Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 19114, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34580378

RESUMEN

Bone fracture is a growing public health burden and there is a clinical need for non-invasive therapies to aid in the fracture healing process. Previous studies have demonstrated the utility of electromagnetic (EM) fields in promoting bone repair; however, its underlying mechanism of action is unclear. Interestingly, there is a growing body of literature describing positive effects of an EM field on mitochondria. In our own work, we have previously demonstrated that differentiation of osteoprogenitors into osteoblasts involves activation of mitochondrial oxidative phosphorylation (OxPhos). Therefore, it was reasonable to propose that EM field therapy exerts bone anabolic effects via stimulation of mitochondrial OxPhos. In this study, we show that application of a low intensity constant EM field source on osteogenic cells in vitro resulted in increased mitochondrial membrane potential and respiratory complex I activity and induced osteogenic differentiation. In the presence of mitochondrial inhibitor antimycin A, the osteoinductive effect was reversed, confirming that this effect was mediated via increased OxPhos activity. Using a mouse tibial bone fracture model in vivo, we show that application of a low intensity constant EM field source enhanced fracture repair via improved biomechanical properties and increased callus bone mineralization. Overall, this study provides supporting evidence that EM field therapy promotes bone fracture repair through mitochondrial OxPhos activation.


Asunto(s)
Curación de Fractura/efectos de la radiación , Fracturas Óseas/terapia , Magnetoterapia/métodos , Mitocondrias/efectos de la radiación , Animales , Diferenciación Celular/efectos de la radiación , Línea Celular , Fracturas Óseas/patología , Humanos , Potencial de la Membrana Mitocondrial/efectos de la radiación , Ratones , Mitocondrias/fisiología , Osteoblastos/fisiología , Osteoblastos/efectos de la radiación , Osteogénesis/efectos de la radiación , Fosforilación Oxidativa/efectos de la radiación
2.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806362

RESUMEN

Date palm (Phoenix dactylifera) is one of the most widespread fruit crop species and can tolerate drastic environmental conditions that may not be suitable for other fruit species. Excess UV-B stress is one of the greatest concerns for date palm trees and can cause genotoxic effects. Date palm responds to UV-B irradiation through increased DEG expression levels and elaborates upon regulatory metabolic mechanisms that assist the plants in adjusting to this exertion. Sixty-day-old Khalas date palm seedlings (first true-leaf stage) were treated with UV-B (wavelength, 253.7 nm; intensity, 75 µW cm-2 for 72 h (16 h of UV light and 8 h of darkness). Transcriptome analysis revealed 10,249 and 12,426 genes whose expressions were upregulated and downregulated, respectively, compared to the genes in the control. Furthermore, the differentially expressed genes included transcription factor-encoding genes and chloroplast- and photosystem-related genes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to detect metabolite variations. Fifty metabolites, including amino acids and flavonoids, showed changes in levels after UV-B excess. Amino acid metabolism was changed by UV-B irradiation, and some amino acids interacted with precursors of different pathways that were used to synthesize secondary metabolites, i.e., flavonoids and phenylpropanoids. The metabolite content response to UV-B irradiation according to hierarchical clustering analysis showed changes in amino acids and flavonoids compared with those of the control. Amino acids might increase the function of scavengers of reactive oxygen species by synthesizing flavonoids that increase in response to UV-B treatment. This study enriches the annotated date palm unigene sequences and enhances the understanding of the mechanisms underlying UV-B stress through genetic manipulation. Moreover, this study provides a sequence resource for genetic, genomic and metabolic studies of date palm.


Asunto(s)
Phoeniceae/metabolismo , Phoeniceae/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes del Cloroplasto/efectos de la radiación , Genes de Plantas/efectos de la radiación , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/efectos de la radiación , Anotación de Secuencia Molecular , Fosforilación Oxidativa/efectos de la radiación , Phoeniceae/genética , Fotosíntesis/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , RNA-Seq , Estrés Fisiológico/efectos de la radiación , Factores de Transcripción/genética , Transcriptoma/efectos de la radiación
3.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804169

RESUMEN

Glioblastoma multiforme (GBM) is a malignant primary brain tumor with poor patient prognosis. Although the standard treatment of GBM is surgery followed by chemotherapy and radiotherapy, often a small portion of surviving tumor cells acquire therapeutic resistance and become more aggressive. Recently, altered kinase expression and activity have been shown to determine metabolic flux in tumor cells and metabolic reprogramming has emerged as a tumor progression regulatory mechanism. Here we investigated novel kinase-mediated metabolic alterations that lead to acquired GBM radioresistance and malignancy. We utilized transcriptomic analyses within a radioresistant GBM orthotopic xenograft mouse model that overexpresses the dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3). We find that within GBM cells, radiation exposure induces DYRK3 expression and DYRK3 regulates mammalian target of rapamycin complex 1 (mTORC1) activity through phosphorylation of proline-rich AKT1 substrate 1 (PRAS40). We also find that DYRK3 knockdown inhibits dynamin-related protein 1 (DRP1)-mediated mitochondrial fission, leading to increased oxidative phosphorylation (OXPHOS) and reduced glycolysis. Importantly, enforced DYRK3 downregulation following irradiation significantly impaired GBM cell migration and invasion. Collectively, we suggest DYRK3 suppression may be a novel strategy for preventing GBM malignancy through regulating mitochondrial metabolism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Dinaminas/genética , Glioblastoma/radioterapia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/patología , Mitocondrias/efectos de la radiación , Fosforilación Oxidativa/efectos de la radiación , Proteínas Proto-Oncogénicas c-akt/genética , Tolerancia a Radiación/genética , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cells ; 10(4)2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33920039

RESUMEN

The development of the Artemis programme with the goal of returning to the moon is spurring technology advances that will eventually take humans to Mars and herald a new era of interplanetary space travel. However, long-term space travel poses unique challenges including exposure to ionising radiation from galactic cosmic rays and potential solar particle events, exposure to microgravity and specific nutritional challenges arising from earth independent exploration. Ionising radiation is one of the major obstacles facing future space travel as it can generate oxidative stress and directly damage cellular structures such as DNA, in turn causing genomic instability, telomere shortening, extracellular-matrix remodelling and persistent inflammation. In the gastrointestinal tract (GIT) this can lead to leaky gut syndrome, perforations and motility issues, which impact GIT functionality and affect nutritional status. While current countermeasures such as shielding from the spacecraft can attenuate harmful biological effects, they produce harmful secondary particles that contribute to radiation exposure. We hypothesised that induction of a torpor-like state would confer a radioprotective effect given the evidence that hibernation extends survival times in irradiated squirrels compared to active controls. To test this hypothesis, a torpor-like state was induced in zebrafish using melatonin treatment and reduced temperature, and radiation exposure was administered twice over the course of 10 days. The protective effects of induced-torpor were assessed via RNA sequencing and qPCR of mRNA extracted from the GIT. Pathway and network analysis were performed on the transcriptomic data to characterise the genomic signatures in radiation, torpor and torpor + radiation groups. Phenotypic analyses revealed that melatonin and reduced temperature successfully induced a torpor-like state in zebrafish as shown by decreased metabolism and activity levels. Genomic analyses indicated that low dose radiation caused DNA damage and oxidative stress triggering a stress response, including steroidal signalling and changes to metabolism, and cell cycle arrest. Torpor attenuated the stress response through an increase in pro-survival signals, reduced oxidative stress via the oxygen effect and detection and removal of misfolded proteins. This proof-of-concept model provides compelling initial evidence for utilizing an induced torpor-like state as a potential countermeasure for radiation exposure.


Asunto(s)
Exposición a la Radiación , Letargo/fisiología , Pez Cebra/fisiología , Animales , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Degradación Asociada con el Retículo Endoplásmico/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Redes Reguladoras de Genes/efectos de la radiación , Melatonina/farmacología , Modelos Animales , Fosforilación Oxidativa/efectos de la radiación , Reproducibilidad de los Resultados , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación , Análisis de Supervivencia , Temperatura , Transcriptoma/genética , Transcriptoma/efectos de la radiación , Pez Cebra/genética
5.
Oxid Med Cell Longev ; 2021: 6626286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763170

RESUMEN

Photobiomodulation with 808 nm laser light electively stimulates Complexes III and IV of the mitochondrial respiratory chain, while Complexes I and II are not affected. At the wavelength of 1064 nm, Complexes I, III, and IV are excited, while Complex II and some mitochondrial matrix enzymes seem to be not receptive to photons at that wavelength. Complex IV was also activated by 633 nm. The mechanism of action of wavelengths in the range 900-1000 nm on mitochondria is less understood or not described. Oxidative stress from reactive oxygen species (ROS) generated by mitochondrial activity is an inescapable consequence of aerobic metabolism. The antioxidant enzyme system for ROS scavenging can keep them under control. However, alterations in mitochondrial activity can cause an increment of ROS production. ROS and ATP can play a role in cell death, cell proliferation, and cell cycle arrest. In our work, bovine liver isolated mitochondria were irradiated for 60 sec, in continuous wave mode with 980 nm and powers from 0.1 to 1.4 W (0.1 W increment at every step) to generate energies from 6 to 84 J, fluences from 7.7 to 107.7 J/cm2, power densities from 0.13 to 1.79 W/cm2, and spot size 0.78 cm2. The control was equal to 0 W. The activity of the mitochondria's complexes, Krebs cycle enzymes, ATP production, oxygen consumption, generation of ROS, and oxidative stress were detected. Lower powers (0.1-0.2 W) showed an inhibitory effect; those that were intermediate (0.3-0.7 W) did not display an effect, and the higher powers (0.8-1.1 W) induced an increment of ATP synthesis. Increasing the power (1.2-1.4 W) recovered the ATP production to the control level. The interaction occurred on Complexes III and IV, as well as ATP production and oxygen consumption. Results showed that 0.1 W uncoupled the respiratory chain and induced higher oxidative stress and drastic inhibition of ATP production. Conversely, 0.8 W kept mitochondria coupled and induced an increase of ATP production by increments of Complex III and IV activities. An augmentation of oxidative stress was also observed, probably as a consequence of the increased oxygen consumption and mitochondrial isolation experimental conditions. No effect was observed using 0.5 W, and no effect was observed on the enzymes of the Krebs cycle.


Asunto(s)
Láseres de Semiconductores , Terapia por Luz de Baja Intensidad , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Bovinos , Respiración de la Célula/efectos de la radiación , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Isocitrato Deshidrogenasa/metabolismo , Peroxidación de Lípido/efectos de la radiación , Malato Deshidrogenasa/metabolismo , Masculino , Fosforilación Oxidativa/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , ATPasas de Translocación de Protón/metabolismo , Superóxidos/metabolismo , Temperatura
6.
Clin Cancer Res ; 27(11): 2970-2978, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33419779

RESUMEN

As tumors grow, they upregulate glycolytic and oxidative metabolism to support their increased and altered energetic demands. These metabolic changes have major effects on the tumor microenvironment. One of the properties leading to this aberrant metabolism is hypoxia, which occurs when tumors outgrow their often-chaotic vasculature. This scarcity of oxygen is known to induce radioresistance but can also have a disrupting effect on the antitumor immune response. Hypoxia inhibits immune effector cell function, while immune cells with a more suppressing phenotype become more active. Therefore, hypoxia strongly affects the efficacy of both radiotherapy and immunotherapy, as well as this therapy combination. Inhibition of oxidative phosphorylation (OXPHOS) is gaining interest for its ability to combat tumor hypoxia, and there are strong indications that this results in a reactivation of the immune response. This strategy decreases oxygen consumption, leading to better oxygenation of hypoxic tumor areas and eventually an increase in immunogenic cell death induced by radio-immunotherapy combinations. Promising preclinical improvements in radio- and immunotherapy efficacy have been observed by the hypoxia-reducing effect of OXPHOS inhibitors and several compounds are currently in clinical trials for their anticancer properties. Here, we will review the pharmacologic attenuation of tumor hypoxia using OXPHOS inhibitors, with emphasis on their impact on the intrinsic antitumor immune response and how this affects the efficacy of (combined) radio- and immunotherapy.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/metabolismo , Neoplasias/terapia , Fosforilación Oxidativa/efectos de los fármacos , Fosforilación Oxidativa/efectos de la radiación , Radioterapia/métodos , Terapia Combinada , Humanos , Neoplasias/inmunología , Neoplasias/fisiopatología , Hipoxia Tumoral , Microambiente Tumoral
7.
Redox Biol ; 26: 101220, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31176262

RESUMEN

Glioblastoma (GBM) has a poor prognosis despite intensive treatment with surgery and chemoradiotherapy. Previous studies using dose-escalated radiotherapy have demonstrated improved survival; however, increased rates of radionecrosis have limited its use. Development of radiosensitizers could improve patient outcome. In the present study, we report the use of sodium sulfide (Na2S), a hydrogen sulfide (H2S) donor, to selectively kill GBM cells (T98G and U87) while sparing normal human cerebral microvascular endothelial cells (hCMEC/D3). Na2S also decreased mitochondrial respiration, increased oxidative stress and induced γH2AX foci and oxidative base damage in GBM cells. Since Na2S did not significantly alter T98G capacity to perform non-homologous end-joining or base excision repair, it is possible that GBM cell killing could be attributed to increased damage induction due to enhanced reactive oxygen species production. Interestingly, Na2S enhanced mitochondrial respiration, produced a more reducing environment and did not induce high levels of DNA damage in hCMEC/D3. Taken together, this data suggests involvement of mitochondrial respiration in Na2S toxicity in GBM cells. The fact that survival of LN-18 GBM cells lacking mitochondrial DNA (ρ0) was not altered by Na2S whereas the survival of LN-18 ρ+ cells was compromised supports this conclusion. When cells were treated with Na2S and photon or proton radiation, GBM cell killing was enhanced, which opens the possibility of H2S being a radiosensitizer. Therefore, this study provides the first evidence that H2S donors could be used in GBM therapy to potentiate radiation-induced killing.


Asunto(s)
Reparación del ADN/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Mitocondrias/efectos de los fármacos , Neuroglía/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Sulfuros/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular , Línea Celular Tumoral , Daño del ADN , Reparación del ADN/efectos de la radiación , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/efectos de la radiación , Humanos , Sulfuro de Hidrógeno/química , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Neuroglía/patología , Neuroglía/efectos de la radiación , Especificidad de Órganos , Fosforilación Oxidativa/efectos de los fármacos , Fosforilación Oxidativa/efectos de la radiación , Estrés Oxidativo , Fotones , Terapia de Protones , Fármacos Sensibilizantes a Radiaciones/química , Especies Reactivas de Oxígeno/metabolismo , Sulfuros/química
8.
Environ Sci Pollut Res Int ; 26(12): 12550-12562, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30848428

RESUMEN

The brain is an important organ rich in mitochondria and more susceptible to oxidative stress. Tiron (sodium 4,5-dihydroxybenzene-1,3-disulfonate) is a potent antioxidant. This study aims to evaluate the effect of tiron on the impairment of brain mitochondria induced by exposure to radiation or manganese (Mn) toxicity. We assessed the capability of oxidative phosphorylation (OXPHOS) through determination of mitochondrial redox state, the activity of electron transport chain (ETC), and Krebs cycle as well as the level of adenosine triphosphate (ATP) production. Rats were exposed to 7 Gy of γ-rays or injected i.p. with manganese chloride (100 mg/kg), then treated with tiron (471 mg/kg) for 7 days. The results showed that tiron treatment revealed positive modulation on the mitochondrial redox state manifested by a marked decrease of hydrogen peroxide (H2O2), malondialdehyde (MDA), and total nitrate/nitrite (NOx) associated with a significant increase in total antioxidant capacity (TAC), glutathione (GSH) content, manganese superoxide dismutase (MnSOD), and glutathione peroxidase (GPx) activities. Moreover, tiron can increase the activity of ETC through preventing the depletion in the activity of mitochondrial complexes (I, II, III, and IV), an elevation of coenzyme Q10 (CoQ10) and cytochrome c (Cyt-c) levels. Additionally, tiron showed a noticeable increase in mitochondrial aconitase (mt-aconitase) activity as the major component of Krebs cycle to maintain a high level of ATP production. Tiron also can restore mitochondrial metal homeostasis through positive changes in the levels of calcium (Ca), iron (Fe), Mn, and copper (Cu). It can be concluded that tiron may be used as a good mitigating agent to attenuate the harmful effects on the brain through the inhibition of mitochondrial injury post-exposure to radiation or Mn toxicity.


Asunto(s)
Sal Disódica del Ácido 1,2-Dihidroxibenceno-3,5-Disulfónico/metabolismo , Antioxidantes/metabolismo , Encéfalo/efectos de los fármacos , Manganeso/toxicidad , Animales , Encéfalo/fisiología , Encéfalo/efectos de la radiación , Cobre/metabolismo , Rayos gamma , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Masculino , Malondialdehído/metabolismo , Manganeso/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Fosforilación Oxidativa/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Ratas , Superóxido Dismutasa/metabolismo
9.
Appl Microbiol Biotechnol ; 103(4): 1851-1864, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30661110

RESUMEN

Mitochondrial dysfunction in Saccharomyces cerevisiae was selected as a marker of ion penetration following carbon ion beam (CIB) irradiation. Respiration-deficient mutants were screened. Following confirmation of negligible spontaneous mutation, eight genetically stable S. cerevisiae respiration-deficient mutant strains and a control strain were resequenced with ~ 200-fold read depth. Strategies were established to identify and validate the particular mutations induced by CIB irradiation. In the nuclear genome, CIB irradiation mainly caused base substitutions and some small (< 100 bp) insertions/deletions (indels), which were widely distributed across the chromosomes. Although mitochondrial dysfunction was selected as a screening marker, variants in the nuclear genome were detected at a high frequency (10-7) relative to spontaneous mutations (10-9). The transition to transversion ratio for base substitutions was 0.746, which was less than that of spontaneous mutations. In the mitochondrial genome, there were very large deletions including substantial gene areas, resulting in extremely low read coverage. Meanwhile, every mutant possessed a distinctive mutation pattern, for both the nuclear and the mitochondrial genome. Nuclear genomes contained scanty mitochondrial respiration-related genes that were potentially affected by verified mutations, suggesting that variants in the mitochondrial genome may be the main drivers of respiratory deficiencies. Our study confirmed the previous finding that heavy ion beam (HIB) irradiation mainly induces substantial base substitutions and some small indels but also yielded some novel findings, in particular, novel structural variants in the mitochondrial genomes. These data will enhance the understanding of HIB-induced damage and mutations and aid in the HIB-based microbial mutation breeding.


Asunto(s)
Carbono/metabolismo , Iones/metabolismo , Mitocondrias/efectos de la radiación , Mutación , Fosforilación Oxidativa/efectos de la radiación , Saccharomyces cerevisiae/efectos de la radiación , Análisis Mutacional de ADN , Genoma Fúngico , Mutagénesis , Análisis de Secuencia de ADN
10.
Lasers Med Sci ; 34(3): 495-504, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30145725

RESUMEN

Photobiomodulation of cells using near-infrared (NIR) monochromatic light can affect cell functions such as proliferation, viability, and metabolism in a range of cell types. Evidence for the effects of near-infrared light on endothelial cells has been reported, but the studies were mainly performed using VIS light emitted by low-energy lasers, because NIR wavelengths seemed negatively stimulate these cells. Cell viability, free radical-induced oxidative stress, NF-κB activation, nitric oxide release, mitochondrial respiration, and wound healing repair were assessed in human endothelial cells (HECV) irradiated with 808-nm diode laser light (laser setup = 1 W/cm2, 60 s, 60 J/cm2, CW vs measured energy parameter = 0.95 W/cm2, 60 s, 57 J/cm2, mode CW) emitted by an handpiece with flat-top profile. No difference in viability was detected between controls and HECV cells irradiated with 808-nm diode laser light for 60 s. Irradiated cells demonstrated higher proliferation rate and increased migration ability associated to moderate increase in ROS production without a significant increase in oxidative stress and oxidative stress-activated processes. Near-infrared light stimulated mitochondrial oxygen consumption and ATP synthesis in HECV cells. Short near-infrared irradiation did not affect viability of HECV cells, rather led to a stimulation of wound healing rate, likely sustained by ROS-mediated stimulation of mitochondrial activity. Our results demonstrating that near-infrared led to a shift from anaerobic to aerobic metabolism provide new insight into the possible molecular mechanisms by which photobiomodulation with 808-nm diode laser light protects against inflammation-induced endothelial dysfunction, seemingly promising to enhance their therapeutic properties.


Asunto(s)
Células Endoteliales/efectos de la radiación , Láseres de Semiconductores , Terapia por Luz de Baja Intensidad , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Fosforilación Oxidativa/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas/efectos de la radiación , Aerobiosis , Línea Celular , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Células Endoteliales/metabolismo , Humanos , Óxido Nítrico/metabolismo
11.
Int J Mol Sci ; 19(12)2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487387

RESUMEN

Melatonin (Mel) is the major biologically active molecule secreted by the pineal gland. Mel and its metabolites, 6-hydroxymelatonin (6(OH)Mel) and 5-methoxytryptamine (5-MT), possess a variety of functions, including the scavenging of free radicals and the induction of protective or reparative mechanisms in the cell. Their amphiphilic character allows them to cross cellular membranes and reach subcellular organelles, including the mitochondria. Herein, the action of Mel, 6(OH)Mel, and 5-MT in human MNT-1 melanoma cells against ultraviolet B (UVB) radiation was investigated. The dose of 50 mJ/cm² caused a significant reduction of cell viability up to 48%, while investigated compounds counteracted this deleterious effect. UVB exposure increased catalase activity and led to a simultaneous Ca++ influx (16%), while tested compounds prevented these disturbances. Additional analysis focused on mitochondrial respiration performed in isolated mitochondria from the liver of BALB/cJ mice where Mel, 6(OH)Mel, and 5-MT significantly enhanced the oxidative phosphorylation at the dose of 10-6 M with lower effects seen at 10-9 or 10-4 M. In conclusion, Mel, 6(OH)Mel and 5-MT protect MNT-1 cells, which express melatonin receptors (MT1 and MT2) against UVB-induced oxidative stress and mitochondrial dysfunction, including the uncoupling of oxidative phosphorylation.


Asunto(s)
Melanoma/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , 5-Metoxitriptamina/farmacología , Animales , Calcio/metabolismo , Catalasa/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de la radiación , Melatonina/análogos & derivados , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Fosforilación Oxidativa/efectos de los fármacos , Fosforilación Oxidativa/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Rayos Ultravioleta
12.
Anticancer Res ; 38(3): 1291-1301, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29491052

RESUMEN

BACKGROUND/AIM: Laser photochemotherapy is a new approach in cancer treatment using low-level laser therapy (LLLT) to enhance the effect of chemotherapy. MATERIALS AND METHODS: In order to evaluate the effect of LLLT on tumor cells, HeLa cells were treated with cisplatin or zoledronic acid (ZA) followed by LLLT. Cell viability was evaluated with 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay. Oxidative phosphorylation and glycolysis were measured using extracellular flux analysis. Immunocytochemistry of heat-shock protein 70 (HSP70) and western blot analysis were performed. RESULTS: LLLT alone increased viability and was associated with lower oxidative phosphorylation but higher glycolysis rates. Cisplatin and ZA alone lowered cell viability, glycolysis and oxidative phosphorylation. This effect was significantly enhanced in conjunction with LLLT and was accompanied by reduced oxidative phosphorylation and collapse of glycolysis. CONCLUSION: Our observations indicate that LLLT may raise the cytotoxicity of cisplatin and ZA by modulating cellular metabolism, pointing to a possible application in cancer treatment.


Asunto(s)
Cisplatino/farmacología , Difosfonatos/farmacología , Imidazoles/farmacología , Rayos Láser , Western Blotting , Conservadores de la Densidad Ósea/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Glucólisis/efectos de los fármacos , Glucólisis/efectos de la radiación , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Terapia por Luz de Baja Intensidad/métodos , Fosforilación Oxidativa/efectos de los fármacos , Fosforilación Oxidativa/efectos de la radiación , Fotoquimioterapia/métodos , Fármacos Sensibilizantes a Radiaciones/farmacología , Ácido Zoledrónico
13.
Probl Radiac Med Radiobiol ; 22: 216-223, 2017 Dec.
Artículo en Inglés, Ruso | MEDLINE | ID: mdl-29286508

RESUMEN

OBJECTIVE: Assessment of the effect of single total γ irradiation to the parameters of mitochondrial oxidation and the topology of the thymocyte surface. MATERIALS AND METHODS: The study was performed in sexually mature white outbreeding male rats divided into three groups: two experimental and one control. The states of energy metabolism were determined by the rate of oxygen consumption by the thymus tissues on endogenous substrates at the presence of 2,4 dinitrophenol, uncoupler of a tissue breathing (TB) and oxidative phosphorylation (OP) after a single total γ irradiation at a dose of 1.0 Gy at 3, 10, 40 and 60 days. The topology of thymus cells was assessed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). RESULTS: On the 3rd and 10th days after total gamma irradiation at a dose of 1.0 Gy, a significant decrease in respira tory activity was determined in thymus tissues on endogenous substrates. Simultaneously, on the 3rd day, pro nounced changes in the morphological parameters of thymocytes (height, volume, area of contact with the sub strate) and the topology of their surface were also observed. On the 10th day after irradiation, most of the morpho logical parameters of thymocytes, except for their volume, were characterized by restoration to normal. In the long term (on the 30th and 60th days after exposure), a gradual but not complete recovery of the respiratory activity of thymocytes was observed, accompanied by an increase in the degree of dissociation of TD and OP. CONCLUSIONS: The obtained data reflect and refine mechanisms of post radiation repair of lymphopoiesis, showing the presence of conjugated changes in the parameters of aerobic energy metabolism of thymocytes, morphology and topology of their surface. The synchronism of changes in the parameters under study is a reflection of the state of the cytoskeleton, the functional activity of which largely depends on the level and efficiency of mitochondrial oxidation.


Asunto(s)
Rayos gamma/efectos adversos , Fosforilación Oxidativa/efectos de la radiación , Consumo de Oxígeno/efectos de la radiación , Timocitos/efectos de la radiación , Glándula Tiroides/efectos de la radiación , 2,4-Dinitrofenol/farmacología , Animales , Animales no Consanguíneos , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/efectos de la radiación , Masculino , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Dosis de Radiación , Ratas , Recuperación de la Función/fisiología , Timocitos/efectos de los fármacos , Timocitos/metabolismo , Timocitos/patología , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Técnicas de Cultivo de Tejidos , Desacopladores/farmacología
14.
Cell Cycle ; 16(24): 2345-2354, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29099268

RESUMEN

Ionizing radiation (IR) elevates mitochondrial oxidative phosphorylation (OXPHOS) in response to the energy requirement for DNA damage responses. Reactive oxygen species (ROS) released during mitochondrial OXPHOS may cause oxidative damage to mitochondria in irradiated cells. In this paper, we investigated the association between nuclear DNA damage and mitochondrial damage following IR in normal human lung fibroblasts. In contrast to low-doses of acute single radiation, continuous exposure of chronic radiation or long-term exposure of fractionated radiation (FR) induced persistent Rad51 and γ-H2AX foci at least 24 hours after IR in irradiated cells. Additionally, long-term FR increased mitochondrial ROS accompanied with enhanced mitochondrial membrane potential (ΔΨm) and mitochondrial complex IV (cytochrome c oxidase) activity. Mitochondrial ROS released from the respiratory chain complex I caused oxidative damage to mitochondria. Inhibition of ATM kinase or ATM loss eliminated nuclear DNA damage recognition and mitochondrial radiation responses. Consequently, nuclear DNA damage activates ATM which in turn increases ROS level and subsequently induces mitochondrial damage in irradiated cells. In conclusion, we demonstrated that ATM is essential in the mitochondrial radiation responses in irradiated cells. We further demonstrated that ATM is involved in signal transduction from nucleus to the mitochondria in response to IR.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Mitocondrias/metabolismo , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Histonas/metabolismo , Humanos , Pulmón , Potencial de la Membrana Mitocondrial/efectos de la radiación , Mitocondrias/efectos de la radiación , Fosforilación Oxidativa/efectos de la radiación , Recombinasa Rad51/metabolismo , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo
15.
Cell Cycle ; 16(6): 565-573, 2017 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-28118061

RESUMEN

Mitochondria play a key role in maintaining cellular homeostasis during stress responses, and mitochondrial dysfunction contributes to carcinogenesis, aging, and neurologic disease. We here investigated ionizing radiation (IR)-induced mitochondrial damage in human neural progenitor stem cells (NSCs), their differentiated counterparts and human normal fibroblasts. Long-term fractionated radiation (FR) with low doses of X-rays for 31 d enhanced mitochondrial activity as evident by elevated mitochondrial membrane potential (ΔΨm) and mitochondrial complex IV (cytochrome c oxidase) activity to fill the energy demands for the chronic DNA damage response in differentiated cells. Subsequent reduction of the antioxidant glutathione via continuous activation of mitochondrial oxidative phosphorylation caused oxidative stress and genomic instability in differentiated cells exposed to long-term FR. In contrast, long-term FR had no effect on the mitochondrial activity in NSCs. This cell type showed efficient DNA repair, no mitochondrial damage, and resistance to long-term FR. After high doses of acute single radiation (SR) (> 5 Gy), cell cycle arrest at the G2 phase was observed in NSCs and human fibroblasts. Under this condition, increase in mitochondria mass, mitochondrial DNA, and intracellular reactive oxygen species (ROS) levels were observed in the absence of enhanced mitochondrial activity. Consequently, cellular senescence was induced by high doses of SR in differentiated cells. In conclusion, we demonstrated that mitochondrial radiation responses differ according to the extent of DNA damage, duration of radiation exposure, and cell differentiation.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Células-Madre Neurales/metabolismo , Células-Madre Neurales/efectos de la radiación , Puntos de Control del Ciclo Celular/efectos de la radiación , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Senescencia Celular/efectos de la radiación , Reparación del ADN/efectos de la radiación , ADN Mitocondrial/genética , Relación Dosis-Respuesta en la Radiación , Técnica del Anticuerpo Fluorescente , Fase G2/efectos de la radiación , Histonas/metabolismo , Humanos , Oxidación-Reducción/efectos de la radiación , Fosforilación Oxidativa/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo
16.
Biochimie ; 125: 171-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27059514

RESUMEN

Exposure to short wavelength light causes increased reactive oxygen intermediates production in the outer retina, particularly in the rod Outer Segments (OS). Consistently, the OS were shown to conduct aerobic ATP production through the ectopic expression of the electron transfer chain complexes I-IV and F1Fo-ATP synthase. These facts prompted us to verify if the oxidative phosphorylation in the OS is implied in the oxidative damage of the blue-light (BL) treated OS, in an organotypic model of mouse retina. Whole mouse eyeball cultures were treated with short wavelength BL (peak at 405 nm, output power 1 mW/cm(2)) for 6 h. Immunogold transmission electron microscopy confirmed the expression of Complex I and F1Fo-ATP synthase in the OS. In situ histochemical assays on unfixed sections showed impairment of respiratory Complexes I and II after BL exposure, both in the OS and IS, utilized as a control. Basal O2 consumption and ATP synthesis were impaired in the OS purified from blue-light irradiated eyeball cultures. Electron transfer capacity between Complex I and II as well as activity of Complexes I and II was decreased in blue-light irradiated purified OS. The severe malfunctioning of the OS aerobic respiratory capacity after 6 h BL treatment may be the consequence of a self-induced damage. BL exposure would cause an initial over-functioning of both the phototransduction and respiratory chain, with reactive oxygen species production. In a self-renewal vicious cycle, membrane and protein oxidative damage, proton leakage and uncoupling, would impair redox chains, perpetuating the damage and causing hypo-metabolism with eventual apoptosis of the rod. Data may shed new light on the rod-driven retinopathies such as Age Related Macular Degeneration, of which blue-light irradiated retina represents a model.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Luz , Fosforilación Oxidativa/efectos de la radiación , ATPasas de Translocación de Protón/metabolismo , Células Fotorreceptoras Retinianas Bastones/enzimología , Animales , Femenino , Masculino , Ratones
17.
J Proteome Res ; 14(11): 4674-86, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26420666

RESUMEN

Recent epidemiological data indicate that radiation doses as low as those used in computer tomography may result in long-term neurocognitive side effects. The aim of this study was to elucidate long-term molecular alterations related to memory formation in the brain after low and moderate doses of γ radiation. Female C57BL/6J mice were irradiated on postnatal day 10 with total body doses of 0.1, 0.5, or 2.0 Gy; the control group was sham-irradiated. The proteome analysis of hippocampus, cortex, and synaptosomes isolated from these brain regions indicated changes in ephrin-related, RhoGDI, and axonal guidance signaling. Immunoblotting and miRNA-quantification demonstrated an imbalance in the synapse morphology-related Rac1-Cofilin pathway and long-term potentiation-related cAMP response element-binding protein (CREB) signaling. Proteome profiling also showed impaired oxidative phosphorylation, especially in the synaptic mitochondria. This was accompanied by an early (4 weeks) reduction of mitochondrial respiration capacity in the hippocampus. Although the respiratory capacity was restored by 24 weeks, the number of deregulated mitochondrial complex proteins was increased at this time. All observed changes were significant at doses of 0.5 and 2.0 Gy but not at 0.1 Gy. This study strongly suggests that ionizing radiation at the neonatal state triggers persistent proteomic alterations associated with synaptic impairment.


Asunto(s)
Corteza Cerebral/efectos de la radiación , Rayos gamma/efectos adversos , Hipocampo/efectos de la radiación , Potenciación a Largo Plazo/efectos de la radiación , Proteoma/genética , Transmisión Sináptica/efectos de la radiación , Factores Despolimerizantes de la Actina/genética , Factores Despolimerizantes de la Actina/metabolismo , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/efectos de la radiación , Axones/ultraestructura , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Efrinas/genética , Efrinas/metabolismo , Femenino , Hipocampo/metabolismo , Hipocampo/fisiopatología , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Neuropéptidos/genética , Neuropéptidos/metabolismo , Fosforilación Oxidativa/efectos de la radiación , Proteoma/metabolismo , Sinaptosomas/metabolismo , Sinaptosomas/efectos de la radiación , Irradiación Corporal Total , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico/genética , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico/metabolismo
18.
PLoS One ; 10(3): e0121046, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25807077

RESUMEN

A unique feature of cancer cells is to convert glucose into lactate to produce cellular energy, even under the presence of oxygen. Called aerobic glycolysis [The Warburg Effect] it has been extensively studied and the concept of aerobic glycolysis in tumor cells is generally accepted. However, it is not clear if aerobic glycolysis in tumor cells is fixed, or can be reversed, especially under therapeutic stress conditions. Here, we report that mTOR, a critical regulator in cell proliferation, can be relocated to mitochondria, and as a result, enhances oxidative phosphorylation and reduces glycolysis. Three tumor cell lines (breast cancer MCF-7, colon cancer HCT116 and glioblastoma U87) showed a quick relocation of mTOR to mitochondria after irradiation with a single dose 5 Gy, which was companied with decreased lactate production, increased mitochondrial ATP generation and oxygen consumption. Inhibition of mTOR by rapamycin blocked radiation-induced mTOR mitochondrial relocation and the shift of glycolysis to mitochondrial respiration, and reduced the clonogenic survival. In irradiated cells, mTOR formed a complex with Hexokinase II [HK II], a key mitochondrial protein in regulation of glycolysis, causing reduced HK II enzymatic activity. These results support a novel mechanism by which tumor cells can quickly adapt to genotoxic conditions via mTOR-mediated reprogramming of bioenergetics from predominantly aerobic glycolysis to mitochondrial oxidative phosphorylation. Such a "waking-up" pathway for mitochondrial bioenergetics demonstrates a flexible feature in the energy metabolism of cancer cells, and may be required for additional cellular energy consumption for damage repair and survival. Thus, the reversible cellular energy metabolisms should be considered in blocking tumor metabolism and may be targeted to sensitize them in anti-cancer therapy.


Asunto(s)
Hexoquinasa/antagonistas & inhibidores , Hexoquinasa/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de la radiación , Serina-Treonina Quinasas TOR/metabolismo , Adenosina Trifosfato/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/radioterapia , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Metabolismo Energético/efectos de la radiación , Femenino , Glucosa/metabolismo , Glucólisis/efectos de la radiación , Células HCT116 , Humanos , Células MCF-7 , Mitocondrias/efectos de la radiación , Consumo de Oxígeno/efectos de la radiación , Radiación
19.
Breast Cancer Res Treat ; 146(3): 525-34, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25007966

RESUMEN

In general, tumor cells display a more glycolytic phenotype compared to the corresponding normal tissue. However, it is becoming increasingly clear that tumors are composed of a heterogeneous population of cells. Breast cancers are organized in a hierarchical manner, with the breast cancer stem cells (BCSCs) at the top of the hierarchy. Here, we investigate the metabolic phenotype of BCSCs and their differentiated progeny. In addition, we determine the effect of radiation on the metabolic state of these two cell populations. Luminal, basal, and claudin-low breast cancer cell lines were propagated as mammospheres enriched in BCSCs. Lactate production, glucose consumption, and ATP content were compared with differentiated cultures. A metabolic flux analyzer was used to determine the oxygen consumption, extracellular acidification rates, maximal mitochondria capacity, and mitochondrial proton leak. The effect of radiation treatment of the metabolic phenotype of each cell population was also determined. BCSCs consume more glucose, produce less lactate, and have higher ATP content compared to their differentiated progeny. BCSCs have higher maximum mitochondrial capacity and mitochondrial proton leak compared to their differentiated progeny. Radiation treatment enhances the higher energetic state of the BCSCs, while decreasing mitochondrial proton leak. Our study indicated that breast cancer cells are heterogeneous in their metabolic phenotypes and BCSCs reside in a distinct metabolic state compared to their differentiated progeny. BCSCs display a reliance on oxidative phosphorylation, while the more differentiated progeny displays a more glycolytic phenotype. Radiation treatment affects the metabolic state of BCSCs. We conclude that interfering with the metabolic requirements of BCSCs may prevent radiation-induced reprogramming of breast cancer cells during radiation therapy, thus improving treatment outcome.


Asunto(s)
Neoplasias de la Mama/metabolismo , Diferenciación Celular/genética , Células Madre Neoplásicas/metabolismo , Neoplasias de la Mama/patología , Diferenciación Celular/efectos de la radiación , Femenino , Glucólisis/genética , Humanos , Células MCF-7 , Células Madre Neoplásicas/patología , Fosforilación Oxidativa/efectos de la radiación , Consumo de Oxígeno/efectos de la radiación , Rayos X
20.
Oncotarget ; 5(6): 1657-65, 2014 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-24722169

RESUMEN

The phenotypic and genetic diversity that define tumor subpopulations within high-grade glioma can lead to therapeutic resistance and tumor recurrence. Given that cranial irradiation is a frontline treatment for malignant glioma, understanding how irradiation selectively effects different cellular subpopulations within these heterogeneous cancers should help identify interventions targeted to better combat this deadly disease. To analyze the radiation response of distinct glioma subpopulations, 2 glioma cells lines (U251, A172) were cultured under conditions that promoted either adherence or non-adherent spheroids. Past work has demonstrated that subpopulations derived from defined culture conditions exhibit differences in karyotype, proliferation, gene expression and tumorigenicity. Spheroid cultures from each of the glioma cell lines were found to be more radiosensitive, which was consistent with higher levels of oxidative stress and lower levels of both oxidative phosphorylation and glycolytic metabolism 1 week following irradiation. In contrast, radioresistant non-spheroid parental cultures showed increased glycolytic activity in response to irradiation, while oxidative phosphorylation was affected to a lesser extent. Overall these data suggest that prolonged radiation-induced oxidative stress can compromise the metabolic state of certain glioma subpopulations thereby altering their sensitivity to an important therapeutic intervention used routinely for the control of glioma.


Asunto(s)
Glioma/patología , Glioma/radioterapia , Glucólisis/efectos de la radiación , Fosforilación Oxidativa/efectos de la radiación , Tolerancia a Radiación , Radiación Ionizante , Esferoides Celulares/efectos de la radiación , Apoptosis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Ensayo de Unidades Formadoras de Colonias , Metabolismo Energético/efectos de la radiación , Citometría de Flujo , Glioma/clasificación , Humanos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA