Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 6129, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675214

RESUMEN

Polarity underlies all directional growth responses in plants including growth towards the light (phototropism). The plasma-membrane associated protein, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key determinant of phototropic growth which is regulated by phototropin (phot) AGC kinases. Here we demonstrate that NPH3 is directly phosphorylated by phot1 within a conserved C-terminal consensus sequence (RxS) that is necessary to promote phototropism and petiole positioning in Arabidopsis. RxS phosphorylation also triggers 14-3-3 binding combined with changes in NPH3 phosphorylation and localisation status. Mutants of NPH3 that are unable to bind or constitutively bind 14-3-3 s show compromised functionality consistent with a model where phototropic curvature is established by signalling outputs arising from a gradient of NPH3 RxS phosphorylation across the stem. Our findings therefore establish that NPH3/RPT2-Like (NRL) proteins are phosphorylation targets for plant AGC kinases. Moreover, RxS phosphorylation is conserved in other members of the NRL family, suggesting a common mechanism of regulating plant growth to the prevailing light environment.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Proteínas 14-3-3/genética , Secuencias de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Consenso , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/genética , Luz , Fosforilación , Fototropismo/efectos de la radiación , Unión Proteica/efectos de la radiación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
2.
Nat Commun ; 12(1): 6128, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675219

RESUMEN

NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key component of the auxin-dependent plant phototropic growth response. We report that NPH3 directly binds polyacidic phospholipids, required for plasma membrane association in darkness. We further demonstrate that blue light induces an immediate phosphorylation of a C-terminal 14-3-3 binding motif in NPH3. Subsequent association of 14-3-3 proteins is causal for the light-induced release of NPH3 from the membrane and accompanied by NPH3 dephosphorylation. In the cytosol, NPH3 dynamically transitions into membraneless condensate-like structures. The dephosphorylated state of the 14-3-3 binding site and NPH3 membrane recruitment are recoverable in darkness. NPH3 variants that constitutively localize either to the membrane or to condensates are non-functional, revealing a fundamental role of the 14-3-3 mediated dynamic change in NPH3 localization for auxin-dependent phototropism. This regulatory mechanism might be of general nature, given that several members of the NPH3-like family interact with 14-3-3 via a C-terminal motif.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hipocótilo/efectos de la radiación , Proteínas 14-3-3/genética , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Fosforilación , Fototropismo/efectos de la radiación , Unión Proteica , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Sci Rep ; 11(1): 3653, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574466

RESUMEN

The sporangiophores of Phycomyces blakesleeanus have been used as a model system to study sensory transduction, helical growth, and to establish global biophysical equations for expansive growth of walled cells. More recently, local statistical biophysical models of the cell wall are being constructed to better understand the molecular underpinnings of helical growth and its behavior during the many growth responses of the sporangiophores to sensory stimuli. Previous experimental and theoretical findings guide the development of these local models. Future development requires an investigation of explicit and implicit assumptions made in the prior research. Here, experiments are conducted to test three assumptions made in prior research, that (a) elongation rate, (b) rotation rate, and (c) helical growth steepness, R, of the sporangiophore remain constant during the phototropic response (bending toward unilateral light) and the avoidance response (bending away from solid barriers). The experimental results reveal that all three assumptions are incorrect for the phototropic response and probably incorrect for the avoidance response but the results are less conclusive. Generally, the experimental results indicate that the elongation and rotation rates increase during these responses, as does R, indicating that the helical growth steepness become flatter. The implications of these findings on prior research, the "fibril reorientation and slippage" hypothesis, global biophysical equations, and local statistical biophysical models are discussed.


Asunto(s)
Biofisica/tendencias , Gravitropismo/fisiología , Fototropismo/fisiología , Phycomyces/crecimiento & desarrollo , Fenómenos Biológicos , Pared Celular/fisiología , Pared Celular/efectos de la radiación , Gravitropismo/efectos de la radiación , Luz , Modelos Biológicos , Fototropismo/efectos de la radiación , Phycomyces/efectos de la radiación
4.
J Exp Bot ; 70(20): 5929-5941, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31376280

RESUMEN

Phototropin1 (phot1) perceives low- to high-fluence blue light stimuli and mediates both the first and second positive phototropisms. High-fluence blue light is known to induce autophosphorylation of phot1, leading to the second positive phototropism. However, the phosphorylation status of phot1 by low-fluence blue light that induces the first positive phototropism had not been observed. Here, we conducted a phosphoproteomic analysis of maize coleoptiles to investigate the fluence-dependent phosphorylation status of Zmphot1. High-fluence blue light induced phosphorylation of Zmphot1 at several sites. Notably, low-fluence blue light significantly increased the phosphorylation level of Ser291 in Zmphot1. Furthermore, Ser291-phosphorylated and Ser369Ser376-diphosphorylated peptides were found to be more abundant in the low-fluence blue light-irradiated sides than in the shaded sides of coleoptiles. The roles of these phosphorylation events in phototropism were explored by heterologous expression of ZmPHOT1 in the Arabidopsis thaliana phot1phot2 mutant. The first positive phototropism was restored in wild-type ZmPHOT1-expressing plants; however, plants expressing S291A-ZmPHOT1 or S369AS376A-ZmPHOT1 showed significantly reduced complementation rates. All transgenic plants tested in this study exhibited a normal second positive phototropism. These findings provide the first indication that low-fluence blue light induces phosphorylation of Zmphot1 and that this induced phosphorylation is crucial for the first positive phototropism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Luz , Fototropismo/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Fosforilación/genética , Fosforilación/efectos de la radiación , Fototropismo/genética , Fototropismo/efectos de la radiación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación , Zea mays/genética , Zea mays/metabolismo , Zea mays/efectos de la radiación
5.
Plant Cell ; 31(9): 2070-2088, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289115

RESUMEN

In the course of evolution, plants have developed mechanisms that orient their organs toward the incoming light. At the seedling stage, positive phototropism is mainly regulated by phototropin photoreceptors in blue and UV wavelengths. Contrasting with this, we report that UV RESISTANCE LOCUS8 (UVR8) serves as the predominant photoreceptor of UV-B-induced phototropic responses in Arabidopsis (Arabidopsis thaliana) inflorescence stems. We examined the molecular mechanisms underlying this response and our findings support the Blaauw theory (Blaauw, 1919), suggesting rapid differential growth through unilateral photomorphogenic growth inhibition. UVR8-dependent UV-B light perception occurs mainly in the epidermis and cortex, but deeper tissues such as endodermis can also contribute. Within stems, a spatial difference of UVR8 signal causes a transcript and protein increase of transcription factors ELONGATED HYPOCOTYL5 (HY5) and its homolog HY5 HOMOLOG at the UV-B-exposed side. The irradiated side shows (1) strong activation of flavonoid synthesis genes and flavonoid accumulation; (2) increased gibberellin (GA)2-oxidase expression, diminished GA1 levels, and accumulation of the DELLA protein REPRESSOR OF GA1; and (3) increased expression of the auxin transport regulator PINOID, contributing to diminished auxin signaling. Together, the data suggest a mechanism of phototropin-independent inflorescence phototropism through multiple, locally UVR8-regulated hormone pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Inflorescencia/metabolismo , Inflorescencia/efectos de la radiación , Fototropismo/fisiología , Fototropismo/efectos de la radiación , Tallos de la Planta/metabolismo , Tallos de la Planta/efectos de la radiación , Rayos Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Cromosómicas no Histona/genética , Flavonoides/genética , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
6.
Plant Physiol ; 180(2): 1119-1131, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30918082

RESUMEN

Phototropin (phot) receptor kinases play important roles in promoting plant growth by controlling light-capturing processes, such as phototropism. Phototropism is mediated through the action of NON-PHOTOTROPIC HYPOCOTYL3 (NPH3), which is dephosphorylated following phot activation. However, the functional significance of this early signaling event remains unclear. Here, we show that the onset of phototropism in dark-grown (etiolated) seedlings of Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) is enhanced by greening (deetiolation). Red and blue light were equally effective in promoting phototropism in Arabidopsis, consistent with our observations that deetiolation by phytochrome or cryptochrome was sufficient to enhance phototropism. Increased responsiveness did not result from an enhanced sensitivity to the phytohormone auxin, nor does it involve the phot-interacting protein, ROOT PHOTOTROPISM2. Instead, deetiolated seedlings showed attenuated levels of NPH3 dephosphorylation and diminished relocalization of NPH3 from the plasma membrane during phototropism. Likewise, etiolated seedlings that lack the PHYTOCHROME-INTERACTING FACTORS (PIFs) PIF1, PIF3, PIF4, and PIF5 displayed reduced NPH3 dephosphorylation and enhanced phototropism, consistent with their constitutive photomorphogenic phenotype in darkness. Phototropic enhancement could also be achieved in etiolated seedlings by lowering the light intensity to diminish NPH3 dephosphorylation. Thus, phototropism is enhanced following deetiolation through the modulation of a phosphorylation rheostat, which in turn sustains the activity of NPH3. We propose that this dynamic mode of regulation enables young seedlings to maximize their establishment under changing light conditions, depending on their photoautotrophic capacity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Etiolado/fisiología , Fototropismo/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Criptocromos/metabolismo , Etiolado/efectos de los fármacos , Etiolado/efectos de la radiación , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/efectos de los fármacos , Hipocótilo/fisiología , Hipocótilo/efectos de la radiación , Ácidos Indolacéticos/farmacología , Luz , Modelos Biológicos , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Fototropismo/efectos de los fármacos , Fototropismo/efectos de la radiación , Fitocromo/metabolismo , Agregado de Proteínas , Plantones/efectos de los fármacos , Plantones/fisiología , Plantones/efectos de la radiación
7.
Methods Mol Biol ; 1924: 27-33, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30694464

RESUMEN

Fern protonemal cells grow at their apices as long, undivided filamentous cells toward red (or weak white) light and change their growth direction if the light direction is changed (i.e., phototropism). When protonemata growing between an agar surface and cover glass are irradiated with polarized red light through the glass on the protonemal side, they start growing at the point where the direction of the vibration plane of polarized light and the transition moment of the photoreceptor, which is parallel to the plasma membrane of the cell's apical part, are equal (i.e., polarotropism). Herein, the methods on how to induce and observe this protonemal phototropism and polarotropism are described.


Asunto(s)
Adiantum/fisiología , Luz , Adiantum/genética , Adiantum/efectos de la radiación , Fototropismo/genética , Fototropismo/fisiología , Fototropismo/efectos de la radiación , Fitocromo/genética , Fitocromo/metabolismo
8.
Methods Mol Biol ; 1924: 131-139, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30694471

RESUMEN

UV-B phototropism in etiolated Arabidopsis seedlings has only been shown recently and needs further exploration. Here we elaborate on how to generate a customized setup with a unilateral UV-B light source, the required plant materials, different growth substrates, and a framework for data analysis.


Asunto(s)
Fototropismo/efectos de la radiación , Rayos Ultravioleta , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Plantones/fisiología , Plantones/efectos de la radiación
9.
Nat Commun ; 9(1): 2403, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921904

RESUMEN

Phototropins are light-activated protein kinases, which contribute to photosynthesis optimization both through enhancement of photon absorption when light is limiting and avoidance responses in high light. This duality is in part endowed by the presence of phototropins with different photosensitivity (phot1 and phot2). Here we show that phot1, which senses low light to promote positive phototropism (growth towards the light), also limits the response in high light. This response depends in part on phot1-mediated phosphorylation of Phytochrome Kinase Substrate 4 (PKS4). This light-regulated phosphorylation switch changes PKS4 from a phototropism enhancer in low light to a factor limiting the process in high light. In such conditions phot1 and PKS4 phosphorylation prevent phototropic responses to shallow light gradients and limit phototropism in a natural high light environment. Hence, by modifying PKS4 activity in high light the phot1-PKS4 regulon enables appropriate physiological adaptations over a range of light intensities.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Luz , Fosfoproteínas/metabolismo , Fototropismo/efectos de la radiación , Adaptación Fisiológica/genética , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Relación Dosis-Respuesta en la Radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/genética , Fosforilación/efectos de la radiación , Fototropismo/genética , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas
10.
Plant Cell Physiol ; 59(5): 1060-1071, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29490064

RESUMEN

Regulation of protein function by phosphorylation and dephosphorylation is an important mechanism in many cellular events. The phototropin blue-light photoreceptors, plant-specific AGCVIII kinases, are essential for phototropic responses. Members of the D6 PROTEIN KINASE (D6PK) family, representing a subfamily of the AGCVIII kinases, also contribute to phototropic responses, suggesting that possibly further AGCVIII kinases may potentially control phototropism. The present study investigates the functional roles of Arabidopsis (Arabidopsis thaliana) AGCVIII kinases in hypocotyl phototropism. We demonstrate that D6PK family kinases are not only required for the second but also for the first positive phototropism. In addition, we find that a previously uncharacterized AGCVIII protein, AGC1-12, is involved in the first positive phototropism and gravitropism. AGC1-12 phosphorylates serine residues in the cytoplasmic loop of PIN-FORMED 1 (PIN1) and shares phosphosite preferences with D6PK. Our work strongly suggests that the D6PK family and AGC1-12 are critical components for both hypocotyl phototropism and gravitropism, and that these kinases control tropic responses mainly through regulation of PIN-mediated auxin transport by protein phosphorylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Hipocótilo/enzimología , Hipocótilo/fisiología , Fototropismo/fisiología , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes Reporteros , Hipocótilo/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Luz , Familia de Multigenes , Mutación/genética , Fosforilación/efectos de la radiación , Fototropismo/efectos de la radiación
11.
J Integr Plant Biol ; 60(7): 562-577, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29393576

RESUMEN

Two redundant blue-light receptors, known as phototropins (phot1 and phot2), influence a variety of physiological responses, including phototropism, chloroplast positioning, and stomatal opening in Arabidopsis thaliana. Whereas phot1 functions in both low- and high-intensity blue light (HBL), phot2 functions primarily in HBL. Here, we aimed to elucidate phot2-specific functions by screening for HBL-insensitive mutants among mutagenized Arabidopsis phot1 mutants. One of the resulting phot2 signaling associated (p2sa) double mutants, phot1 p2sa2, exhibited phototropic defects that could be restored by constitutively expressing NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3), indicating that P2SA2 was allelic to NPH3. It was observed that NPH3-GFP signal mainly localized to and clustered on the plasma membrane in darkness. This NPH3 clustering on the plasma membrane was not affected by mutations in genes encoding proteins that interact with NPH3, including PHOT1, PHOT2 and ROOT PHOTOTROPISM 2 (RPT2). However, the HBL irradiation-mediated release of NPH3 proteins into the cytoplasm was inhibited in phot1 mutants and enhanced in phot2 and rpt2-2 mutants. Furthermore, HBL-induced hypocotyl phototropism was enhanced in phot1 mutants and inhibited in the phot2 and rpt2-2 mutants. Our findings indicate that phot1 regulates the dissociation of NPH3 from the plasma membrane, whereas phot2 mediates the stabilization and relocation of NPH3 to the plasma membrane to acclimate to HBL.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Luz , Fototropismo/efectos de la radiación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Etiolado/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Mutación/genética , Fototropinas/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Plantones/genética , Plantones/efectos de la radiación , Transducción de Señal , Fracciones Subcelulares/metabolismo
12.
Plant Sci ; 264: 96-101, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28969807

RESUMEN

Plants are extremely plastic organisms with the ability to adapt and respond to the changing environmental conditions surrounding them. Sunlight is one of the main resources for plants, both as a primary energy source for photosynthesis and as a stimulus that regulates different aspects of their growth and development. UV-B comprises wavelengths that correspond to a high energy region of the solar spectrum capable of reaching the biosphere, influencing plant growth. It is currently believed that plants are able to acclimate when growing under the influence of this radiation and perceive it as a signal, without stress signs. Nonetheless, many UV-B induced changes are elicited after DNA damage occurs as a consequence of exposure. In this review we focus on the influence of UV-B on leaf, flower and root development and emphasize the limited understanding of the molecular mechanisms for most of this developmental processes affected by UV-B documented over the years of research in this area.


Asunto(s)
Desarrollo de la Planta/efectos de la radiación , Plantas/efectos de la radiación , Daño del ADN , Flores/genética , Flores/crecimiento & desarrollo , Flores/efectos de la radiación , Fotosíntesis/efectos de la radiación , Fototropismo/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de la radiación , Plantas/genética , Luz Solar , Rayos Ultravioleta
13.
Fungal Genet Biol ; 106: 26-41, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28648816

RESUMEN

Fungi, like other organisms, actively sense the environmental light conditions in order to drive adaptive responses, including protective mechanisms against the light-associated stresses, and to regulate development. Ecological niches are characterized by different light regimes, for instance light is absent underground, and light spectra from the sunlight are changed underwater or under the canopy of foliage due to the absorption of distinct wavelengths by bacterial, algal and plant pigments. Considering the fact that fungi have evolved to adapt to their habitats, the complexities of their 'visual' systems may vary significantly. Fungi that are pathogenic on plants experience a special light regime because the host always seeks the optimum light conditions for photosynthesis - and the pathogen has to cope with this environment. When the pathogen lives under the canopy and is indirectly exposed to sunlight, it is confronted with an altered light spectrum enriched for green and far-red light. Botrytis cinerea, the gray mold fungus, is an aggressive plant pathogen mainly infecting the above-ground parts of the plant. As outlined in this review, the Leotiomycete maintains a highly sophisticated light signaling machinery, integrating (near)-UV, blue, green, red and far-red light signals by use of at least eleven potential photoreceptors to trigger a variety of responses, i.e. protection (pigmentation, enzymatic systems), morphogenesis (conidiation, apothecial development), entrainment of a circadian clock, and positive and negative tropism of multicellular (conidiophores, apothecia) and unicellular structures (conidial germ tubes). In that sense, 'looking through the eyes' of this plant pathogen will expand our knowledge of fungal photobiology.


Asunto(s)
Botrytis/patogenicidad , Botrytis/efectos de la radiación , Luz , Componentes Aéreos de las Plantas/microbiología , Relojes Circadianos/fisiología , Relojes Circadianos/efectos de la radiación , Criptocromos/fisiología , Fotorreceptores Microbianos/fisiología , Fototropismo/fisiología , Fototropismo/efectos de la radiación , Transducción de Señal/efectos de la radiación , Virulencia/efectos de la radiación
14.
Sci Rep ; 7: 44790, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28322269

RESUMEN

Light is an environmental signal perceived by most eukaryotic organisms and that can have major impacts on their growth and development. The MadC protein in the fungus Phycomyces blakesleeanus (Mucoromycotina) has been postulated to form part of the photosensory input for phototropism of the fruiting body sporangiophores, but the madC gene has remained unidentified since the 1960s when madC mutants were first isolated. In this study the madC gene was identified by positional cloning. All madC mutant strains contain loss-of-function point mutations within a gene predicted to encode a GTPase activating protein (GAP) for Ras. The madC gene complements the Saccharomyces cerevisiae Ras-GAP ira1 mutant and the encoded MadC protein interacts with P. blakesleeanus Ras homologs in yeast two-hybrid assays, indicating that MadC is a regulator of Ras signaling. Deletion of the homolog in the filamentous ascomycete Neurospora crassa affects the circadian clock output, yielding a pattern of asexual conidiation similar to a ras-1 mutant that is used in circadian studies in N. crassa. Thus, MadC is unlikely to be a photosensor, yet is a fundamental link in the photoresponses from blue light perceived by the conserved White Collar complex with Ras signaling in two distantly-related filamentous fungal species.


Asunto(s)
Ritmo Circadiano/fisiología , Fotobiología , Fototropismo/fisiología , Phycomyces/metabolismo , Phycomyces/fisiología , Proteínas ras/metabolismo , Alelos , Secuencia de Bases , Mapeo Cromosómico , Ritmo Circadiano/efectos de la radiación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Genes Fúngicos , Prueba de Complementación Genética , Luz , Mutación con Pérdida de Función/genética , Fenotipo , Fototropismo/efectos de la radiación , Phycomyces/genética , Phycomyces/efectos de la radiación , Homología de Secuencia de Ácido Nucleico , Transducción de Señal/efectos de la radiación , Transcripción Genética/efectos de la radiación
15.
Plant Cell Environ ; 40(1): 165-176, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27770560

RESUMEN

Phototropism is the process by which plants grow towards light in order to maximize the capture of light for photosynthesis, which is particularly important for germinating seedlings. In Arabidopsis, hypocotyl phototropism is predominantly triggered by blue light (BL), which has a profound effect on the establishment of asymmetric auxin distribution, essential for hypocotyl phototropism. Two auxin efflux transporters ATP-binding cassette B19 (ABCB19) and PIN-formed 3 (PIN3) are known to mediate the effect of BL on auxin distribution in the hypocotyl, but the details for how BL triggers PIN3 lateralization remain poorly understood. Here, we report a critical role for clathrin in BL-triggered, PIN3-mediated asymmetric auxin distribution in hypocotyl phototropism. We show that unilateral BL induces relocalization of clathrin in the hypocotyl. Loss of clathrin light chain 2 (CLC2) and CLC3 affects endocytosis and lateral distribution of PIN3 thereby impairing BL-triggered establishment of asymmetric auxin distribution and consequently, phototropic bending. Conversely, auxin efflux inhibitors N-1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid affect BL-induced relocalization of clathrin, endocytosis and lateralization of PIN3 as well as asymmetric distribution of auxin. These results together demonstrate an important interplay between auxin and clathrin function that dynamically regulates BL-triggered hypocotyl phototropism in Arabidopsis.


Asunto(s)
Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Clatrina/metabolismo , Hipocótilo/fisiología , Ácidos Indolacéticos/metabolismo , Luz , Fototropismo/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Endocitosis/efectos de la radiación , Hipocótilo/efectos de la radiación
16.
Planta ; 244(6): 1201-1215, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27507239

RESUMEN

MAIN CONCLUSION: Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities.


Asunto(s)
Arabidopsis/fisiología , Fototropismo/fisiología , Raíces de Plantas/fisiología , Arabidopsis/efectos de la radiación , Luz , Fototropismo/efectos de la radiación , Raíces de Plantas/efectos de la radiación , Ingravidez
17.
J Plant Res ; 129(4): 759-770, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27033355

RESUMEN

Phototropic (PT) and gravitropic (GT) bending are the two major tropic movements that determine the spatial position of potato shoots. We studied PT bending of potato plantlets grown under long-day photoperiods in several prearranged position setups providing different interactions with the GT response. Starting with the standard PT stimulation setup composed of unilateral irradiation of vertically positioned shoots, experiments were also done in antagonistic and synergistic setups and in treatments with horizontal displacement of the light source. In the standard setup, PT bending suppressed the GT bending, which could occur only if the PT stimulation was cancelled. The antagonistic position, with phototropism and gravitropism attempting to bend shoots in opposite directions, showed phototropism and gravitropism as independent bending events with the outcome varying throughout the day reflecting diurnal changes in the competence of individual tropic components. Whilst gravitropism was constant, phototropism had a marked daily fluctuation of its magnitude with a prominent morning maximum starting an hour after the dawn in the growth room and lasting for the next 6 h. When phototropism and gravitropism were aligned in a synergistic position, stimulating shoot bending in the same direction, there was little quantitative addition of their individual effects. The long period of morning PT bending maximum enabled multiple PT bending events to be conducted in succession, each one preceded by a separate lag phase. Studies of secondary PT events showed that potato plantlets can follow and adjust their shoot position in response to both vertical and horizontal movements of a light source. PT bending was reversible, since the 180° horizontal change of a blue light (BL) source position resulted in reversal of bending direction after a 20-min-long lag phase.


Asunto(s)
Gravitropismo/fisiología , Fototropismo/fisiología , Brotes de la Planta/fisiología , Solanum tuberosum/fisiología , Fenómenos Biomecánicos/efectos de la radiación , Gravitropismo/efectos de la radiación , Luz , Fototropismo/efectos de la radiación , Brotes de la Planta/efectos de la radiación , Solanum tuberosum/efectos de la radiación
18.
J Plant Res ; 129(2): 175-87, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26858202

RESUMEN

The blue light (BL) receptor phototropin (phot) is specifically found in green plants; it regulates various BL-induced responses such as phototropism, chloroplast movement, stomatal opening, and leaf flattening. In Arabidopsis thaliana, two phototropins--phot1 and phot2--respond to blue light in overlapping but distinct ways. These BL-receptor-mediated responses enhance the photosynthetic activity of plants under weak light and minimize photodamage under strong light conditions. Welwitschia mirabilis Hook.f. found in the Namib Desert, and it has adapted to severe environmental stresses such as limiting water and strong sunlight. Although the plant has physiologically and ecologically unique features, it is unknown whether phototropin is functional in this plant. In this study, we assessed the functioning of phot-mediated BL responses in W. mirabilis. BL-dependent phototropism and stomatal opening was observed but light-dependent chloroplast movement was not detected. We performed a functional analysis of the PHOT1 gene of W. mirabilis, WmPHOT1, in Arabidopsis thaliana. We generated transgenic A. thaliana lines expressing WmPHOT1 in a phot1 phot2 double mutant background. Several Wmphot1 transgenic plants showed normal growth, although phot1 phot2 double mutant plants showed stunted growth. Furthermore, Wmphot1 transgenic plants showed normal phot1-mediated responses including phototropism, chloroplast accumulation, stomatal opening, and leaf flattening, but lacked the chloroplast avoidance response that is specifically mediated by phot2. Thus, our findings indicate that W. mirabilis possesses typical phot-mediated BL responses that were at least partially mediated by functional phototropin 1, an ortholog of Atphot1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Gnetophyta/fisiología , Fototransducción , Fosfoproteínas/metabolismo , Fototropinas/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Gnetophyta/genética , Gnetophyta/efectos de la radiación , Luz , Mutación , Fosfoproteínas/genética , Fotosíntesis/efectos de la radiación , Fototropinas/genética , Fototropismo/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación
19.
Biosystems ; 138: 25-38, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26562030

RESUMEN

Artificial algae algorithm (AAA), which is one of the recently developed bio-inspired optimization algorithms, has been introduced by inspiration from living behaviors of microalgae. In AAA, the modification of the algal colonies, i.e. exploration and exploitation is provided with a helical movement. In this study, AAA was modified by implementing multi-light source movement and artificial algae algorithm with multi-light source (AAAML) version was established. In this new version, we propose the selection of a different light source for each dimension that is modified with the helical movement for stronger balance between exploration and exploitation. These light sources have been selected by tournament method and each light source are different from each other. This gives different solutions in the search space. The best of these three light sources provides orientation to the better region of search space. Furthermore, the diversity in the source space is obtained with the worst light source. In addition, the other light source improves the balance. To indicate the performance of AAA with new proposed operators (AAAML), experiments were performed on two different sets. Firstly, the performance of AAA and AAAML was evaluated on the IEEE-CEC'13 benchmark set. The second set was real-world optimization problems used in the IEEE-CEC'11. To verify the effectiveness and efficiency of the proposed algorithm, the results were compared with other state-of-the-art hybrid and modified algorithms. Experimental results showed that the multi-light source movement (MLS) increases the success of the AAA.


Asunto(s)
Algoritmos , Fenómenos Fisiológicos Bacterianos/efectos de la radiación , Biomimética/métodos , Iluminación/métodos , Modelos Biológicos , Fototropismo/fisiología , Simulación por Computador , Luz , Estimulación Luminosa/métodos , Fototropismo/efectos de la radiación
20.
Plant Signal Behav ; 10(11): e1086857, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26340326

RESUMEN

Fern phytochrome3/neochrome1 (phy3/neo1) is a chimeric photoreceptor composed of a phytochrome-chromophore binding domain and an almost full-length phototropin. phy3 thus contains two different light-sensing modules; a red/far-red light receptor phytochrome and a blue light receptor phototropin. phy3 induces both red light- and blue light-dependent phototropism in phototropin-deficient Arabidopsis thaliana (phot1 phot2) seedlings. The red-light response is dependent on the phytochrome module of phy3, and the blue-light response is dependent on the phototropin module. We recently showed that both the phototropin-sensing module and the phytochrome-sensing module mediate the blue light-dependent phototropic response. Particularly under low-light conditions, these two light-sensing modules cooperate to induce the blue light-dependent phototropic response. This intramolecular co-action of two independent light-sensing modules in phy3 enhances light sensitivity, and perhaps allowed ferns to adapt to the low-light canopy conditions present in angiosperm forests.


Asunto(s)
Helechos/metabolismo , Luz , Fitocromo/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Helechos/efectos de la radiación , Mutación/genética , Fototropismo/efectos de la radiación , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...