Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.453
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338935

RESUMEN

Bafilomycin A1 inhibits V-type H+ ATPases on the molecular level, which acidifies endo-lysosomes. The main objective of the study was to assess the effect of bafilomycin A1 on Ca2+ content, NAADP-induced Ca2+ release, and ATPase activity in rat hepatocytes and human colon cancer samples. Chlortetracycline (CTC) was used for a quantitative measure of stored calcium in permeabilized rat hepatocytes. ATPase activity was determined by orthophosphate content released after ATP hydrolysis in subcellular post-mitochondrial fraction obtained from rat liver as well as from patients' samples of colon mucosa and colorectal cancer samples. In rat hepatocytes, bafilomycin A1 decreased stored Ca2+ and prevented the effect of NAADP on stored Ca2+. This effect was dependent on EGTA-Ca2+ buffers in the medium. Bafilomycin A1 significantly increased the activity of Ca2+ ATPases of endoplasmic reticulum (EPR), but not plasma membrane (PM) Ca2+ ATPases in rat liver. Bafilomycin A1 also prevented the effect of NAADP on these pumps. In addition, bafilomycin A1 reduced Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in the subcellular fraction of rat liver. Concomitant administration of bafilomycin A1 and NAADP enhanced these effects. Bafilomycin A1 increased the activity of the Ca2+ ATPase of EPR in the subcellular fraction of normal human colon mucosa and also in colon cancer tissue samples. In contrast, it decreased Ca2+ ATPase PM activity in samples of normal human colon mucosa and caused no changes in colon cancer. Bafilomycin A1 decreased Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in normal colon mucosa samples and in human colon cancer samples. It can be concluded that bafilomycin A1 targets NAADP-sensitive acidic Ca2+ stores, effectively modulates ATPase activity, and assumes the link between acidic stores and EPR. Bafilomycin A1 may be useful for cancer therapy.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , ATPasas de Translocación de Protón Vacuolares , Humanos , Ratas , Animales , Macrólidos/farmacología , Fracciones Subcelulares/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Hígado/metabolismo , Calcio/metabolismo
2.
Nat Methods ; 21(1): 60-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036857

RESUMEN

Although the subcellular dynamics of RNA and proteins are key determinants of cell homeostasis, their characterization is still challenging. Here we present an integrative framework to simultaneously interrogate the dynamics of the transcriptome and proteome at subcellular resolution by combining two methods: localization of RNA (LoRNA) and a streamlined density-based localization of proteins by isotope tagging (dLOPIT) to map RNA and protein to organelles (nucleus, endoplasmic reticulum and mitochondria) and membraneless compartments (cytosol, nucleolus and cytosolic granules). Interrogating all RNA subcellular locations at once enables system-wide quantification of the proportional distribution of RNA. We obtain a cell-wide overview of localization dynamics for 31,839 transcripts and 5,314 proteins during the unfolded protein response, revealing that endoplasmic reticulum-localized transcripts are more efficiently recruited to cytosolic granules than cytosolic RNAs, and that the translation initiation factor eIF3d is key to sustaining cytoskeletal function. Overall, we provide the most comprehensive overview so far of RNA and protein subcellular localization dynamics.


Asunto(s)
Retículo Endoplásmico , ARN , ARN/genética , ARN/metabolismo , Fracciones Subcelulares/metabolismo , Retículo Endoplásmico/metabolismo , Proteoma/análisis
3.
Nat Biotechnol ; 42(4): 574-575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37872411
4.
Anal Biochem ; 687: 115445, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38135241

RESUMEN

REAP+ is an enhanced version of the rapid, efficient, and practical (REAP) method designed for the isolation of nuclear fractions. This improved version, REAP+, enables fast and effective extraction of mitochondria, cytoplasm, and nuclei. The mechanical cell disruption process has been optimized to cerebral tissues, snap-frozen liver, and HT22 cells with remarkable fraction enrichment. REAP+ is well-suited for samples containing minimal protein quantities, such as mouse hippocampal slices. The method was validated by Western blot and marker enzyme activities, such as LDH and G6PDH for the cytoplasmic fraction and succinate dehydrogenase and cytochrome c oxidase for the mitochondrial fraction. One of the outstanding features of this method is its rapid execution, yielding fractions within 15 min, allowing for simultaneous preparation of multiple samples. In essence, REAP+ emerges as a swift, efficient, and practical technique for the concurrent isolation of nuclei, cytoplasm, and mitochondria from various cell types and tissues. The method would be suitable to study the multicompartment translocation of proteins, such as metabolic enzymes and transcription factors migrating from cytosol to the mitochondria and nuclei. Moreover, its compatibility with small samples, such as hippocampal slices, and its potential applicability to human biopsies, highlights the potential application in medical research.


Asunto(s)
Núcleo Celular , Mitocondrias , Humanos , Ratones , Animales , Fraccionamiento Celular/métodos , Mitocondrias/metabolismo , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Fracciones Subcelulares/metabolismo
5.
Sensors (Basel) ; 23(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38005402

RESUMEN

Protein is one of the primary biochemical macromolecular regulators in the compartmental cellular structure, and the subcellular locations of proteins can therefore provide information on the function of subcellular structures and physiological environments. Recently, data-driven systems have been developed to predict the subcellular location of proteins based on protein sequence, immunohistochemistry (IHC) images, or immunofluorescence (IF) images. However, the research on the fusion of multiple protein signals has received little attention. In this study, we developed a dual-signal computational protocol by incorporating IHC images into protein sequences to learn protein subcellular localization. Three major steps can be summarized as follows in this protocol: first, a benchmark database that includes 281 proteins sorted out from 4722 proteins of the Human Protein Atlas (HPA) and Swiss-Prot database, which is involved in the endoplasmic reticulum (ER), Golgi apparatus, cytosol, and nucleoplasm; second, discriminative feature operators were first employed to quantitate protein image-sequence samples that include IHC images and protein sequence; finally, the feature subspace of different protein signals is absorbed to construct multiple sub-classifiers via dimensionality reduction and binary relevance (BR), and multiple confidence derived from multiple sub-classifiers is adopted to decide subcellular location by the centralized voting mechanism at the decision layer. The experimental results indicated that the dual-signal model embedded IHC images and protein sequences outperformed the single-signal models with accuracy, precision, and recall of 75.41%, 80.38%, and 74.38%, respectively. It is enlightening for further research on protein subcellular location prediction under multi-signal fusion of protein.


Asunto(s)
Núcleo Celular , Proteínas , Humanos , Inmunohistoquímica , Proteínas/análisis , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Bases de Datos de Proteínas , Fracciones Subcelulares/química , Fracciones Subcelulares/metabolismo
6.
Environ Toxicol Pharmacol ; 104: 104305, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37898323

RESUMEN

Ionic liquids (ILs) have been considered eco-friendly alternatives to conventional organic solvents. However, several studies have reported that ILs exert toxicity towards aquatic invertebrates. Applying in vitro methodology, the aim of the present study was to evaluate the potential effect of three ILs on the biochemical performance of exposed Mytilus galloprovincialis digestive gland and gills cellular fractions. Carboxylesterase might be involved in the derived toxicity mechanism of ILs as activity levels increased significantly in digestive gland exposed fractions. This group of ILs did not seem to induce genotoxicity, except in gills cellular fractions exposed to 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. In the literature, in vitro methodology has been suggested as an important complement to animal testing and in silico studies. The present research underlines its efficacy as a quick pre-screening before in vivo testing, particularly with heterogenic groups of substances with high variability in composition, such as ILs and deep eutectic solvents.


Asunto(s)
Líquidos Iónicos , Mytilus , Animales , Líquidos Iónicos/toxicidad , Solventes/toxicidad , Solventes/química , Fracciones Subcelulares
7.
Sci Rep ; 13(1): 13874, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620324

RESUMEN

Gaining insight into the genetic regulation of gene expression in human brain is key to the interpretation of genome-wide association studies for major neurological and neuropsychiatric diseases. Expression quantitative trait loci (eQTL) analyses have largely been used to achieve this, providing valuable insights into the genetic regulation of steady-state RNA in human brain, but not distinguishing between molecular processes regulating transcription and stability. RNA quantification within cellular fractions can disentangle these processes in cell types and tissues which are challenging to model in vitro. We investigated the underlying molecular processes driving the genetic regulation of gene expression specific to a cellular fraction using allele-specific expression (ASE). Applying ASE analysis to genomic and transcriptomic data from paired nuclear and cytoplasmic fractions of anterior prefrontal cortex, cerebellar cortex and putamen tissues from 4 post-mortem neuropathologically-confirmed control human brains, we demonstrate that a significant proportion of genetic regulation of gene expression occurs post-transcriptionally in the cytoplasm, with genes undergoing this form of regulation more likely to be synaptic. These findings have implications for understanding the structure of gene expression regulation in human brain, and importantly the interpretation of rapidly growing single-nucleus brain RNA-sequencing and eQTL datasets, where cytoplasm-specific regulatory events could be missed.


Asunto(s)
Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Fracciones Subcelulares , Núcleo Solitario , ARN
8.
Methods Mol Biol ; 2654: 159-167, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37106182

RESUMEN

Subcellular fractionation is an important tool used to separate intracellular organelles, structures or proteins. Here, we describe a stepwise protocol to isolate two types of lytic granules, multicore (MCG), and single core (SCG), from primary murine CTLs. We used cell disruption by nitrogen cavitation followed by separation of organelles via discontinuous sucrose density gradient centrifugation. Immunoisolation with a Synaptobrevin 2 antibody attached to magnetic beads was then used to harvest Synaptobrevin 2 positive granules for immunoblotting, mass spectrometry, electron, and light microscopy.


Asunto(s)
Proteínas , Proteína 2 de Membrana Asociada a Vesículas , Ratones , Animales , Fraccionamiento Celular/métodos , Proteína 2 de Membrana Asociada a Vesículas/análisis , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteínas/metabolismo , Técnicas Citológicas , Orgánulos , Centrifugación por Gradiente de Densidad/métodos , Gránulos Citoplasmáticos , Fracciones Subcelulares/metabolismo
9.
Methods Mol Biol ; 2643: 321-331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952195

RESUMEN

Subcellular fractionation approaches have allowed for the identification of various functionally distinct organelles including peroxisomes. The methods enable enrichment of organelles and combined with downstream assays allow for the identification of biochemical functions, composition, and structural characteristics of these compartments. In this chapter, we describe the methods for differential centrifugation and Nycodenz gradients in the yeast Saccharomyces cerevisiae and describe assays for fatty acid ß-oxidation in intact cells and in peroxisomal fractions.


Asunto(s)
Peroxisomas , Proteínas de Saccharomyces cerevisiae , Peroxisomas/metabolismo , Saccharomyces cerevisiae/ultraestructura , Fraccionamiento Celular/métodos , Centrifugación , Proteínas de Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares , Oxidación-Reducción
10.
Adv Sci (Weinh) ; 10(3): e2203480, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461702

RESUMEN

Characterization of the subcellular distribution of RNA is essential for understanding the molecular basis of biological processes. Here, the subcellular nanopore direct RNA-sequencing (DRS) of four lung cancer cell lines (A549, H1975, H358, and HCC4006) is performed, coupled with a computational pipeline, Low-abundance Aware Full-length Isoform clusTEr (LAFITE), to comprehensively analyze the full-length cytoplasmic and nuclear transcriptome. Using additional DRS and orthogonal data sets, it is shown that LAFITE outperforms current methods for detecting full-length transcripts, particularly for low-abundance isoforms that are usually overlooked due to poor read coverage. Experimental validation of six novel isoforms exclusively identified by LAFITE further confirms the reliability of this pipeline. By applying LAFITE to subcellular DRS data, the complexity of the nuclear transcriptome is revealed in terms of isoform diversity, 3'-UTR usage, m6A modification patterns, and intron retention. Overall, LAFITE provides enhanced full-length isoform identification and enables a high-resolution view of the RNA landscape at the isoform level.


Asunto(s)
Transcriptoma , Reproducibilidad de los Resultados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Isoformas de Proteínas/genética , Transcriptoma/genética , Fracciones Subcelulares/metabolismo
11.
Nat Commun ; 13(1): 5948, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216816

RESUMEN

The steady-state localisation of proteins provides vital insight into their function. These localisations are context specific with proteins translocating between different subcellular niches upon perturbation of the subcellular environment. Differential localisation, that is a change in the steady-state subcellular location of a protein, provides a step towards mechanistic insight of subcellular protein dynamics. High-accuracy high-throughput mass spectrometry-based methods now exist to map the steady-state localisation and re-localisation of proteins. Here, we describe a principled Bayesian approach, BANDLE, that uses these data to compute the probability that a protein differentially localises upon cellular perturbation. Extensive simulation studies demonstrate that BANDLE reduces the number of both type I and type II errors compared to existing approaches. Application of BANDLE to several datasets recovers well-studied translocations. In an application to cytomegalovirus infection, we obtain insights into the rewiring of the host proteome. Integration of other high-throughput datasets allows us to provide the functional context of these data.


Asunto(s)
Proteoma , Proteómica , Teorema de Bayes , Espectrometría de Masas/métodos , Proteoma/metabolismo , Proteómica/métodos , Fracciones Subcelulares/metabolismo
12.
Sci Rep ; 12(1): 17300, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243751

RESUMEN

Protein kinases and their substrates form signaling networks partitioned across subcellular compartments to facilitate critical biological processes. While the subcellular roles of many individual kinases have been elucidated, a comprehensive assessment of the synaptic subkinome is lacking. Further, most studies of kinases focus on transcript, protein, and/or phospho-protein expression levels, providing an indirect measure of protein kinase activity. Prior work suggests that gene expression levels are not a good predictor of protein function. Thus, we assessed global serine/threonine protein kinase activity profiles in synaptosomal, nuclear, and cytosolic fractions from rat frontal cortex homogenate using peptide arrays. Comparisons made between fractions demonstrated differences in overall protein kinase activity. Upstream kinase analysis revealed a list of cognate kinases that were enriched in the synaptosomal fraction compared to the nuclear fraction. We identified many kinases in the synaptic fraction previously implicated in this compartment, while also identifying other kinases with little or no evidence for synaptic localization. Our results show the feasibility of assessing subcellular fractions with peptide activity arrays, as well as suggesting compartment specific activity profiles associated with established and novel kinases.


Asunto(s)
Péptidos , Proteínas Quinasas , Animales , Péptidos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Ratas , Serina/metabolismo , Fracciones Subcelulares/metabolismo , Treonina/metabolismo
13.
J Vis Exp ; (187)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36190269

RESUMEN

Synaptic terminals are the primary sites of neuronal communication. Synaptic dysfunction is a hallmark of many neuropsychiatric and neurological disorders. The characterization of synaptic sub-compartments by biochemical isolation is, therefore, a powerful method to elucidate the molecular bases of synaptic processes, both in health and disease. This protocol describes the isolation of synaptic terminals and synaptic sub-compartments from mouse brains by subcellular fractionation. First, sealed synaptic terminal structures, known as synaptosomes, are isolated following brain tissue homogenization. Synaptosomes are neuronal pre- and post-synaptic compartments with pinched-off and sealed membranes. These structures retain a metabolically active state and are valuable for studying synaptic structure and function. The synaptosomes are then subjected to hypotonic lysis and ultracentrifugation to obtain synaptic sub-compartments enriched for synaptic vesicles, synaptic cytosol, and synaptic plasma membrane. Fraction purity is confirmed by electron microscopy and biochemical enrichment analysis for proteins specific to sub-synaptic compartments. The presented method is a straightforward and valuable tool for studying the structural and functional characteristics of the synapse and the molecular etiology of various brain disorders.


Asunto(s)
Membranas Sinápticas , Sinaptosomas , Animales , Encéfalo/metabolismo , Fraccionamiento Celular/métodos , Ratones , Fracciones Subcelulares , Vesículas Sinápticas/metabolismo , Sinaptosomas/metabolismo
14.
Methods Cell Biol ; 170: 47-58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811103

RESUMEN

Brain tumor stem cells (BTSCs) are a rare population of self-renewing stem cells that are cultured as spheres and are often slow growing compared to other mammalian cell lines. Analysis of BTSC proteome requires careful handling as well as techniques that can be applied to small quantities of cell material. Subcellular fractionation is a widely used technique to assess protein localization. Although proteins are often destined to a defined cell compartment via a signal peptide such as mitochondrial or nuclear localization signals, the recruitment of a protein from one compartment to another can occur as a result of post-translational modification and/or structural variations in response to intracellular and extracellular stimuli. These events assign different functions to a protein making the study of protein localization a useful approach for better understanding of its role in disease progression. Sequential centrifugation remains a simple and versatile fractionation method for proteomic analysis. It can also be applied for diverse downstream applications such as multi-omics using pure nuclear fractions or metabolomic studies on isolated mitochondria. In this chapter, we describe our optimized protocol for subcellular fractionation of BTSC spheres in which we use a commercially available kit with additional centrifugation steps. We provide details on BTSC maintenance and handling, fractionation protocol and evaluation of fraction purity.


Asunto(s)
Células Madre Neoplásicas , Proteómica , Animales , Encéfalo/metabolismo , Fraccionamiento Celular/métodos , Núcleo Celular/metabolismo , Mamíferos/metabolismo , Células Madre Neoplásicas/patología , Proteoma/metabolismo , Proteómica/métodos , Fracciones Subcelulares/metabolismo
15.
Nat Methods ; 19(7): 780, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35804240
16.
Sci Rep ; 12(1): 10985, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768540

RESUMEN

Subcellular organelles have long been an interest in biochemical research and drug development as the isolation of those organelles can help to probe protein functions and elucidate drug disposition within the cell. Usually, the purity of isolated subcellular organelle fractions was determined using immunoblot analysis of subcellular organelle marker proteins, which can be labor-intensive and lack reproducibility due to antibody batch-to-batch variability. As such, a higher throughput and more robust method is needed. Here, a UPLC-MRM-based targeted proteomic method was developed for a panel of human organelle marker proteins and used to profile a series of sucrose fractions isolated from the protein extract of human liver tissues. The method was validated by comparing to the traditional immunoblot and determining subcellular localization of three case study proteins (CYP3A4, FcRn, and ß2M) pertaining to the disposition of small molecule and biologic drugs. All three case study proteins were co-enriched with their corresponding subcellular protein marker, and complete recoveries were achieved from isolated fractions. This newly developed MRM method for the panel of human organelle marker proteins can potentially accelerate future intracellular drug disposition analysis and facilitate subcellular organelle quality assessment.


Asunto(s)
Orgánulos , Proteómica , Biomarcadores/metabolismo , Humanos , Hígado/metabolismo , Orgánulos/metabolismo , Proteínas/metabolismo , Proteómica/métodos , Reproducibilidad de los Resultados , Fracciones Subcelulares/metabolismo
17.
Environ Toxicol Chem ; 41(10): 2353-2364, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751451

RESUMEN

Because of the persistence and high toxicity of benzo[a]pyrene (B[a]P), the bioaccumulation and detoxification mechanisms of B[a]P have been studied extensively at the tissue level; but the data at the subcellular level in bivalves have not been reported. The present study was conducted to investigate the effects of B[a]P exposure on bioaccumulation, detoxification, and biomacromolecular damage in gills, digestive glands, and their subcellular fractions of the scallop Chlamys farreri. The subcellular fraction contains cytoplasm, mitochondria, microsome, nucleus, cell membrane, and overall organelle. The results demonstrated that B[a]P accumulation showed a clear time-dose effect. Based on the time-dependent accumulation of B[a]P in subcellular fractions, we speculated that the intracellular migration order of B[a]P was cell membrane, organelle, and nucleus in turn. Considering the difference of B[a]P accumulation may be related to B[a]P metabolism, we have further confirmed that the activities of B[a]P metabolizing enzymes in scallop tissues and subcellular fractions were significantly tempted by B[a]P (p < 0.05), including 7-ethoxyresorufin O-deethylase (increased), glutathione-S-transferase (GST; decreased), and superoxide dismutase (increased). First, GST was detected in bivalve cytoplasm and microsome. Second, B[a]P exposure also caused biomacromolecules damage. The results demonstrated that mitochondria and microsome were more vulnerable to lipid peroxidation than cell membrane and nucleus. Taken together, the present study fills some of the gaps in our knowledge of the bioaccumulation and detoxification mechanisms of C. farreri exposed to B[a]P in subcellular fractions and deeply explores the transportation and the main metabolic and damage sites of polycyclic aromatic hydrocarbons (PAHs) in cells, which helped us to comprehensively understand the toxic mechanism of PAHs on bivalves. Environ Toxicol Chem 2022;41:2353-2364. © 2022 SETAC.


Asunto(s)
Bivalvos , Pectinidae , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidad , Bioacumulación , Bivalvos/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Pectinidae/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Fracciones Subcelulares/química , Fracciones Subcelulares/metabolismo , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/análisis
18.
J Proteome Res ; 21(6): 1371-1381, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35522998

RESUMEN

Knowledge of cellular location is key to understanding the biological function of proteins. One commonly used large-scale method to assign cellular locations is subcellular fractionation, followed by quantitative mass spectrometry to identify proteins and estimate their relative distribution among centrifugation fractions. In most of such subcellular proteomics studies, each protein is assigned to a single cellular location by comparing its distribution to those of a set of single-compartment reference proteins. However, in many cases, proteins reside in multiple compartments. To accurately determine the localization of such proteins, we previously introduced constrained proportional assignment (CPA), a method that assigns each protein a fractional residence over all reference compartments (Jadot Mol. Cell Proteomics 2017, 16(2), 194-212. 10.1074/mcp.M116.064527). In this Article, we describe the principles underlying CPA, as well as data transformations to improve accuracy of assignment of proteins and protein isoforms, and a suite of R-based programs to implement CPA and related procedures for analysis of subcellular proteomics data. We include a demonstration data set that used isobaric-labeling mass spectrometry to analyze rat liver fractions. In addition, we describe how these programs can be readily modified by users to accommodate a wide variety of experimental designs and methods for protein quantitation.


Asunto(s)
Proteínas , Proteómica , Fracciones Subcelulares , Animales , Espectrometría de Masas , Proteínas/análisis , Proteínas/metabolismo , Proteoma/análisis , Proteómica/métodos , Ratas , Fracciones Subcelulares/química
19.
Nucleic Acids Res ; 50(W1): W228-W234, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35489069

RESUMEN

The prediction of protein subcellular localization is of great relevance for proteomics research. Here, we propose an update to the popular tool DeepLoc with multi-localization prediction and improvements in both performance and interpretability. For training and validation, we curate eukaryotic and human multi-location protein datasets with stringent homology partitioning and enriched with sorting signal information compiled from the literature. We achieve state-of-the-art performance in DeepLoc 2.0 by using a pre-trained protein language model. It has the further advantage that it uses sequence input rather than relying on slower protein profiles. We provide two means of better interpretability: an attention output along the sequence and highly accurate prediction of nine different types of protein sorting signals. We find that the attention output correlates well with the position of sorting signals. The webserver is available at services.healthtech.dtu.dk/service.php?DeepLoc-2.0.


Asunto(s)
Señales de Clasificación de Proteína , Proteínas , Humanos , Proteínas/metabolismo , Eucariontes/metabolismo , Transporte de Proteínas , Lenguaje , Bases de Datos de Proteínas , Biología Computacional , Fracciones Subcelulares/metabolismo
20.
Nat Cell Biol ; 24(2): 253-267, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35102268

RESUMEN

The microtubule cytoskeleton forms complex macromolecular assemblies with a range of microtubule-associated proteins (MAPs) that have fundamental roles in cell architecture, division and motility. Determining how an individual MAP modulates microtubule behaviour is an important step in understanding the physiological roles of various microtubule assemblies. To characterize how MAPs control microtubule properties and functions, we developed an approach allowing for medium-throughput analyses of MAPs in cell-free conditions using lysates of mammalian cells. Our pipeline allows for quantitative as well as ultrastructural analyses of microtubule-MAP assemblies. Analysing 45 bona fide and potential mammalian MAPs, we uncovered previously unknown activities that lead to distinct and unique microtubule behaviours such as microtubule coiling or hook formation, or liquid-liquid phase separation along the microtubule lattice that initiates microtubule branching. We have thus established a powerful tool for a thorough characterization of a wide range of MAPs and MAP variants, thus opening avenues for the determination of mechanisms underlying their physiological roles and pathological implications.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Imagen Individual de Molécula , Fracciones Subcelulares , Animales , Línea Celular Tumoral , Microscopía por Crioelectrón , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Microscopía por Video , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/genética , Microtúbulos/ultraestructura , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/ultraestructura , Transducción de Señal , Factores de Tiempo , Imagen de Lapso de Tiempo , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...