RESUMEN
The specific role of the chloride anion (Cl- ) as a signalling effector or second messenger has been increasingly recognized in recent years. It could represent a key factor in the regulation of cellular homeostasis. Changes in intracellular Cl- concentration affect diverse cellular functions such as gene and protein expression and activities, post-translational modifications of proteins, cellular volume, cell cycle, cell proliferation and differentiation, membrane potential, reactive oxygen species levels, and intracellular/extracellular pH. Cl- also modulates functions in different organelles, including endosomes, phagosomes, lysosomes, endoplasmic reticulum, and mitochondria. A better knowledge of Cl- signalling could help in understanding the molecular and metabolic changes seen in pathologies with altered Cl- transport or under physiological conditions. Here we review relevant evidence supporting the role of Cl- as a signalling effector.
Asunto(s)
Cloruros/fisiología , Eucariontes/fisiología , Transducción de Señal/fisiología , Animales , Apoptosis , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Enzimas/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Inmunidad , Inflamación , Canales Iónicos/metabolismo , Orgánulos , Fosfotransferasas/fisiología , Receptores de Superficie Celular/efectos de los fármacos , Receptores de Superficie Celular/metabolismoRESUMEN
All organisms encode transfer RNAs (tRNAs) that are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends; some tRNAs also contain introns, which are removed by splicing. Despite commonality in what the ultimate goal is (i.e., producing a mature tRNA), mechanistically, tRNA splicing differs between Bacteria and Archaea or Eukarya. The number and position of tRNA introns varies between organisms and even between different tRNAs within the same organism, suggesting a degree of plasticity in both the evolution and persistence of modern tRNA splicing systems. Here we will review recent findings that not only highlight nuances in splicing pathways but also provide potential reasons for the maintenance of introns in tRNA. Recently, connections between defects in the components of the tRNA splicing machinery and medically relevant phenotypes in humans have been reported. These differences will be discussed in terms of the importance of splicing for tRNA function and in a broader context on how tRNA splicing defects can often have unpredictable consequences.
Asunto(s)
Modelos Genéticos , Empalme del ARN , ARN de Transferencia/química , Animales , Archaea/genética , Bacterias/genética , Endonucleasas/fisiología , Intrones/fisiología , Fosfotransferasas/fisiología , ARN de Transferencia/metabolismo , ARN de Transferencia/fisiología , Vertebrados/genéticaRESUMEN
The two-component signal transduction system (TCS) BarA/UvrY activates transcription of CsrB and CsrC noncoding RNAs, which act by sequestering the RNA-binding global regulatory protein CsrA. Here, we show that the metabolic end products formate and acetate provide a physiological stimulus for this TCS and thus link posttranscriptional regulation by the Csr system to the metabolic state of the cell.
Asunto(s)
Proteínas de Escherichia coli/fisiología , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/fisiología , Fosfotransferasas/fisiología , Transducción de Señal , Ácido Acético/metabolismo , Formiatos/metabolismoRESUMEN
T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-beta, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL.
Asunto(s)
Diferenciación Celular , Leucemia-Linfoma de Células T del Adulto , Fosfotransferasas/fisiología , Transducción de Señal/fisiología , Linfocitos T/citología , Humanos , Quinasas Janus/fisiología , Leucemia-Linfoma de Células T del Adulto/etiología , Leucemia-Linfoma de Células T del Adulto/fisiopatología , Leucemia-Linfoma de Células T del Adulto/terapia , Proteínas Quinasas Activadas por Mitógenos/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptores Notch/fisiología , Factor de Crecimiento Transformador beta/fisiologíaRESUMEN
T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-ß, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL.
Asunto(s)
Humanos , Diferenciación Celular , Leucemia-Linfoma de Células T del Adulto , Fosfotransferasas/fisiología , Transducción de Señal/fisiología , Linfocitos T/citología , /fisiología , Quinasas Janus/fisiología , Leucemia-Linfoma de Células T del Adulto/etiología , Leucemia-Linfoma de Células T del Adulto/fisiopatología , Leucemia-Linfoma de Células T del Adulto/terapia , Proteínas Quinasas Activadas por Mitógenos/fisiología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptores Notch/fisiología , Factor de Crecimiento Transformador beta/fisiologíaRESUMEN
An increasing body of evidence supports a trophic action of gamma-aminobutyric acid (GABA) during nervous system development. The purported mediator of these trophic effects is a depolarizing response triggered by GABA, which elicits a calcium influx in immature CNS cells. This Mini-Review focuses on the neurotrophic role of neural activity and GABA and some of the most common intracellular cascades activated by depolarization and trophic factors. Several biological effects induced by GABA in the developing nervous system are reviewed, with particular emphasis on what is known about calcium-dependent neurotrophic effects induced by GABA and its intracellular mechanisms.