línea Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Regulación de la Expresión Génica , Glucosa/metabolismo , Glucosa/farmacología , Insulina/biosíntesis , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasa C beta/antagonistas & inhibidores , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Fosfolipasa C delta/antagonistas & inhibidores , Fosfolipasa C delta/metabolismo , Fosfolipasa C gamma/antagonistas & inhibidores , Fosfolipasa C gamma/metabolismo , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Transducción de Señal
7.
Mol Med Rep ; 23(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33786625

RESUMEN

Hereditary leukonychia (HL) is a rare nail dystrophy disease, and several different clinical manifestations and mutations in the phospholipase C δ 1 (PLCD1) gene have been reported. The present study reports on one Chinese family and one sporadic case of with HL. The family members exhibited an autosomal dominant pattern of inheritance with the involvement of all the fingers and toenails in all the patients. Of interest, most of the affected members had koilonychia during their childhood. Thus, the present study first used gene mapping with an aim to identify the pathogenic gene underlying koilonychia. Through genome­wide linkage analysis, the pathogenic area of koilonychia was identified on chromosome 3 with multipoint Log of Odds scores >2. A novel pathogenic mutation c.1384G>A (p.E462K) was identified in the PLCD1 gene in all the patients in the family, which confirmed the diagnosis of hereditary leukonychia. A novel mutation c.770G>A (p.R257H) was also detected in one sporadic case of leukonychia. On the basis of these findings and of previous studies, it is suggested that hereditary leukonychia may initially present as koilonychia, whereas hereditary koilonychia does not progress to leukonychia. Moreover, the present study identified two pathogenic variants of the PLCD1 associated with hereditary leukonychia, and highlights the significance of genetic diagnosis.


Asunto(s)
Hipopigmentación/genética , Enfermedades de la Uña/congénito , Uñas Malformadas/genética , Fosfolipasa C delta/genética , Adulto , Niño , Femenino , Humanos , Hipopigmentación/patología , Masculino , Mutación Missense , Enfermedades de la Uña/genética , Enfermedades de la Uña/patología , Uñas Malformadas/patología , Linaje
8.
J Neurosci ; 41(16): 3579-3587, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33707294

RESUMEN

The magnocellular neurosecretory cells (MNCs) of the hypothalamus play a vital role in osmoregulation, but the mechanisms underlying MNC osmosensitivity are not fully understood. We showed previously that high osmolality activates phospholipase C (PLC) in rat MNCs in a Ca2+-dependent manner and that PLC activation is necessary for full osmotic activation of an N-terminal variant of the TRPV1 (ΔN-TRPV1) channel. We therefore hypothesized that the Ca2+-dependent δ1 isoform of PLC contributes to ΔN-TRPV1 activation and tested whether MNC function is defective in a transgenic PLCδ1 KO mouse. Water deprivation for 24 h caused greater increases in serum osmolality and losses in body weight in PLCδ1 KO mice than it did in control mice. Action potentials and ΔN-TRPV1 currents were measured in acutely isolated mouse MNCs using whole-cell patch clamp before and after exposure to hypertonic solutions. This treatment elicited a significant activation of ΔN-TRPV1 currents and an increase in firing rate in MNCs isolated from control mice, but not from PLCδ1 KO mice. Submembranous filamentous actin was measured in isolated MNCs before and after treatment with angiotensin II and hypertonic solution. Both treatments caused an increase in filamentous actin fluorescence in MNCs isolated from control mice, but both responses were significantly attenuated in MNCs from PLCδ1 KO mice. Our data demonstrate that the PLCδ1 isoform plays a key role in the activation of ΔN-TRPV1 channels and in osmosensory transduction in MNCs. This study advances our understanding of the molecular mechanisms underlying mammalian osmoregulation.SIGNIFICANCE STATEMENT Magnocellular neurosecretory cells (MNCs) of the hypothalamus play a central role in osmoregulation. We have identified a key role for the PLCδ1 isoform in the activation of ΔN-TRPV1 channels and osmosensory transduction in MNCs. The data indicate that the PLCδ1 isoform is activated by the Ca2+ influx occurring during MNC action potentials and exerts a positive feedback on ΔN-TRPV1 channels to enhance MNC excitability. This study provides evidence that PLCδ1 is a key molecule underlying osmosensory transduction, the regulation of VP release, and osmoregulation.


Asunto(s)
Neuronas/metabolismo , Osmorregulación/fisiología , Fosfolipasa C delta/fisiología , Núcleo Supraóptico/metabolismo , Canales Catiónicos TRPV/metabolismo , Actinas/metabolismo , Potenciales de Acción/fisiología , Angiotensina II/farmacología , Animales , Fenómenos Electrofisiológicos , Soluciones Hipertónicas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistemas Neurosecretores/metabolismo , Ósmosis , Fosfolipasa C delta/genética , Canales Catiónicos TRPV/genética , Privación de Agua
9.
Acta Biochim Biophys Sin (Shanghai) ; 53(4): 481-491, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33674820

RESUMEN

In recent decades, the incidence of thyroid cancer (TC) has rapidly increased, leading us to explore the complex underlying mechanisms. We identified the gene Phospholipase C Delta 3 (PLCD3) as a potential oncogene in TC by conducting the whole transcriptome sequencing. Our study is to understand the oncogenic role of PLCD3 in TC. We verified the overexpression of PLCD3 in TC from The Cancer Genome Atlas, Gene Expression Omnibus databases, and a locally validated cohort. Clinical correlation analysis showed that PLCD3 expression was related to histological type, T stage, lymph node metastasis (LNM), and disease stage. The high expression of PLCD3 could be a distinguishing factor for TC and its LNM. The biological function was examined using small interfering RNA-transfected TC cell lines. Silenced PLCD3 could inhibit colony formation, migration, and invasion ability and promote apoptosis of TC cell lines. PLCD3 silencing reversed the epithelial-mesenchymal transition but induced the apoptotic progress. Further exploration revealed that PLCD3 might be associated with critical genes of the Hippo pathway. The expressions of RHOA, YAP1/TAZ, and their downstream targets were decreased significantly when PLCD3 was down-regulated. YAP1 overexpression rescued the tumor-suppressive effect caused by PLCD3 silencing. This study demonstrates that PLCD3 is an oncogene that supports tumorigenesis and progression in TC, and PLCD3 may be a potential target gene for TC treatment.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Proteínas de Neoplasias/metabolismo , Fosfolipasa C delta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Neoplasias de la Tiroides/metabolismo , Línea Celular Tumoral , Femenino , Vía de Señalización Hippo , Humanos , Metástasis Linfática , Masculino , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Fosfolipasa C delta/genética , Proteínas Serina-Treonina Quinasas/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología
10.
J Invest Dermatol ; 141(3): 533-544, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32795530

RESUMEN

Pilomatricoma, a benign skin appendage tumor, also known as calcifying epithelioma, consists of islands of epithelial cells histologically that contain anucleated cells in the center surrounded by basophilic cells and partial calcification. Sporadic pilomatricomas commonly have somatic mutations in the gene CTNNB1, but causative genes from germline and the underlying pathophysiology are unclear. In this study, we identified a germline missense variant of PLCD1 encoding PLCδ1, c.1186G>A (p.Glu396Lys), in a large Chinese family with autosomal dominant multiple pilomatricomas. Phospholipase C, a key enzyme playing critical roles in intracellular signal transduction, is essential for epidermal barrier integrity. The p.Glu396Lys variant increased the enzymatic activity of PLCδ1, leading to protein kinase C/protein kinase D/extracellular signal-regulated kinase1/2 pathway activation and TPRV6 channel closure, which not only resulted in excessive proliferation of keratinocytes in vitro and in vivo but also induced local accumulation of calcium in the pilomatricoma-like tumor that developed spontaneously in the skin of Plcd1E396K/E396K mice. Our results implicate this p.Glu396Lys variant of PLCD1 from germline leading to gain-of-function of PLCδ1 as a causative genetic defect in familial multiple pilomatricomas.


Asunto(s)
Canales de Calcio/metabolismo , Enfermedades del Cabello/genética , Fosfolipasa C delta/genética , Pilomatrixoma/genética , Neoplasias Cutáneas/genética , Canales Catiónicos TRPV/metabolismo , Animales , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Femenino , Mutación de Línea Germinal , Enfermedades del Cabello/patología , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación Missense , Linaje , Pilomatrixoma/patología , Proteína Quinasa C/metabolismo , Piel/patología , Neoplasias Cutáneas/patología
11.
Sci Rep ; 10(1): 6035, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265483

RESUMEN

The autosomal dominant presentation of trichilemmal cysts is one of the most common single gene familial diseases in humans. However, the genetic basis for the inheritance and genesis of these lesions has remained unknown. We first studied patients with multiple trichilemmal cysts using exome and Sanger sequencing. Remarkably, 21 of 21 trichilemmal cysts from 16 subjects all harbored a somatic p.S745L (c.2234 G > A) mutation in phospholipase C delta 1 (PLCD1), a proposed tumor suppressor gene. In addition to this specific somatic mutation in their tumors, 16 of the 17 subjects with multiple trichilemmal cysts were also heterozygous for a p.S460L (c.1379 G > A) germline variant in PLCD1 which is normally present in only about 6% of this population. The one patient of 17 that did not show the p.S460L germline variant had a germline p.E455K (c.1363 C > T) mutation in the same exon of PLCD1. Among 15 additional subjects, with a history suggesting a single sporadic trichilemmal cyst, six were likely familial due to the presence of the p.S460L germline variant. Of the remaining truly sporadic trichilemmal cysts that could be sequenced, only half showed the p.S745L somatic mutation in contrast to 100% of the familial cysts. Surprisingly, in contrast to Knudsen's two hit hypothesis, the p.S745L somatic mutation was always on the same chromosome as the p.S460L germline variant. Our results indicate that familial trichilemmal cysts is an autosomal dominant tumor syndrome resulting from two hits to the same allele of PLCD1 tumor suppressor gene. The c.1379 G > A base change and neighboring bases are consistent with a mutation caused by ultraviolet radiation. Our findings also indicate that approximately one-third of apparently sporadic trichilemmal cysts are actually familial with incomplete penetrance. Sequencing data suggests that the remaining, apparently sporadic, trichilemmal cysts are genetically distinct from familial cysts due to a lack of the germline mutations that underlie familial cysts and a decreased prevalence of the p.S745L somatic mutation relative to familial trichilemmal cysts.


Asunto(s)
Quiste Epidérmico/genética , Fosfolipasa C delta/genética , Estudios Transversales , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Heterocigoto , Humanos , Mutación Puntual
12.
Cancer Med ; 9(3): 859-871, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31808619

RESUMEN

The purpose of this investigation was to explore the prognostic value of phospholipase C delta (PLCD) genes in early stage pancreatic ductal adenocarcinoma (PDAC) and its potential molecular mechanisms. The prognostic value of PLCD genes in early stage PDAC was assessed using the Kaplan-Meier method and multivariate Cox proportional hazards regression model. Genome-wide correlation analysis was performed on PLCD3 to identify the highly correlated genes in the transcriptome. Then, PLCD3 and these correlated genes together underwent a bioinformatics analysis to elucidate the potential molecular biological functions of PLCD3 in PDAC. PLCD1 and PLCD3 are significantly overexpressed in PDAC. In PDAC patients, PLCD3 is overexpressed in certain groups of people with a history of alcoholism (P = .032). High expression of PLCD3 was found to be associated with lower overall survival (OS) of patients with early stage PDAC (P = .020; adjusted P = .016). A combination of PLCD3 and clinical variables was able to better predict the outcome of patients with early stage PDAC. These clinical variables are histological grade (P = .001; adjusted P = .001), targeted molecular therapy (P < .001; adjusted P < .001), radiation therapy (P = .002; adjusted P = .039), and residual resection (P = .001; adjusted P = .002). The bioinformatics analysis revealed that PLCD3 is associated with angiogenesis, intracellular signal transduction, and regulation of cell proliferation. In conclusion, PLCD3 may be a potential prognostic biomarker for early stage PDAC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/terapia , Neoplasias Pancreáticas/cirugía , Pancreaticoduodenectomía , Fosfolipasa C delta/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Proliferación Celular/genética , Quimioradioterapia Adyuvante/métodos , Biología Computacional , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Márgenes de Escisión , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Estadificación de Neoplasias , Páncreas/patología , Páncreas/cirugía , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Pronóstico , RNA-Seq , Estudios Retrospectivos , Transducción de Señal/genética
13.
J Biol Chem ; 294(45): 16650-16662, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31537645

RESUMEN

Calcium (Ca2+) signaling within the cell nucleus regulates specific cellular events such as gene transcription and cell proliferation. Nuclear and cytosolic Ca2+ levels can be independently regulated, and nuclear translocation of receptor tyrosine kinases (RTKs) is one way to locally activate signaling cascades within the nucleus. Nuclear RTKs, including the epidermal growth factor receptor (EGFR), are important for processes such as transcriptional regulation, DNA-damage repair, and cancer therapy resistance. RTKs can hydrolyze phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) within the nucleus, leading to Ca2+ release from the nucleoplasmic reticulum by inositol 1,4,5-trisphosphate receptors. PI(4,5)P2 hydrolysis is mediated by phospholipase C (PLC). However, it is unknown which nuclear PLC isoform is triggered by EGFR. Here, using subcellular fractionation, immunoblotting and fluorescence, siRNA-based gene knockdowns, and FRET-based biosensor reporter assays, we investigated the role of PLCδ4 in epidermal growth factor (EGF)-induced nuclear Ca2+ signaling and downstream events. We found that EGF-induced Ca2+ signals are inhibited when translocation of EGFR is impaired. Nuclear Ca2+ signals also were reduced by selectively buffering inositol 1,4,5-trisphosphate (InsP3) within the nucleus. EGF induced hydrolysis of nuclear PI(4,5)P2 by the intranuclear PLCδ4, rather than by PLCγ1. Moreover, protein kinase C, a downstream target of EGF, was active in the nucleus of stimulated cells. Furthermore, PLCδ4 and InsP3 modulated cell cycle progression by regulating the expression of cyclins A and B1. These results provide evidence that EGF-induced nuclear signaling is mediated by nuclear PLCδ4 and suggest new therapeutic targets to modulate the proliferative effects of this growth factor.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Núcleo Celular/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Fosfolipasa C delta/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Cadenas Pesadas de Clatrina/antagonistas & inhibidores , Cadenas Pesadas de Clatrina/genética , Cadenas Pesadas de Clatrina/metabolismo , Ciclina A/metabolismo , Ciclina B1/metabolismo , Receptores ErbB/metabolismo , Humanos , Hidrólisis , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa C delta/antagonistas & inhibidores , Fosfolipasa C delta/genética , Fosfolipasa C gamma/antagonistas & inhibidores , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Proteína Quinasa C/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
14.
J Invest Dermatol ; 139(10): 2154-2163.e5, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31082376

RESUMEN

Trichilemmal cysts are common hair follicle-derived intradermal cysts. The trait shows an autosomal dominant mode of transmission with incomplete penetrance. Here, we describe the pathogenetic mechanism for the development of hereditary trichilemmal cysts. By whole-exome sequencing of DNA from the blood samples of 5 affected individuals and subsequent Sanger sequencing of a family cohort including 35 affected individuals, this study identified a combination of the Phospholipase C Delta 1 germline variants c.903A>G, p.(Pro301Pro) and c.1379C>T, p.(Ser460Leu) as a high-risk factor for trichilemmal cyst development. Allele-specific PCRs and cloning experiments showed that these two variants are present on the same allele. The analysis of tissue from several cysts revealed that an additional somatic Phospholipase C Delta 1 mutation on the same allele is required for cyst formation. In two different functional in vitro assays, this study showed that the protein function of the cyst-specific 1-phosphatidylinositol 4, 5-bisphosphate phosphodiesterase delta-1 protein variant is modified. This pathologic mechanism defines a monoallelic model of the two-hit mechanism proposed for tumor development and other hereditary cyst diseases.


Asunto(s)
Quiste Epidérmico/genética , Quiste Epidérmico/patología , Predisposición Genética a la Enfermedad , Fosfolipasa C delta/genética , Enfermedades de la Piel/genética , Enfermedades de la Piel/patología , Alelos , Biopsia con Aguja , Femenino , Mutación de Línea Germinal , Folículo Piloso/patología , Humanos , Inmunohistoquímica , Masculino , Linaje , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Cuero Cabelludo/patología , Secuenciación del Exoma
15.
Biochem Biophys Res Commun ; 511(2): 330-335, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30791982

RESUMEN

Irritant contact dermatitis (ICD) is one of the most common inflammatory skin diseases caused by exposure to chemical irritants. Since chemical irritants primarily damage keratinocytes, these cells play a pivotal role in ICD. One of the phosphoinositide-metabolizing enzymes, phospholipase C (PLC) δ1, is abundantly expressed in keratinocytes. However, the role of PLCδ1 in ICD remains to be clarified. Here, we found that croton oil (CrO)-induced ear swelling, a feature of ICD, was attenuated in keratinocyte-specific PLCδ1 knockout mice (PLCδ1 cKO mice). Dendritic epidermal T cells (DETCs), which have a protective role against ICD, were activated in the epidermis of the PLCδ1 cKO mice. In addition, the skin of CrO-treated PLCδ1 cKO mice showed increased infiltration of Gr1+CD11b+ myeloid cells. Of note, elimination of Gr1+CD11b+ myeloid cells restored CrO-induced ear swelling in PLCδ1 cKO mice to a similar level as that in control mice. Taken together, our results strongly suggest that epidermal loss of PLCδ1 protects mice from ICD through induction of Gr1+CD11b+ myeloid cells and activation of DETCs.


Asunto(s)
Dermatitis por Contacto/genética , Fosfolipasa C delta/genética , Animales , Dermatitis por Contacto/inmunología , Modelos Animales de Enfermedad , Epidermis/inmunología , Epidermis/metabolismo , Masculino , Ratones Noqueados , Células Mieloides/inmunología , Fosfolipasa C delta/inmunología , Linfocitos T/inmunología
16.
J Cell Physiol ; 234(8): 13906-13916, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30618183

RESUMEN

In this study, we found that the phospholipase C delta1 (PLCD1) protein expression is reduced in colorectal tumor tissues compared with paired surgical margin tissues. PLCD1-promoted CpG methylation was detected in 29/64 (45%) primary colorectal tumors, but not in nontumor tissues. The PLCD1 RNA expression was also reduced in three out of six cell lines, due to PLCD1 methylation. The ectopic expression of PLCD1 resulted in inhibited proliferation and attenuated migration of colorectal tumor cells, yet promoted colorectal tumor cell apoptosis in vitro. We also observed that PLCD1 suppressed proliferation and promoted apoptosis in vivo. In addition, PLCD1 induced G1/S phase cell cycle arrest. Furthermore, we found that PLCD1 led to the downregulation of several factors downstream of ß-catenin, including c-Myc and cyclin D1, which are generally known to be promoters of tumorigenesis. This downregulation was caused by an upregulation of E-cadherin in colorectal tumor cells. Our findings provide insights into the role of PLCD1 as a tumor suppressor gene in colorectal cancer (CRC), and demonstrate that it plays significant roles in proliferation, migration, invasion, cell cycle progression, and epithelial-mesenchymal transition. On the basis of these results, tumor-specific methylation of PLCD1 could be used as a novel biomarker for early detection and prognostic prediction in CRC.


Asunto(s)
Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal , Silenciador del Gen , Fosfolipasa C delta/metabolismo , Anciano , Animales , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Células Clonales , Neoplasias Colorrectales/genética , Metilación de ADN/genética , Desmetilación , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Fase G1/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfolipasa C delta/genética , Regiones Promotoras Genéticas , Fase S/genética , Transducción de Señal , beta Catenina/metabolismo
17.
J Cosmet Dermatol ; 18(3): 912-915, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30003652

RESUMEN

BACKGROUND: Hereditary leukonychia is a rare nail dystrophy characterized by distinctive whitening of the nail plate. Mutations in the PLCD1 gene have been identified as a major causative factor in hereditary leukonychia (HL). However, few reports have analyzed the relationship between genotype and phenotype, especially in Chinese HL patients. Our study aims to explore the typical clinical features of hereditary leukonychia cases in Chinese Han pedigree and the correlations with PLCD1 gene mutation. PATIENTS AND METHODS: In this study, two Chinese patients presented with leukonychia and koilonychia. Whole-exome sequencing (WES) was performed to screen for the mutations in PLCD1 gene and other candidate genes for hereditary leukonychia. Parents with PLCD1 mutation were selected for Sanger sequencing. RESULTS: A novel heterozygote missense mutation in exon 9 of PLCD1 gene was identified in the proband and his mother. Whole-exome sequencing revealed both, the proband (III.5) and his mother (II.4) carrying c.1451A>G mutation, while other family members had a normal sequence of the PLCD1 gene. CONCLUSION: For the first time, a hereditary leukonychia case with PLCD1 mutation has been described in Chinese Han pedigree. This finding suggests the PLCD1 mutation maybe involved in hereditary leukonychia.


Asunto(s)
Hipopigmentación/genética , Enfermedades de la Uña/congénito , Uñas Malformadas/genética , Fosfolipasa C delta/genética , Pueblo Asiatico/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Enfermedades de la Uña/genética , Linaje , Secuenciación del Exoma , Adulto Joven
18.
J Biol Chem ; 293(44): 16964-16983, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30194280

RESUMEN

Recent evidence has revealed that heterotrimeric G-proteins can be activated by cytoplasmic proteins that share an evolutionarily conserved sequence called the Gα-binding-and-activating (GBA) motif. This mechanism provides an alternative to canonical activation by G-protein-coupled receptors (GPCRs) and plays important roles in cell function, and its dysregulation is linked to diseases such as cancer. Here, we describe a discovery pipeline that uses biochemical and genetic approaches to validate GBA candidates identified by sequence similarity. First, putative GBA motifs discovered in bioinformatics searches were synthesized on peptide arrays and probed in batch for Gαi3 binding. Then, cDNAs encoding proteins with Gαi3-binding sequences were expressed in a genetically-modified yeast strain that reports mammalian G-protein activity in the absence of GPCRs. The resulting GBA motif candidates were characterized by comparison of their biochemical, structural, and signaling properties with those of all previously described GBA motifs in mammals (GIV/Girdin, DAPLE, Calnuc, and NUCB2). We found that the phospholipase Cδ4 (PLCδ4) GBA motif binds G-proteins with high affinity, has guanine nucleotide exchange factor activity in vitro, and activates G-protein signaling in cells, as indicated by bioluminescence resonance energy transfer (BRET)-based biosensors of G-protein activity. Interestingly, the PLCδ4 isoform b (PLCδ4b), which lacks the domains required for PLC activity, bound and activated G-proteins more efficiently than the full-length isoform a, suggesting that PLCδ4b functions as a G-protein regulator rather than as a PLC. In summary, we have identified PLCδ4 as a nonreceptor activator of G-proteins and established an experimental pipeline to discover and characterize GBA motif-containing proteins.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Fosfolipasa C delta/química , Fosfolipasa C delta/genética , Secuencias de Aminoácidos , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP/química , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/genética , Humanos , Fosfolipasa C delta/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal
19.
J Hum Genet ; 63(10): 1071-1076, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30033443

RESUMEN

Hereditary leukonychia (also known as porcelain nails or white nails) is a genetic disorder. It may exist as an isolated feature or associated with other cutaneous or systemic disorders. Although a number of genes have been described to cause leukonychia, still the underlying genetic etiologies of many cases remain unknown. Here, we report a Pakistani family presenting leukonychia and koilonychia nails in mother and five of her kids. All the affected individuals had white to pale nails in appearance exhibiting complete and partial leukonychia, respectively. Similarly, nails of finger and toe appeared brittle and concave, showing the characteristics features of koilonychia. Whole exome sequencing and subsequent Sanger sequencing identified a pathogenic novel missense mutation (c.1390G>A, p.Glu464Lys) in PLCD1, co-segregating with the disorder in an autosomal dominant pattern. In silico prediction tools supported the pathogenicity of the identified mutation. Literature review determined that mutations in PLCD1 only cause leukonychia. Therefore, our findings add another pathogenic variant to the PLCD1 mutation pool causing leukonychia that would help to understand the underlying molecular mechanism.


Asunto(s)
Secuenciación del Exoma , Familia , Genes Dominantes , Hipopigmentación/genética , Mutación Missense , Enfermedades de la Uña/congénito , Fosfolipasa C delta/genética , Femenino , Humanos , Hipopigmentación/patología , Masculino , Enfermedades de la Uña/genética , Enfermedades de la Uña/patología
20.
Cell Signal ; 49: 59-67, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29859928

RESUMEN

Ca2+ is an important second messenger, and it is involved in many cellular processes such as cell death and proliferation. The rise in intracellular Ca2+ levels can be due to the generation of inositol 1,4,5-trisphosphate (InsP3), which is a product of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by phospholipases C (PLCs), that leads to Ca2+ release from endoplasmic reticulum by InsP3 receptors (InsP3R). Ca2+ signaling patterns can vary in different regions of the cell and increases in nuclear Ca2+ levels have specific biological effects that differ from those of Ca2+ increase in the cytoplasm. There are PLCs in the cytoplasm and nucleus, but little is known about the functions of nuclear PLCs. This work aimed to characterize phenotypically the human PLCδ4 (hPLCδ4) in mesenchymal stem cells. This nuclear isoform of PLC is present in different cell types and has a possible role in proliferative processes. In this work, hPLCδ4 was found to be mainly nuclear in human adipose-derived mesenchymal stem cells (hASC). PLCδ4 knockdown demonstrated that it is essential for hASC proliferation, without inducing cell death. An increase of cells in G1, and a reduction of cells on interphase and G2/M in knockdown cells were seen. Furthermore, PLCδ4 knockdown increased the percentage of senescent cells, p16INK4A+ and p21Cip1 mRNAs expression, which could explain the impaired cell proliferation. The results show that hPLCδ4 is in involved in cellular proliferation and senescence in hASC.


Asunto(s)
Proliferación Celular , Senescencia Celular , Fosfolipasa C delta/metabolismo , Tejido Adiposo/citología , Puntos de Control del Ciclo Celular , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Fosfolipasa C delta/antagonistas & inhibidores , Fosfolipasa C delta/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...