Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Curr Eye Res ; 48(10): 894-903, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37395011

RESUMEN

PURPOSE: Corneal epithelial barrier function is important to maintain corneal homeostasis and is impaired by inflammation. We aimed to investigate the localization of semaphorin 4D (Sema4D) in the cornea, and its effects on the barrier function of cultured corneal epithelial cells. METHODS: The expressions of semaphorin4 D and its receptor in the murine cornea were examined by immunoblot, immunofluorescent staining and confocal microscopy observations. Human corneal epithelial (HCE) cells stimulated by TNF-α or IL-1ß were cultured with or without Sema4D. Cell viability was examined by CCK8, cell migration was evaluated by scratch wound assay, and barrier function was assessed by transepithelial electrical resistance (TEER) and Dextran-FITC permeability assay. The expression of tight junction proteins in HCE cells was examined by immunoblot, immunofluorescent staining and qRT-PCR. RESULTS: We demonstrated that the protein of Sema4D and its receptor, plexin-B1, was expressed in murine cornea. Sema4D induced an increase in the TEER and a decrease in the permeability of HCE cells. It also induced the expression of tight junction protein ZO-1, occludin and claudin-1 in HCE cells. Furthermore, under stimulation of TNF-α or IL-1ß, Sema4D treatment could inhibit the decreased TEER and the elevated permeability of HCE cells. CONCLUSIONS: Sema4D is located distinctly in corneal epithelial cells and promoted their barrier function by increasing the expression of tight junction proteins. Sema4D may act as a preventive for maintaining corneal epithelial barrier function during ocular inflammation.


Asunto(s)
Epitelio Corneal , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología , Epitelio Corneal/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Células Epiteliales/metabolismo , Uniones Estrechas , Células Cultivadas
2.
Libyan J Med ; 18(1): 2202446, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37155144

RESUMEN

As a gastrointestinal malignancy, colorectal cancer (CRC) is a main cause of cancer-related deaths worldwide. Mex-3 RNA-binding family member A (MEX3A) is upregulated in multiple types of tumors and plays a critical role in tumor proliferation and metastasis. However, the function of MEX3A in CRC angiogenesis has not been fully understood. Hence, the aim of this study was to explore the role of MEX3A in CRC angiogenesis and investigate its underlying mechanisms. MEX3A expression in CRC was first investigated by bioinformatics means and then measured by qRT-PCR and Western blot. CCK-8 assay was employed to test cell viability. Angiogenesis assay was used to assess angiogenesis. The protein levels of VEGF, FGF and SDF-1 were evaluated using Western blot. The expression levels of MYC, HK2 and PGK1 were investigated by qRT-PCR. Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were determined by Seahorse XP 96. The levels of pyruvate, lactate, citric acid and malate were measured by corresponding kits. Bioinformatics analysis demonstrated high MEX3A expression in CRC tissues and MEX3A enrichment in glycolysis and angiogenesis pathways. Cell assays showed high MEX3A expression in CRC cells and its promoting effects in CRC cell proliferation and glycolysis as well as angiogenesis. Rescue experiment confirmed that glycolysis inhibitor 2-DG could offset the promoting effects of MEX3A on the proliferation, angiogenesis and glycolysis of CRC cells. In conclusion, MEX3A could facilitate CRC angiogenesis by activating the glycolytic pathway, suggesting that MEX3A may be a novel therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Humanos , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Glucólisis , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología , Fosfoproteínas/uso terapéutico , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/farmacología , Proteínas de Unión al ARN/uso terapéutico
3.
Artículo en Chino | MEDLINE | ID: mdl-36725287

RESUMEN

Objective: To investigate the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) in the alteration of tight junction protein expression in choroid plexus epithelial cells created by lanthanum-activated matrix metalloproteinase 9 (MMP9) . Methods: In October 2020, immortalized rat choroid plexus epithelial cell line (Z310) cells were used as the blood-cerebrospinal fluid barrier in vitro, and were divided into control group and 0.125, 0.25, 0.5 mmol/L lanthanum chloride (LaCl(3)) treatment group. After treating Z310 cells with different concentrations of LaCl(3) for 24 hours, the morphological changes of Z310 cells were observed under inverted microscope, the protein expression levels of MMP9, occludin and zonula occludens-1 (ZO-1) were observed by cellular immunofluorescence method, and the protein expression levels of MMP9, tissue inhibitors of metalloproteinase1 (TIMP1) , occludin, ZO-1 and Nrf2 were detected by Western blotting. The level of reactive oxygen species (ROS) in cells was detected by flow cytometry. Results: Compared with the control group, Z310 cells in the LaCl(3) treatment group were smaller in size, with fewer intercellular junctions, and more dead cells and cell fragments. The expression level of MMP9 protein in cells treated with 0.25 and 0.5 mmol/L LaCl(3) was significantly higher than that in the control group (P<0.05) , and the expression level of TIMP1 and tight junction proteins occudin and ZO-1 was significantly lower than that in the control group (P<0.05) . Compared with the control group, the ROS production level in the 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly increased (P<0.05) , and the Nrf2 protein expression level in the 0.125, 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly decreased (P<0.05) . Conclusion: Lanthanum may increase the level of ROS in cells by down regulating the expression of Nrf2, thus activating MMP9 to reduce the expression level of intercellular tight junction proteins occludin and ZO-1.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Factor 2 Relacionado con NF-E2 , Ratas , Animales , Metaloproteinasa 9 de la Matriz/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Ocludina/metabolismo , Ocludina/farmacología , Plexo Coroideo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Lantano/farmacología , Células Epiteliales , Proteína de la Zonula Occludens-1/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología
4.
Ren Fail ; 45(1): 2171886, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36715439

RESUMEN

OBJECTIVES: Subfornical organ (SFO) is vital in chronic kidney disease (CKD) progression caused by high salt levels. The current study investigated the effects of high salt on phosphoproteomic changes in SFO in CKD rats. METHODS: 5/6 nephrectomized rats were fed a normal-salt diet (0.4%) (NC group) or a high-salt diet (4%) (HC group) for three weeks, while sham-operated rats were fed a normal-salt diet (0.4%) (NS group). For phosphoproteomic analysis of SFO in different groups, TiO2 enrichment, isobaric tags for relative and absolute quantification (iTRAQ) labeling, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used. RESULTS: There were 6808 distinct phosphopeptides found, which corresponded to 2661 phosphoproteins. NC group had 168 upregulated and 250 downregulated phosphopeptides compared to NS group. Comparison to NC group, HC group had 154 upregulated and 124 downregulated phosphopeptides. Growth associated protein 43 (GAP43) and heat shock protein 27 (Hsp27) were significantly upregulated phosphoproteins and may protect against high-salt damage. Differential phosphoproteins with tight functional connection were synapse proteins and microtubule-associated proteins, implying that high-salt diet disrupted brain's structure and function. Furthermore, differential phosphoproteins in HC/NC comparison group were annotated to participate in GABAergic synapse signaling pathway and aldosterone synthesis and secretion, which attenuated inhibitory neurotransmitter effects and increased sympathetic nerve activity (SNA). DISCUSSION: This large scale phosphoproteomic profiling of SFO sheds light on how salt aggravates CKD via the central nervous system.


Asunto(s)
Insuficiencia Renal Crónica , Órgano Subfornical , Ratas , Animales , Ratas Sprague-Dawley , Cromatografía Liquida , Órgano Subfornical/fisiología , Fosfopéptidos/farmacología , Espectrometría de Masas en Tándem , Cloruro de Sodio Dietético/farmacología , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología
5.
Connect Tissue Res ; 64(1): 53-63, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35816114

RESUMEN

PURPOSE: Previous studies demonstrated that the exposure of primary dental pulp (DP) cultures to fibroblast growth factor 2 (FGF2) between days 3-7 exerted significant and long-lasting stimulatory effects on odontoblast differentiation and Dspp expression. These effects involved the increased expression of components of bone morphogenetic protein (BMP) signaling and were reverted by a BMP inhibitor noggin. FGF2 also transiently stimulated osteoblast differentiation and the expression of Ibsp and Dmp1. The present study aimed to further explore interactions between BMP and FGF signaling during odontoblast and osteoblast differentiation in DP cultures. MATERIALS AND METHODS: Cultures were established using DP tissue isolated from non-transgenic and fluorescent reporter (DSPP-Cerulean, BSP-GFP, and DMP1-mCherry) transgenic mice and exposed to BMP2, FGF2, SU5402 (an FGF receptor inhibitor), and noggin between days 3-7. Mineralization, gene expression, fluorescent protein expression, and odontoblast formation were examined using xylenol orange, quantitative PCR, fluorometric analysis, and immunocytochemistry, respectively. RESULTS: BMP2 activated SMAD1/5/8 but not ERK1/2 signaling, whereas FGF2 exerted opposite effects. BMP2 did not affect mineralization, the expression of Ibsp and Dmp1, and the percentage of DSPP-Cerulean+ odontoblasts but significantly increased Dspp and DSPP-Cerulean. In cultures exposed to BMP2 and FGF2, respectively, both SU5402 and noggin led to long-lasting decreases in Dspp and DSPP-Cerulean and transient decreases in Dmp1 and DMP1-mCherry without affecting Ibsp and BSP-GFP. CONCLUSION: BMP2 and FGF2 exerted reciprocal stimulatory effects on odontoblast differentiation, whereas their effects on osteoblast differentiation were mediated independently. These data will further elucidate the perspectives of using BMP2 and FGF2 for dentin regeneration/repair.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Odontoblastos , Ratones , Animales , Factor 2 de Crecimiento de Fibroblastos/farmacología , Ratones Transgénicos , Proteínas de la Matriz Extracelular/metabolismo , Diferenciación Celular , Transducción de Señal , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología , Sialoglicoproteínas/metabolismo
6.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-970702

RESUMEN

Objective: To investigate the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) in the alteration of tight junction protein expression in choroid plexus epithelial cells created by lanthanum-activated matrix metalloproteinase 9 (MMP9) . Methods: In October 2020, immortalized rat choroid plexus epithelial cell line (Z310) cells were used as the blood-cerebrospinal fluid barrier in vitro, and were divided into control group and 0.125, 0.25, 0.5 mmol/L lanthanum chloride (LaCl(3)) treatment group. After treating Z310 cells with different concentrations of LaCl(3) for 24 hours, the morphological changes of Z310 cells were observed under inverted microscope, the protein expression levels of MMP9, occludin and zonula occludens-1 (ZO-1) were observed by cellular immunofluorescence method, and the protein expression levels of MMP9, tissue inhibitors of metalloproteinase1 (TIMP1) , occludin, ZO-1 and Nrf2 were detected by Western blotting. The level of reactive oxygen species (ROS) in cells was detected by flow cytometry. Results: Compared with the control group, Z310 cells in the LaCl(3) treatment group were smaller in size, with fewer intercellular junctions, and more dead cells and cell fragments. The expression level of MMP9 protein in cells treated with 0.25 and 0.5 mmol/L LaCl(3) was significantly higher than that in the control group (P<0.05) , and the expression level of TIMP1 and tight junction proteins occudin and ZO-1 was significantly lower than that in the control group (P<0.05) . Compared with the control group, the ROS production level in the 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly increased (P<0.05) , and the Nrf2 protein expression level in the 0.125, 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly decreased (P<0.05) . Conclusion: Lanthanum may increase the level of ROS in cells by down regulating the expression of Nrf2, thus activating MMP9 to reduce the expression level of intercellular tight junction proteins occludin and ZO-1.


Asunto(s)
Ratas , Animales , Metaloproteinasa 9 de la Matriz/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Ocludina/farmacología , Plexo Coroideo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Lantano/farmacología , Células Epiteliales , Proteína de la Zonula Occludens-1/metabolismo , Fosfoproteínas/farmacología
7.
Free Radic Biol Med ; 192: 235-245, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36198342

RESUMEN

The excessive amount of reactive species under chronic inflammation, which are accompanied by an increase body temperature, lead to diabetic complications. Phagocyte NADPH oxidase is the key enzyme in these processes. The role of high temperature in its regulation in diabetes is not clear. The aim was to investigate the effect of high temperature on NADPH-oxidase-dependent generation of reactive species in diabetic patients. Chemiluminescent method was applied to assess respiratory burst kinetics initiated by opsonized zymosan in blood or phorbol ester in isolated granulocytes. Analyzing ROC curves, the main predictors and changes in stages of activation of NADPH oxidase were determined. Phosphoisoforms of p47phox and p67phox were quantified by immunoblotting. Response to opsonized zymosan was lower in all subjects at 40 °C vs 37 °C, its kinetic parameters (except Tmax) were higher in blood of patients vs controls. Response rate was the main significant predictor to distinguish groups of subjects at 40 °C indicating NADPH oxidase upregulation in diabetes. Ca2+-dependent generation of reactive species by cells increased in both groups at 40 °C vs 37 °C, kinetic parameters were higher in patients. Initial phospho-p47phox level was higher in patient cells vs ones in controls. It was increased by ionomycin, phorbol ester, or 40 °C in control cells and unchanged in patient ones. Phospho-p67phox level was unchangeable in intact cells of healthy donors and patients at both temperatures. Excessive amounts of reactive species in patient cells were the consequence of granulocyte priming due to p47phox phosphorylation. Thus, high temperature decreased phagocytosis- and enhanced Ca2+-dependent generation of reactive species making the differences between controls and patients less pronounced. The effect of temperature on the generation of reactive species in blood granulocytes is associated with activity of NADPH oxidase that can be a prospective therapeutic target for pathologies accompanied by inflammation including type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Inflamación , Ionomicina/farmacología , NADP , NADPH Oxidasas , Neutrófilos , Ésteres del Forbol/farmacología , Fosfoproteínas/farmacología , Temperatura , Zimosan/farmacología
8.
J Nutr Sci Vitaminol (Tokyo) ; 68(4): 312-319, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36047103

RESUMEN

Tryptophan is an essential amino acid important as a protein building block, but it also serves as substrate for the generation of several bioactive compounds with important physiological roles. Furthermore, tryptophan has been reported to have a unique role as a nutritional signaling molecule that regulates protein synthesis in mouse and rat liver. In the present study, the acute effects of tryptophan on protein synthesis were confirmed and compared with those of leucine in rats. Eighteen hours fasted rats were orally administered of tryptophan or leucine at a dose of 135 mg/100 g body weight by gavage and then sacrificed 1 h after administration. The effects of tryptophan and leucine on the rate of protein synthesis were evaluated by the surface sensing of translation (SUnSET) method. We also examined the ability of tryptophan to induce activation of the mTOR pathway by measuring phosphorylation of 4E-BP1 and S6K1. Oral administration of tryptophan led to a stimulation of the rate of protein synthesis concomitant with activation of mTOR pathway in the liver, but not in skeletal muscle. We also investigated the sensitivity of liver protein synthesis to tryptophan administration. The half-maximal effective doses (ED50) of tryptophan in stimulating 4E-BP1 and S6K1 phosphorylation were both about 60% of daily intake. The effect of tryptophan on hepatic protein synthesis was similar to that of leucine on muscle protein synthesis, and the sensitivity of liver protein synthesis to tryptophan administration appeared to be almost the same or slightly lower than that of muscle protein synthesis to leucine administration.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Triptófano , Animales , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Leucina/farmacología , Hígado/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología , Fosforilación , Biosíntesis de Proteínas , Ratas , Serina-Treonina Quinasas TOR/metabolismo , Triptófano/metabolismo , Triptófano/farmacología
9.
Autoimmunity ; 55(3): 168-178, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35196925

RESUMEN

BACKGROUND: Mounting evidence indicates that circular RNAs (circRNAs) are involved in the progression of human diseases, including osteoarthritis (OA). In this study, we focussed on the functions and potential mechanism of circ_0110251 in OA. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the expression of circ_0110251, collagen type XI alpha 1 chain (COL11A1), microRNA-3189-3p (miR-3189-3p) and sprouty receptor tyrosine kinase signalling antagonist 1 (SPRY1). The cyclisation analysis of circ_0110251 was analysed by RNase R and Actinomycin D assays. Flow cytometry analysis was conducted to analyse cell apoptosis. Western blot assay was used to measure the levels of extracellular matrix degradation (ECM)-associated markers and SPRY1. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay were performed to analyse the relationships among circ_0110251, miR-3189-3p and SPRY1. RESULTS: Circ_0110251 was downregulated in OA cartilage tissues and IL-1ß-induced chondrocytes. IL-1ß promoted the apoptosis and ECM degradation in chondrocytes, while circ_0110251 overexpression relieved the effects. Circ_0110251 functioned as the sponge for miR-3189-3p and miR-3189-3p overexpression reversed the effect of circ_0110251 on IL-1ß-induced chondrocyte damage. Additionally, SPRY1 served as the target gene of miR-3189-3p. MiR-3189-3p inhibition ameliorated IL-1ß-induced chondrocyte apoptosis and ECM degradation, while SPRY1 silencing rescued the impacts. CONCLUSION: Circ_0110251 protected chondrocytes from IL-1ß-induced apoptosis and ECM degradation in OA via sponging miR-3189-3p and elevating SPRY1.


Asunto(s)
MicroARNs , Osteoartritis , Apoptosis/genética , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Interleucina-1beta , Proteínas de la Membrana/genética , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología
10.
Monoclon Antib Immunodiagn Immunother ; 41(1): 27-31, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35225659

RESUMEN

Rabies is a highly neurotropic disease caused by rabies lyssavirus (RABV). Human rabies vaccines exist for pre- and postexposure prophylaxis; however, after clinical symptoms appear, the disease has an ∼100% mortality rate with no effective treatments available. In our previous study, mouse neuroblastoma cells transfected with a plasmid coding one clone of a single-chain variable fragment (scFv), scFv-P19, against RABV phosphoprotein (RABV-P) derived from an scFv phage-display library, before infection, exhibited reduced viral propagation after infection with the RABV-fixed strain, CVS11. In this study, we conducted epitope mapping of scFv-P19 through indirect fluorescent assay and Western blotting analysis against full-length and N- or C-terminal truncated RABV-P. Our results suggest that scFv-P19 targets a portion containing amino acids 47-52 at the N-terminus, which partially overlaps with the N-terminal nuclear export sequences. This provides insights into the underlying mechanism associated with inhibition of RABV by scFv-P19, while allowing for the design of additional scFv-based therapeutic studies for RABV by integrating appropriate delivery and application systems. Furthermore, the results of this study suggest that scFv-P19 may serve as an effective tool for investigating nuclear trafficking of RABV-P to explore the roles of RABV-P isoforms in rabies pathogenesis.


Asunto(s)
Virus de la Rabia , Rabia , Anticuerpos de Cadena Única , Animales , Anticuerpos Monoclonales/farmacología , Mapeo Epitopo , Ratones , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología , Virus de la Rabia/metabolismo , Anticuerpos de Cadena Única/genética
11.
Int J Radiat Oncol Biol Phys ; 112(5): 1216-1228, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838866

RESUMEN

PURPOSE: Radioresistance is a major cause of treatment failure in tumor radiation therapy, and the underlying mechanisms of radioresistance are still elusive. Golgi phosphoprotein 3 (GOLPH3) has been reported to associate tightly with cancer progression and chemoresistance. Herein, we explored whether GOLPH3 mediated radioresistance of lung adenocarcinoma (LUAD) and whether targeted suppression of GOLPH3 sensitized LUAD to radiation therapy. METHODS AND MATERIALS: The aberrant expression of GOLPH3 was evaluated by immunohistochemistry in LUAD clinical samples. To evaluate the association between GOLPH3 and radioresistance, colony formation and apoptosis were assessed in control and GOLPH3 knockdown cells. γ-H2AX foci and level determination and micronucleus test were used to analyze DNA damage production and repair. The rescue of GOLPH3 knockdown was then performed by exogenous expression of small interfering RNA-resistant mutant GOLPH3 to confirm the role of GOLPH3 in DNA damage repair. Mechanistically, the effect of GOLPH3 on regulating stability and nuclear accumulation of epidermal growth factor receptor (EGFR) and the activation of DNA-dependent protein kinase (DNA-PK) were investigated by quantitative real-time polymerase chain reaction, western blot, immunofluorescence, and coimmunoprecipitation. The role of GOLPH3 in vivo in radioresistance was determined in a xenograft model. RESULTS: In tumor tissues of 33 patients with LUAD, the expression of GOLPH3 showed significant increases compared with those in matched normal tissues. Knocking down GOLPH3 reduced the clonogenic capacity, impaired double-strand break (DSB) repair, and enhanced apoptosis after irradiation. In contrast, reversal of GOLPH3 depletion rescued the impaired repair of radiation-induced DSBs. Mechanistically, loss of GOLPH3 accelerated the degradation of EGFR in lysosome, causing the reduction in EGFR levels, thereby weakening nuclear accumulation of EGFR and attenuating the activation of DNA-PK. Furthermore, adenovirus-mediated GOLPH3 knockdown could enhance the ionizing radiation response in the LUAD xenograft model. CONCLUSIONS: GOLPH3 conferred resistance of LUAD to ionizing radiation via stabilizing EGFR, and targeted suppression of GOLPH3 might be considered as a potential therapeutic strategy for sensitizing LUAD to radiation therapy.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/radioterapia , Apoptosis/efectos de la radiación , Línea Celular Tumoral , ADN , Reparación del ADN , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Proteínas de la Membrana/genética , Fosfoproteínas/genética , Fosfoproteínas/farmacología , Fosfoproteínas/uso terapéutico , Tolerancia a Radiación/genética
12.
Sci Rep ; 11(1): 23724, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887426

RESUMEN

The mouth environment comprises the second most significant microbiome in the body, and its equilibrium is critical in oral health. Secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1), a protein normally produced by the gingival epithelium to mediate its attachment to teeth, was suggested to be bactericidal. Our aim was to further explore the antibacterial potential of human SCPPPQ1 by characterizing its mode of action and identifying its active portions. In silico analysis showed that it has molecular parallels with antimicrobial peptides. Incubation of Porphyromonas gingivalis, a major periodontopathogen, with the full-length protein resulted in decrease in bacterial number, formation of aggregates and membrane disruptions. Analysis of SCPPPQ1-derived peptides indicated that these effects are sustained by specific regions of the molecule. Altogether, these data suggest that human SCPPPQ1 exhibits antibacterial capacity and provide new insight into its mechanism of action.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/farmacología , Fosfoproteínas/química , Fosfoproteínas/farmacología , Porphyromonas gingivalis/efectos de los fármacos , Secuencia de Aminoácidos , Péptidos Antimicrobianos/biosíntesis , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Proteínas de Unión al Calcio/metabolismo , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
13.
Cell Rep ; 37(12): 110138, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34936865

RESUMEN

Tumor DNA-damage response (DDR) has an important role in driving type-I interferon (IFN)-mediated host antitumor immunity, but it is not clear how tumor DNA damage is interconnected with the immune response. Here, we report the role of IFN-γ-inducible protein 16 (IFI16) in DNA repair, which amplifies the stimulator of IFN genes (STING)-type-I IFN signaling, particularly in triple-negative breast cancer (TNBC). IFI16 is rapidly induced and accumulated to the histone-evicted DNA at double-stranded breakage (DSB) sites, where it inhibits recruitment of DDR factors. Subsequently, IFI16 increases the release of DNA fragments to the cytoplasm and induces STING-mediated type-I IFN production. Synergistic cytotoxic and immunomodulatory effects of doxorubicin and type-I IFNs are decreased upon IFI16 depletion in vivo. Furthermore, IFI16 expression correlates with improved clinical outcome in patients with TNBC treated with chemotherapy. Together, our findings suggest that type-I IFNs and IFI16 could offer potential therapeutic strategies for TNBC.


Asunto(s)
Antineoplásicos/farmacología , ADN/metabolismo , Histonas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Línea Celular Tumoral , Daño del ADN , Reparación del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Sinergismo Farmacológico , Femenino , Humanos , Inmunidad , Interferón Tipo I/farmacología , Ratones Endogámicos BALB C , Proteínas Nucleares/genética , Proteínas Nucleares/farmacología , Fosfoproteínas/genética , Fosfoproteínas/farmacología , Transducción de Señal , Análisis de Matrices Tisulares , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología
14.
Molecules ; 26(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34833848

RESUMEN

Dentin matrix protein 1 (DMP1) contains a large number of acidic domains, multiple phosphorylation sites, a functional arginine-glycine-aspartate (RGD) motif, and a DNA binding domain, and has been shown to play essential regulatory function in dentin and bone mineralization. DMP1 could also orchestrate bone matrix formation, but the ability of DMP1 on Ti to human mesenchymal stem cell (hMSC) conversion to osteoblasts has not been studied. There is importance to test if the DMP1 coated Ti surface would promote cell migration and attachment to the metal surface and promote the differentiation of the attached stem cells to an osteogenic lineage. This study aimed to study the human mesenchymal stem cells (hMSCs) attachment and proliferation on DMP1 coated titanium (Ti) disks compared to non-coated disks, and to assess possible osteoblastic differentiation of attached hMSCs. Sixty-eight Ti disks were divided into two groups. Group 1 disks were coated with dentin matrix protein 1 and group 2 disks served as control. Assessment with light microscopy was used to verify hMSC attachment and proliferation. Cell viability was confirmed through fluorescence microscopy and mitochondrial dehydrogenase activity. Real-time polymerase chain reaction analysis was done to study the gene expression. The proliferation assay showed significantly greater cell proliferation with DMP1 coated disks compared to the control group (p-value < 0.001). Cell vitality analysis showed a greater density of live cells on DMP1 coated disks compared to the control group. Alkaline phosphatase staining revealed higher enzyme activity on DMP1 coated disks and showed itself to be significantly higher than the control group (p-value < 0.001). von Kossa staining revealed higher positive areas for mineralized deposits on DMP1 coated disks than the control group (p-value < 0.05). Gene expression analysis confirmed upregulation of runt-related transcription factor 2, osteoprotegerin, osteocalcin, osteopontin, and alkaline phosphatase on DMP1 coated disks (p-value < 0.001). The dentin matrix protein promoted the adhesion, proliferation, facilitation differentiation of hMSC, and mineralized matrix formation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Proteínas de la Matriz Extracelular/farmacología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Fosfoproteínas/farmacología , Titanio/farmacología , Línea Celular , Humanos , Células Madre Mesenquimatosas/citología , Propiedades de Superficie
15.
ACS Appl Mater Interfaces ; 13(18): 20995-21006, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33930273

RESUMEN

COVID-19 has been diffusely pandemic around the world, characterized by massive morbidity and mortality. One of the remarkable threats associated with mortality may be the uncontrolled inflammatory processes, which were induced by SARS-CoV-2 in infected patients. As there are no specific drugs, exploiting safe and effective treatment strategies is an instant requirement to dwindle viral damage and relieve extreme inflammation simultaneously. Here, highly biocompatible glycyrrhizic acid (GA) nanoparticles (GANPs) were synthesized based on GA. In vitro investigations revealed that GANPs inhibit the proliferation of the murine coronavirus MHV-A59 and reduce proinflammatory cytokine production caused by MHV-A59 or the N protein of SARS-CoV-2. In an MHV-A59-induced surrogate mouse model of COVID-19, GANPs specifically target areas with severe inflammation, such as the lungs, which appeared to improve the accumulation of GANPs and enhance the effectiveness of the treatment. Further, GANPs also exert antiviral and anti-inflammatory effects, relieving organ damage and conferring a significant survival advantage to infected mice. Such a novel therapeutic agent can be readily manufactured into feasible treatment for COVID-19.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antivirales/uso terapéutico , Ácido Glicirrínico/uso terapéutico , Inflamación/tratamiento farmacológico , Nanopartículas/uso terapéutico , Virosis/tratamiento farmacológico , Animales , Antiinflamatorios/química , Antioxidantes/química , Antioxidantes/uso terapéutico , Antivirales/química , Proteínas de la Nucleocápside de Coronavirus/farmacología , Citocinas/metabolismo , Femenino , Ácido Glicirrínico/química , Humanos , Hígado/patología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Virus de la Hepatitis Murina/efectos de los fármacos , Nanopartículas/química , Fosfoproteínas/farmacología , Células RAW 264.7 , SARS-CoV-2/química , Células THP-1 , Carga Viral/efectos de los fármacos , Virosis/patología , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
16.
Circulation ; 143(11): 1123-1138, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33334125

RESUMEN

BACKGROUND: Although it has long been recognized that smooth muscle Na/K ATPase modulates vascular tone and blood pressure (BP), the role of its accessory protein phospholemman has not been characterized. The aim of this study was to test the hypothesis that phospholemman phosphorylation regulates vascular tone in vitro and that this mechanism plays an important role in modulation of vascular function and BP in experimental models in vivo and in humans. METHODS: In mouse studies, phospholemman knock-in mice (PLM3SA; phospholemman [FXYD1] in which the 3 phosphorylation sites on serines 63, 68, and 69 are mutated to alanines), in which phospholemman is rendered unphosphorylatable, were used to assess the role of phospholemman phosphorylation in vitro in aortic and mesenteric vessels using wire myography and membrane potential measurements. In vivo BP and regional blood flow were assessed using Doppler flow and telemetry in young (14-16 weeks) and old (57-60 weeks) wild-type and transgenic mice. In human studies, we searched human genomic databases for mutations in phospholemman in the region of the phosphorylation sites and performed analyses within 2 human data cohorts (UK Biobank and GoDARTS [Genetics of Diabetes Audit and Research in Tayside]) to assess the impact of an identified single nucleotide polymorphism on BP. This single nucleotide polymorphism was expressed in human embryonic kidney cells, and its effect on phospholemman phosphorylation was determined using Western blotting. RESULTS: Phospholemman phosphorylation at Ser63 and Ser68 limited vascular constriction in response to phenylephrine. This effect was blocked by ouabain. Prevention of phospholemman phosphorylation in the PLM3SA mouse profoundly enhanced vascular responses to phenylephrine both in vitro and in vivo. In aging wild-type mice, phospholemman was hypophosphorylated, and this correlated with the development of aging-induced essential hypertension. In humans, we identified a nonsynonymous coding variant, single nucleotide polymorphism rs61753924, which causes the substitution R70C in phospholemman. In human embryonic kidney cells, the R70C mutation prevented phospholemman phosphorylation at Ser68. This variant's rare allele is significantly associated with increased BP in middle-aged men. CONCLUSIONS: These studies demonstrate the importance of phospholemman phosphorylation in the regulation of vascular tone and BP and suggest a novel mechanism, and therapeutic target, for aging-induced essential hypertension in humans.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Genómica/métodos , Hipertensión/tratamiento farmacológico , Proteínas de la Membrana/uso terapéutico , Fosfoproteínas/uso terapéutico , Fosforilación/fisiología , Animales , Humanos , Hipertensión/fisiopatología , Masculino , Proteínas de la Membrana/farmacología , Ratones , Fosfoproteínas/farmacología
17.
Int J Biol Macromol ; 164: 4022-4031, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32890564

RESUMEN

Bacterial permeability family member A1 (BPIFA1) is one of the most abundant proteins present in normal airway surface liquid (ASL). It is known to be diminished in asthmatic patients' sputum, which causes airway hyperresponsiveness (AHR). What is currently unclear is how environmental factors, such as allergens' impact on BPIFA1's abundance and functions in the context of allergic asthma. House dust mite (HDM) is a predominant domestic source of aeroallergens. The group of proteases found in HDM is thought to cleave multiple cellular protective mechanisms, and therefore foster the development of allergic asthma. Here, we show that BPIFA1 is cleaved by HDM proteases in a time-, dose-, and temperature-dependent manner. We have also shown the main component in HDM that is responsible for BPIFA1's degradation is Der p1. Fragmented BPIFA1 failed to bind E. coli lipopolysaccharide (LPS), and hence elevated TNFα and IL-6 secretion in human whole blood. BPIFA1 degradation is also observed in vivo in bronchoalveolar fluid (BALF) of mice which are intranasally instilled with HDM. These data suggest that proteases associated with environmental allergens such as HDM cleave BPIFA1 and therefore impair its immune modulator function.


Asunto(s)
Antígenos Dermatofagoides/metabolismo , Proteínas de Artrópodos/metabolismo , Cisteína Endopeptidasas/metabolismo , Glicoproteínas/metabolismo , Inmunomodulación , Fosfoproteínas/metabolismo , Alérgenos/inmunología , Animales , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/inmunología , Calcio/metabolismo , Señalización del Calcio , Línea Celular , Cisteína Endopeptidasas/inmunología , Inhibidores de Cisteína Proteinasa/farmacología , Citocinas/metabolismo , Glicoproteínas/farmacología , Humanos , Inmunomodulación/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Ratones , Fosfoproteínas/farmacología , Proteolisis/efectos de los fármacos , Temperatura
18.
Int J Mol Sci ; 21(13)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630820

RESUMEN

Recent reports highlight the potential tumorigenic role of Dentin Sialophosphoprotein (DSPP) and its cognate partner Matrix Metalloproteinase 20 (MMP-20) in Oral Squamous Cell Carcinomas (OSCCs). However, the function/mechanism of these roles is yet to be fully established. The present study aimed to investigate the effects of DSPP and MMP20 silencing on specific proteins involved in oral cancer cell adhesion, angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). Stable lines of DSPP/MMP20 silenced OSCC cell line (OSC2), previously established via lentiviral-mediated shRNA transduction, were analyzed for the effects of DSPP, MMP20, and combined DSPP-MMP20 silencing on MMP2, MMP9, integrins αvß3 and αvß6, VEGF, Kallikerin- 4,-5,-8,-10, E-cadherin, N-cadherin, Vimentin, met, src, snail, and Twist by Western blot. Results show a significant decrease (p < 0.05) in the expression of MMP2, MMP9, integrin αvß3, αvß6, VEGF, Kallikerins -4, -5, -8, -10, N-cadherin, vimentin met, src, snail and twist following DSPP and MMP20 silencing, individually and in combination. On the other hand, the expression of E-cadherin was found to be significantly increased (p < 0.05). These results suggest that the tumorigenic effect of DSPP and MMP20 on OSC2 cells is mediated via the upregulation of the genes involved in invasion, metastasis, angiogenesis, and epithelial-mesenchymal transition (EMT).


Asunto(s)
Proteínas de la Matriz Extracelular/farmacología , Metaloproteinasa 20 de la Matriz/metabolismo , Fosfoproteínas/farmacología , Sialoglicoproteínas/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Cadherinas/metabolismo , Carcinoma de Células Escamosas/patología , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 20 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias de la Boca/patología , Invasividad Neoplásica , Metástasis de la Neoplasia/genética , Neovascularización Patológica/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
19.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32660994

RESUMEN

Respiratory syncytial virus (RSV) is the main cause of severe respiratory infection in young children worldwide, and no therapies have been approved for the treatment of RSV infection. Data from recent clinical trials of fusion or L polymerase inhibitors for the treatment of RSV-infected patients revealed the emergence of escape mutants, highlighting the need for the discovery of inhibitors with novel mechanisms of action. Here we describe stapled peptides derived from the N terminus of the phosphoprotein (P) that act as replication inhibitors. We demonstrate that these peptides inhibit RSV replication in vitro and in vivo by preventing the formation of the N0-P complex. The present strategy provides a novel means of targeting RSV replication with constrained macrocyclic peptides or small molecules and is broadly applicable to other viruses of the Mononegavirales order.


Asunto(s)
Antivirales , Péptidos , Conformación Proteica en Hélice alfa , Virus Sincitial Respiratorio Humano , Animales , Antivirales/farmacología , Humanos , Ratones , Péptidos/farmacología , Fosfoproteínas/farmacología , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Replicación Viral
20.
Iran J Immunol ; 17(1): 26-40, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32224539

RESUMEN

BACKGROUND: Tegument protein pp150 of cytomegaloviruses (CMVs) plays a vital role in all stages of viral life cycle, representing the most important tegument protein candidate for HCMV treatment. However, the exact role of pp150 in immune regulation is yet to be elucidated. OBJECTIVE: To examine the effects of pp150 on the maturity and function of murine dendritic cells (DCs). METHODS: Maturity status (CD40, CD86, and MHC-II expression) and phagocytic capacity of DCs (dextran uptake assay) were characterized. Gene expression profiles of ROR-γ, GATA-3, T-bet, and FOXP-3 as well as the protein expression of INF-γ (Th1), IL-4 (Th2), IL-35 (Treg), IL-17A (Th17), IL-22, TNF-α, IL-6, and IL-2 were evaluated in T cells co-cultured with DCs. RESULTS: A significant increase in CD40, CD86, and CCR7 expression and a reduction in the phagocytosis rate were observed in pp150-stimulated DCs compared with unstimulated DCs. T cells co-cultured with stimulated DCs showed higher expressions of ROR-γ, IL-6, IL-2, IL-17A, IL-22, and TNF-α. CONCLUSION: Despite improvements in maturity status, pp150-stimulated DCs did not seem to be able to induce Th1 or Th2 immunity. In fact, Th17 and its mediators, IL-17A and IL-22, might be the main inflammatory factors involved in pp150-stimulated DC's mechanism of action. However, it is necessary to conduct further investigations to corroborate these observations.


Asunto(s)
Células Dendríticas/inmunología , Fosfoproteínas/inmunología , Proteínas de la Matriz Viral/inmunología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Células Cultivadas , Células Dendríticas/efectos de los fármacos , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fosfoproteínas/farmacología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Proteínas de la Matriz Viral/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...