Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
ACS Infect Dis ; 10(5): 1739-1752, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38647213

RESUMEN

Reverse analogs of the phosphonohydroxamic acid antibiotic fosmidomycin are potent inhibitors of the nonmevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, IspC) of Plasmodium falciparum. Some novel analogs with large phenylalkyl substituents at the hydroxamic acid nitrogen exhibit nanomolar PfDXR inhibition and potent in vitro growth inhibition of P. falciparum parasites coupled with good parasite selectivity. X-ray crystallographic studies demonstrated that the N-phenylpropyl substituent of the newly developed lead compound 13e is accommodated in a subpocket within the DXR catalytic domain but does not reach the NADPH binding pocket of the N-terminal domain. As shown for reverse carba and thia analogs, PfDXR selectively binds the S-enantiomer of the new lead compound. In addition, some representatives of the novel inhibitor subclass are nanomolar Escherichia coli DXR inhibitors, whereas the inhibition of Mycobacterium tuberculosis DXR is considerably weaker.


Asunto(s)
Isomerasas Aldosa-Cetosa , Antimaláricos , Fosfomicina , Ácidos Hidroxámicos , Complejos Multienzimáticos , Plasmodium falciparum , Fosfomicina/farmacología , Fosfomicina/análogos & derivados , Fosfomicina/química , Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/metabolismo , Isomerasas Aldosa-Cetosa/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/química , Antimaláricos/farmacología , Antimaláricos/química , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/química , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/enzimología , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Dominio Catalítico , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo
2.
ACS Infect Dis ; 9(7): 1387-1395, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37310810

RESUMEN

Malaria, a mosquito-borne disease caused by several parasites of the Plasmodium genus, remains a huge threat to global public health. There are an estimated 0.5 million malaria deaths each year, mostly among African children. Unlike humans, Plasmodium parasites and a number of important pathogenic bacteria employ the methyl erythritol phosphate (MEP) pathway for isoprenoid synthesis. Thus, the MEP pathway represents a promising set of drug targets for antimalarial and antibacterial compounds. Here, we present new unsaturated MEPicide inhibitors of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of the MEP pathway. A number of these compounds have demonstrated robust inhibition of Plasmodium falciparum DXR, potent antiparasitic activity, and low cytotoxicity against HepG2 cells. Parasites treated with active compounds are rescued by isopentenyl pyrophosphate, the product of the MEP pathway. With higher levels of DXR substrate, parasites acquire resistance to active compounds. These results further confirm the on-target inhibition of DXR in parasites by the inhibitors. Stability in mouse liver microsomes is high for the phosphonate salts, but remains a challenge for the prodrugs. Taken together, the potent activity and on-target mechanism of action of this series further validate DXR as an antimalarial drug target and the α,ß-unsaturation moiety as an important structural component.


Asunto(s)
Antimaláricos , Fosfomicina , Niño , Humanos , Animales , Ratones , Plasmodium falciparum , Fosfomicina/farmacología , Fosfomicina/química , Pentosafosfatos/metabolismo , Antimaláricos/farmacología , Antimaláricos/química
3.
Biochemistry ; 62(1): 109-117, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36525630

RESUMEN

The Gram-positive pathogen Staphylococcus aureus is a leading cause of antimicrobial resistance related deaths worldwide. Like many pathogens with multidrug-resistant strains, S. aureus contains enzymes that confer resistance through antibiotic modification(s). One such enzyme present in S. aureus is FosB, a Mn2+-dependent l-cysteine or bacillithiol (BSH) transferase that inactivates the antibiotic fosfomycin. fosB gene knockout experiments show that the minimum inhibitory concentration (MIC) of fosfomycin is significantly reduced when the FosB enzyme is not present. This suggests that inhibition of FosB could be an effective method to restore fosfomycin activity. We used high-throughput in silico-based screening to identify small-molecule analogues of fosfomycin that inhibited thiol transferase activity. Phosphonoformate (PPF) was a top hit from our approach. Herein, we have characterized PPF as a competitive inhibitor of FosB from S. aureus (FosBSa) and Bacillus cereus (FosBBc). In addition, we have determined a crystal structure of FosBBc with PPF bound in the active site. Our results will be useful for future structure-based development of FosB inhibitors that can be delivered in combination with fosfomycin in order to increase the efficacy of this antibiotic.


Asunto(s)
Fosfomicina , Antibacterianos/química , Foscarnet/metabolismo , Foscarnet/farmacología , Fosfomicina/química , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/metabolismo , Transferasas/metabolismo , Farmacorresistencia Bacteriana , Proteínas Bacterianas/metabolismo
4.
J Med Chem ; 65(21): 14740-14763, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36269107

RESUMEN

To develop novel antibiotics, targeting the early steps of cell wall peptidoglycan biosynthesis seems to be a promising strategy that is still underutilized. MurA, the first enzyme in this pathway, is targeted by the clinically used irreversible inhibitor fosfomycin. However, mutations in its binding site can cause bacterial resistance. We herein report a series of novel reversible pyrrolidinedione-based MurA inhibitors that equally inhibit wild type (WT) MurA and the fosfomycin-resistant MurA C115D mutant, showing an additive effect with fosfomycin for the inhibition of WT MurA. For the most potent inhibitor 46 (IC50 = 4.5 µM), the mode of inhibition was analyzed using native mass spectrometry and protein NMR spectroscopy. The compound class was nontoxic against human cells and highly stable in human S9 fraction, human plasma, and bacterial cell lysate. Taken together, this novel compound class might be further developed toward antibiotic drug candidates that inhibit cell wall synthesis.


Asunto(s)
Transferasas Alquil y Aril , Fosfomicina , Humanos , Fosfomicina/química , Succinimidas , Peptidoglicano , Antibacterianos/farmacología , Bacterias/metabolismo , Inhibidores Enzimáticos/química
5.
Eur J Med Chem ; 243: 114752, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36126388

RESUMEN

MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) catalyzes the first committed step in the cytoplasmic part of peptidoglycan biosynthesis and is a validated target enzyme for antibacterial drug discovery; the inhibitor fosfomycin has been used clinically for decades. Like fosfomycin, most MurA inhibitors are small heterocyclic compounds that inhibit the enzyme by forming a covalent bond with the active site cysteine. The reactive chloroacetamide group was selected from a series of suitable electrophilic thiol-reactive warheads. The predominantly one-step synthesis led to the construction of the final library of 47 fragment-sized chloroacetamide compounds. Several new E. coli MurA inhibitors were identified, with the most potent compound having an IC50 value in the low micromolar range. The electrophilic reactivity of all chloroacetamide fragments in our library was evaluated by a high-throughput spectrophotometric assay using the reduced Ellman reagent as a surrogate for the cysteine thiol. LC-MS/MS experiments confirmed the covalent binding of the most potent inhibitor to Cys115 of the digested MurA enzyme. The covalent binding was further investigated by a biochemical time-dependent assay and a dilution assay, which confirmed the irreversible and time-dependent mode of action. The efficacy of chloroacetamide derivatives against MurA does not correlate with their thiol reactivity, making the active fragments valuable starting points for fragment-based development of new antibacterial agents targeting MurA.


Asunto(s)
Transferasas Alquil y Aril , Fosfomicina , Fosfomicina/química , Peptidoglicano , Escherichia coli , Cisteína , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antibacterianos/química , Inhibidores Enzimáticos/química
6.
Methods Enzymol ; 669: 45-70, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35644180

RESUMEN

Fosfomycin is a clinically used broad-spectrum antibiotic that has the structure of an oxirane ring with a phosphonic acid substituent and a methyl substituent. In nature, fosfomycin is produced by Streptomyces spp. and Pseudomonas sp., but biosynthesis of fosfomycin significantly differs between the two bacteria, especially in the incorporation mechanism of the methyl group. It has been proposed that the cobalamin-dependent radical S-adenosyl-l-methionine (SAM) enzyme Fom3 is responsible for the methyl-transfer reaction in Streptomyces fosfomycin biosynthesis. In this chapter, we describe the experimental methods to characterize Fom3. We performed the methylation reaction with the purified recombinant Fom3, revealing that Fom3 recognizes a cytidylylated 2-hydroxyethylphosphonate as a substrate and catalyzes stereoselective methylation of the sp3 carbon at the C2 position to afford cytidylylated (S)-2-hydroxypropylphosphonate. Reaction analysis using deuterium-labeled substrates showed that the 5'-deoxyadenosyl radical generated by reductive cleavage of SAM stereoselectively abstracts the pro-R hydrogen atom of the CH bond at the C2 position of cytidylylated 2-hydroxyethylphosphonate. Therefore, the C-methylation reaction catalyzed by Fom3 proceeds with inversion of the configuration at the C2 position. Experimental methods to elucidate the chemical structures of the substrate and products and the stereochemical course in the Fom3-catalyzed reaction could give information to progress investigation of cobalamin-dependent radical SAM C-methyltransferases.


Asunto(s)
Fosfomicina , Streptomyces , Fosfomicina/química , Fosfomicina/metabolismo , Metiltransferasas/metabolismo , S-Adenosilmetionina/metabolismo , Streptomyces/metabolismo , Vitamina B 12/metabolismo
7.
Protein Sci ; 31(3): 580-590, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34882867

RESUMEN

The Gram-positive pathogen Enterococcus faecium is one of the leading causes of hospital-acquired vancomycin resistant enterococci (VRE) infections. E. faecium has extensive multidrug resistance and accounts for more than two million infections in the United States each year. FosB is a fosfomycin resistance enzyme found in Gram-positive pathogens like E. faecium. Typically, the FosB enzymes are Mn2+ -dependent bacillithiol (BSH) transferases that inactivate fosfomycin through nucleophilic addition of the thiol to the antibiotic. However, our kinetic analysis of FosBEf shows that the enzyme does not utilize BSH as a thiol substrate, unlike the other well characterized FosB enzymes. Here we report that FosBEf is a Mn2+ -dependent L-cys transferase. In addition, we have determined the three-dimensional X-ray crystal structure of FosBEf in complex with fosfomycin at a resolution of 2.0 Å. A sequence similarity network (SSN) was generated for the FosB family to investigate the unexpected substrate selectivity. Three non-conserved residues were identified in the SSN that may contribute to the substrate selectivity differences in the family of enzymes. Our structural and functional characterization of FosBEf establishes the enzyme as a potential target and may prove useful for future structure-based development of FosB inhibitors to increase the efficacy of fosfomycin.


Asunto(s)
Enterococcus faecium , Fosfomicina , Enterococos Resistentes a la Vancomicina , Antibacterianos/química , Antibacterianos/farmacología , Fosfomicina/química , Fosfomicina/farmacología , Cinética
8.
Molecules ; 26(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34443699

RESUMEN

Three α,α-difluorophosphonate derivatives of fosmidomycin were synthesized from diethyl 1,1-difluorobut-3-enylphosphonate and were evaluated on Escherichia coli. Two of them are among the best 1-deoxy-d-xylulose 5-phosphate reductoisomerase inhibitors, with IC50 in the nM range, much better than fosmidomycin, the reference compound. They also showed an enhanced antimicrobial activity against E. coli on Petri dishes in comparison with the corresponding phosphates and the non-fluorinated phosphonate.


Asunto(s)
Antibacterianos/farmacología , Fosfomicina/análogos & derivados , Ácidos Hidroxámicos/farmacología , Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fosfomicina/síntesis química , Fosfomicina/química , Fosfomicina/farmacología , Pruebas de Sensibilidad Microbiana
9.
Biochemistry ; 60(20): 1587-1596, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33942609

RESUMEN

Methylcobalamin-dependent radical S-adenosylmethionine (SAM) enzymes methylate non-nucleophilic atoms in a range of substrates. The mechanism of the methyl transfer from cobalt to the receiving atom is still mostly unresolved. Here we determine the stereochemical course of this process at the methyl group during the biosynthesis of the clinically used antibiotic fosfomycin. In vitro reaction of the methyltransferase Fom3 using SAM labeled with 1H, 2H, and 3H in a stereochemically defined manner, followed by chemoenzymatic conversion of the Fom3 product to acetate and subsequent stereochemical analysis, shows that the overall reaction occurs with retention of configuration. This outcome is consistent with a double-inversion process, first in the SN2 reaction of cob(I)alamin with SAM to form methylcobalamin and again in a radical transfer of the methyl group from methylcobalamin to the substrate. The methods developed during this study allow high-yield in situ generation of labeled SAM and recombinant expression and purification of the malate synthase needed for chiral methyl analysis. These methods facilitate the broader use of in vitro chiral methyl analysis techniques to investigate the mechanisms of other novel enzymes.


Asunto(s)
Fosfomicina/biosíntesis , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Proteínas Bacterianas/metabolismo , Citidina Monofosfato/metabolismo , Fosfomicina/química , Metilación , Metiltransferasas/metabolismo , Organofosfonatos/metabolismo , S-Adenosilmetionina/química , Estereoisomerismo , Streptomyces/enzimología , Vitamina B 12/química
10.
Mar Drugs ; 19(3)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800864

RESUMEN

Thermosensitive chitosan hydrogels-renewable, biocompatible materials-have many applications as injectable biomaterials for localized drug delivery in the treatment of a variety of diseases. To combat infections such as Staphylococcus aureus osteomyelitis, localized antibiotic delivery would allow for higher doses at the site of infection without the risks associated with traditional antibiotic regimens. Fosfomycin, a small antibiotic in its own class, was loaded into a chitosan hydrogel system with varied beta-glycerol phosphate (ß-GP) and fosfomycin (FOS) concentrations. The purpose of this study was to elucidate the interactions between FOS and chitosan hydrogel. The Kirby Bauer assay revealed an unexpected concentration-dependent inhibition of S. aureus, with reduced efficacy at the high FOS concentration but only at the low ß-GP concentration. No effect of FOS concentration was observed for the planktonic assay. Rheological testing revealed that increasing ß-GP concentration increased the storage modulus while decreasing gelation temperature. NMR showed that FOS was removed from the liquid portion of the hydrogel by reaction over 12 h. SEM and FTIR confirmed gels degraded and released organophosphates over 5 days. This work provides insight into the physicochemical interactions between fosfomycin and chitosan hydrogel systems and informs selection of biomaterial components for improving infection treatment.


Asunto(s)
Antibacterianos/administración & dosificación , Quitosano/química , Fosfomicina/administración & dosificación , Glicerofosfatos/química , Antibacterianos/química , Antibacterianos/farmacología , Sistemas de Liberación de Medicamentos , Fosfomicina/química , Fosfomicina/farmacología , Hidrogeles , Reología , Staphylococcus aureus/efectos de los fármacos , Temperatura , Factores de Tiempo
11.
Biosci Biotechnol Biochem ; 85(1): 42-52, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33577658

RESUMEN

Phosphonates are organophosphorus compounds possessing a characteristic C-P bond in which phosphorus is directly bonded to carbon. As phosphonates mimic the phosphates and carboxylates of biological molecules to potentially inhibit metabolic enzymes, they could be lead compounds for the development of a variety of drugs. Fosfomycin (FM) is a representative phosphonate natural product that is widely used as an antibacterial drug. Here, we review the biosynthesis of FM, which includes a recent breakthrough to find a missing link in the biosynthetic pathway that had been a mystery for a quarter-century. In addition, we describe the genome mining of phosphonate natural products using the biosynthetic gene encoding an enzyme that catalyzes C-P bond formation. We also introduce the chemoenzymatic synthesis of phosphonate derivatives. These studies expand the repertoires of phosphonates and the related biosynthetic machinery. This review mainly covers the years 2012-2020.


Asunto(s)
Productos Biológicos/metabolismo , Enzimas/metabolismo , Fosfomicina/biosíntesis , Productos Biológicos/química , Fosfomicina/química
12.
J Chromatogr Sci ; 59(2): 165-174, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33302294

RESUMEN

Fosfomycin is an antibiotic with a broad spectrum of activity against many multidrug-resistant bacterial strains. It is mainly excreted unchanged by the kidneys, and its half-life therefore depends on kidney function which varies considerably among individuals, and within individuals over time. Proper fosfomycin dosing thus depends on assaying blood concentration of the drug. We developed and validated a simple, sensitive and specific chromatography assay, which was coupled to electrospray ionization mass spectrometry for determination of fosfomycin. Separation of fosfomycin was based on the method of the hydrophilic interaction liquid chromatography; specifically, plasma and dialysate samples were acidified and the protein precipitated with acetonitrile. The calibration curves showed excellent coefficients of determination (R2 > 0.999) over the relevant concentration range of 25-700 µg/mL. Intraday precision was 1.1-1.2% and accuracy was -5.9% to 0.9% for quality control samples. Interday precision was 2.9-3.4% and accuracy was -3.7% to 5.5%. Extraction recovery was ≥87% and matrix effects ranged from 2.2% to 4.3%. After laboratory validation, the method was successfully applied to clinical samples.


Asunto(s)
Cromatografía Liquida/métodos , Fosfomicina/sangre , Espectrometría de Masa por Ionización de Electrospray/métodos , Soluciones para Diálisis , Estabilidad de Medicamentos , Fosfomicina/análisis , Fosfomicina/química , Fosfomicina/farmacocinética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
Molecules ; 25(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096817

RESUMEN

Malaria, despite many efforts, remains among the most problematic infectious diseases worldwide, mainly due to the development of drug resistance by Plasmodium falciparum. The antibiotic fosmidomycin (FSM) is also known for its antimalarial activity by targeting the non-mevalonate isoprenoid synthesis pathway, which is essential for the malaria parasites but is absent in mammalians. In this study, we synthesized and evaluated against the chloroquine-resistant P. falciparum FcB1/Colombia strain, a series of FSM analogs, derivatives, and conjugates with other antimalarial agents, such as artemisinin (ART) and aminochloroquinoline (ACQ). The biological evaluation revealed four new compounds with higher antimalarial activity than FSM: two FSM-ACQ derivatives and two FSM-ART conjugates, with 3.5-5.4 and 41.5-23.1 times more potent activities than FSM, respectively.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Fosfomicina/análogos & derivados , Plasmodium falciparum/efectos de los fármacos , Quinolinas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Artemisininas/química , Fosfomicina/síntesis química , Fosfomicina/química , Fosfomicina/farmacología , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Quinolinas/química
14.
J Chem Theory Comput ; 16(4): 2751-2765, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32167296

RESUMEN

To reach their site of action, it is essential for antibiotic molecules to cross the bacterial outer membrane. The progress of enhanced sampling techniques in molecular dynamics simulations enables us to understand these translocations at an atomic level. To this end, calculations of free energy surfaces for these permeation processes are of key importance. Herein, we investigate the translocation of a variety of anionic solutes through the outer membrane pore OprO of the Gram-negative bacterium Pseudomonas aeruginosa using the metadynamics and umbrella sampling techniques at the all-atom level. Free energy calculations have been performed employing these two distinct methods in order to illustrate the difference in computed free energies, if any. The investigated solutes range from a single atomic chloride ion over a multiatomic monophosphate ion to a more bulky fosmidomycin antibiotic. The role of complexity of the permeating solutes in estimating accurate free energy profiles is demonstrated by performing extensive convergence analysis. For simple monatomic ions, good agreement between the well-tempered metadynamics and the umbrella sampling approaches is achieved, while for the permeation of the monophosphate ion differences start to appear. In the case of larger molecules such as fosmidomycin it is a tough challenge to achieve converged free energy profiles. This issue is mainly due to neglecting orthogonal degrees of freedom during the free energy calculations. Nevertheless, the freely driven metadynamics approach leads to clearly advantageous results. Additionally, atomistic insights of the translocation mechanisms of all three solutes are discussed.


Asunto(s)
Proteínas Bacterianas/química , Simulación de Dinámica Molecular , Porinas/química , Cloruros/química , Entropía , Fosfomicina/análogos & derivados , Fosfomicina/química , Fosfatos/química
15.
J Am Chem Soc ; 141(51): 20397-20406, 2019 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-31769979

RESUMEN

(S)-2-Hydroxypropylphosphonate [(S)-2-HPP, 1] epoxidase (HppE) reduces H2O2 at its nonheme-iron cofactor to install the oxirane "warhead" of the antibiotic fosfomycin. The net replacement of the C1 pro-R hydrogen of 1 by its C2 oxygen, with inversion of configuration at C1, yields the cis-epoxide of the drug [(1R,2S)-epoxypropylphosphonic acid (cis-Fos, 2)]. Here we show that HppE achieves ∼95% selectivity for C1 inversion and cis-epoxide formation via steric guidance of a radical-coupling mechanism. Published structures of the HppE·FeII·1 and HppE·ZnII·2 complexes reveal distinct pockets for C3 of the substrate and product and identify four hydrophobic residues-Leu120, Leu144, Phe182, and Leu193-close to C3 in one of the complexes. Replacement of Leu193 in the substrate C3 pocket with the bulkier Phe enhances stereoselectivity (cis:trans ∼99:1), whereas the Leu120Phe substitution in the product C3 pocket diminishes it (∼82:18). Retention of C1 configuration and trans-epoxide formation become predominant with the bulk-reducing Phe182Ala substitution in the substrate C3 pocket (∼13:87), trifluorination of C3 (∼23:77), or both (∼1:99). The effect of C3 trifluorination is counteracted by the more constrained substrate C3 pockets in the Leu193Phe (∼56:44) and Leu144Phe/Leu193Phe (∼90:10) variants. The ability of HppE to epoxidize substrate analogues bearing halogens at C3, C1, or both is inconsistent with a published hypothesis of polar cyclization via a C1 carbocation. Rather, specific enzyme-substrate contacts drive inversion of the C1 radical-as proposed in a recent computational study-to direct formation of the more potently antibacterial cis-epoxide by radicaloid C-O coupling.


Asunto(s)
Compuestos Epoxi/metabolismo , Fosfomicina/biosíntesis , Oxidorreductasas/metabolismo , Compuestos Epoxi/química , Fosfomicina/química , Radicales Libres/química , Radicales Libres/metabolismo , Conformación Molecular , Oxidorreductasas/química , Oxidorreductasas/genética , Estereoisomerismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-31380296

RESUMEN

α-Hemolysin (Hla) is a significant virulence factor in Staphylococcus aureus (S. aureus)-caused infectious diseases such as pneumonia. Thus, to prevent the production of Hla when treating S. aureus infection, it is necessary to choose an antibiotic with good antibacterial activity and effect. In our study, we observed that Fosfomycin (FOM) at a sub-inhibitory concentration inhibited expression of Hla. Molecular dynamics demonstrated that FOM bound to the binding sites LYS 154 and ASP 108 of Hla, potentially inhibiting Hla. Furthermore, we verified that staphylococcal membrane-derived vesicles (SMVs) contain Hla and that FOM treatment significantly reduced the production of SMVs and Hla. Based on our pharmacological inhibition analysis, ERK and p38 activated NLRP3 inflammasomes. Moreover, FOM inhibited expression of MAPKs and NLRP3 inflammasome-related proteins in S. aureus as well as SMV-infected human macrophages (MΦ) and alveolar epithelial cells. In vivo, SMVs isolated from S. aureus DU1090 (an isogenic Hla deletion mutant) or the strain itself caused weaker inflammation than that of its parent strain 8325-4. FOM also significantly reduced the phosphorylation levels of ERK and P38 and expression of NLRP3 inflammasome-related proteins. In addition, FOM decreased MPO activity, pulmonary vascular permeability and edema formation in the lungs of mice with S. aureus-caused pneumonia. Taken together, these data indicate that FOM exerts protective effects against S. aureus infection in vitro and in vivo by inhibiting Hla in SMVs and blocking ERK/P38-mediated NLRP3 inflammasome activation by Hla.


Asunto(s)
Antibacterianos/farmacología , Toxinas Bacterianas/antagonistas & inhibidores , Fosfomicina/farmacología , Proteínas Hemolisinas/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Neumonía Estafilocócica/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Factores de Virulencia/antagonistas & inhibidores , Animales , Antibacterianos/química , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sitios de Unión , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Vesículas Extracelulares , Fosfomicina/química , Regulación de la Expresión Génica , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Inflamasomas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neumonía Estafilocócica/microbiología , Neumonía Estafilocócica/patología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/patogenicidad , Células THP-1 , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Biomed Pharmacother ; 118: 109240, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31401391

RESUMEN

Fosfomycin residues are found in the egg following administration in the layer hen. In this regard, some aspects of embryo-toxicity of fosfomycin have been documented previously. The exact mechanism by which fosfomycin causes embryo-toxicity is not clearly understood. We hypothesis that fosfomycin may alter vasculature as well as normal expression of genes, which are associated with vascular development. Therefore, the present study aimed to address these issues through in silico and in vivo investigations. At first, embryo-toxicity and anti-angiogenic effects of fosfomycin were tested using computerized programs. After that, fertile chicken eggs were treated with fosfomycin and chorioallantoic membrane vasculature was assessed through morphometric, molecular and histopathological assays. The results showed that fosfomycin not only interacted with VEGF-A protein and promoter, but also altered embryonic vasculature and decreased expression level of VEGF-A. Reticulin staining of treated group was also confirmed decreased vasculature. The minor groove of DNA was the preferential binding site for fosfomycin with its selective binding to GC-rich sequences. We suggested that the affinity of fosfomycin for VEGF-A protein and promoter as well as alteration of the angiogenic signaling pathway may cause vascular damage during embryonic growth. Hence, veterinarians should be aware of such effects and limit the use of this drug during the developmental stages of the embryo, particularly in breeder farms. Considering the anti-angiogenic activity and sequence selectivity of fosfomycin, a major advantage that seems to be very promising is the fact that it is possible to achieve a sequence-selective binding drug for cancer.


Asunto(s)
Vasos Sanguíneos/efectos de los fármacos , Fosfomicina/toxicidad , Modelos Biológicos , Animales , Capilares/efectos de los fármacos , Capilares/fisiología , Embrión de Pollo , Membrana Corioalantoides/efectos de los fármacos , Simulación por Computador , Fosfomicina/química , Simulación del Acoplamiento Molecular , Regiones Promotoras Genéticas , Conformación Proteica , Receptores de Superficie Celular/química , Reproducibilidad de los Resultados , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Eur J Med Chem ; 181: 111555, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31382119

RESUMEN

Thia analogs of fosmidomycin are potent inhibitors of the non-mevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC, Dxr) of Plasmodium falciparum. Several new thioethers displayed antiplasmodial in vitro activity in the low nanomolar range, without apparent cytotoxic effects in HeLa cells. The (S)-(+)-enantiomer of a typical representative selectively inhibited IspC and the growth of P. falciparum in continuous culture. The inhibitor was stable at pH 7.6 and room temperature, and no racemization was observed under these conditions during a period of up to two days. Oxidation of selected thioethers to sulfones reduced antiplasmodial activity and the inhibitory activity against Escherichia coli, Mycobacterium tuberculosis and P. falciparum IspC orthologs.


Asunto(s)
Antibacterianos/farmacología , Antiprotozoarios/farmacología , Escherichia coli/efectos de los fármacos , Fosfomicina/análogos & derivados , Mycobacterium tuberculosis/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Células CACO-2 , Relación Dosis-Respuesta a Droga , Escherichia coli/crecimiento & desarrollo , Fosfomicina/síntesis química , Fosfomicina/química , Fosfomicina/farmacología , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/crecimiento & desarrollo , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/crecimiento & desarrollo , Relación Estructura-Actividad
19.
Bioorg Med Chem Lett ; 29(9): 1051-1053, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30857749

RESUMEN

A series of N-alkoxy analogs of a l-leucine ethyl ester phosphonodiamidate prodrug of a fosmidomycin surrogate were synthesized and investigated for their ability to inhibit in vitro growth of P. falciparum and M. tuberculosis. These compounds originate by merging a previously reported successful phosphonate derivatisation with favorable modifications of the hydroxamate moiety. None of the synthesized compounds showed enhanced activity against either P. falciparum or M. tuberculosis in comparison with the parent free hydroxamate analog.


Asunto(s)
Antimaláricos/química , Antituberculosos/química , Fosfomicina/análogos & derivados , Organofosfonatos/química , Profármacos/química , Antimaláricos/síntesis química , Antimaláricos/farmacología , Antituberculosos/síntesis química , Antituberculosos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fosfomicina/química , Humanos , Ácidos Hidroxámicos/química , Mycobacterium tuberculosis/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Profármacos/síntesis química , Profármacos/farmacología
20.
Biophys J ; 116(2): 258-269, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30616836

RESUMEN

Fosfomycin is a frequently prescribed drug in the treatment of acute urinary tract infections. It enters the bacterial cytoplasm and inhibits the biosynthesis of peptidoglycans by targeting the MurA enzyme. Despite extensive pharmacological studies and clinical use, the permeability of fosfomycin across the bacterial outer membrane is largely unexplored. Here, we investigate the fosfomycin permeability across the outer membrane of Gram-negative bacteria by electrophysiology experiments as well as by all-atom molecular dynamics simulations including free-energy and applied-field techniques. Notably, in an electrophysiological zero-current assay as well as in the molecular simulations, we found that fosfomycin can rapidly permeate the abundant Escherichia coli porin OmpF. Furthermore, two triple mutants in the constriction region of the porin have been investigated. The permeation rates through these mutants are slightly lower than that of the wild type but fosfomycin can still permeate. Altogether, this work unravels molecular details of fosfomycin permeation through the outer membrane porin OmpF of E. coli and moreover provides hints for understanding the translocation of phosphonic acid antibiotics through other outer membrane pores.


Asunto(s)
Antibacterianos/metabolismo , Fosfomicina/química , Simulación de Dinámica Molecular , Porinas/química , Antibacterianos/química , Transporte Biológico , Fosfomicina/metabolismo , Cinética , Porinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...