Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.820
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732066

RESUMEN

We studied five common perishable fruits in terms of their polyphenols dynamic, minerals distribution, scavenger activity and the effects of 50% ethanolic extracts on the viability of Caco-2 cells in vitro, over a period of time between T = 0 and T = 5/7 days, typically the end of their shelf life. Altogether, there were few changes found, consisting of either an increase or a decrease in their chemical and biological attributes. A slow decrease was found in the antioxidant activity in apricot (-11%), plum (-6%) and strawberry (-4%) extracts, while cherry and green seedless table grape extracts gained 7% and 2% antioxidant potency, respectively; IC50 values ranged from 1.67 to 5.93 µg GAE/µL test extract. The cytotoxicity MTS assay at 24 h revealed the ability of all 50% ethanol fruit extracts to inhibit the Caco-2 cell viability; the inhibitory effects ranged from 49% to 83% and were measured at 28 µg GAE for strawberry extracts/EES, from 22 µg to 45 µg GAE for cherry extracts/EEC, from 7.58 to 15.16 µg GAE for apricot extracts/EEA, from 12.50 to 25.70 µg GAE for plum extracts/EEP and from 21.51 to 28.68 µg GAE for green table grape extracts/EEG. The MTS anti-proliferative assay (72 h) also revealed a stimulatory potency upon the Caco-2 viability, from 34% (EEA, EEG) and 48% (EEC) to 350% (EES) and 690% (EEP); therefore fruit juices can influence intestinal tumorigenesis in humans.


Asunto(s)
Antioxidantes , Supervivencia Celular , Frutas , Extractos Vegetales , Humanos , Células CACO-2 , Frutas/química , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Supervivencia Celular/efectos de los fármacos , Fragaria/química , Polifenoles/farmacología , Vitis/química
2.
BMC Ecol Evol ; 24(1): 60, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734594

RESUMEN

BACKGROUND: Foraging behavior in insects is optimised for locating scattered resources in a complex environment. This behavior can be exploited for use in pest control. Inhibition of feeding can protect crops whereas stimulation can increase the uptake of insecticides. For example, the success of a bait spray, depends on either contact or ingestion, and thus on the insect finding it. METHODS: To develop an effective bait spray against the invasive pest, Drosophila suzukii, we investigated aspects of foraging behavior that influence the likelihood that the pest interacts with the baits, in summer and winter morphotypes. We video-recorded the flies' approach behavior towards four stimuli in a two-choice experiment on strawberry leaflets. To determine the most effective bait positioning, we also assessed where on plants the pest naturally forages, using a potted raspberry plant under natural environmental conditions. We also studied starvation resistance at 20 °C and 12 °C for both morphs. RESULTS: We found that summer morph flies spent similar time on all baits (agar, combi-protec, yeast) whereas winter morphs spent more time on yeast than the other baits. Both morphs showed a preference to feed at the top of our plant's canopy. Colder temperatures enhanced survival under starvation conditions in both morphs, and mortality was reduced by food treatment. CONCLUSIONS: These findings on feeding behavior support informed decisions on the type and placement of a bait to increase pest control.


Asunto(s)
Drosophila , Conducta Alimentaria , Control de Insectos , Animales , Drosophila/fisiología , Control de Insectos/métodos , Conducta Alimentaria/fisiología , Insecticidas/farmacología , Insecticidas/administración & dosificación , Rubus , Fragaria , Femenino , Estaciones del Año
3.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731535

RESUMEN

Pre-fermentation treatment has an important impact on the color, aroma, taste, and other characteristics of fruit wine. To discover suitable pre-treatment techniques and conditions that yield strawberry wine of excellent quality, the influences of juice fermentation, pulp maceration, thermovinification, and enzymatic hydrolysis pre-treatments on the basic chemical composition, color, antioxidant capacity, and volatile organic compounds in strawberry wines were investigated. The results showed that the color, antioxidant properties, and volatile aroma of strawberry wines fermented with juice were different from those with pulp. Strawberry wines fermented from juice after 50 °C maceration had more desirable qualities, such as less methanol content (72.43 ± 2.14 mg/L) compared with pulp-fermented wines (88.16 ± 7.52 mg/L) and enzymatic maceration wines (136.72 ± 11.5 mg/L); higher total phenolic content (21.78%) and total flavonoid content (13.02%); enhanced DPPH (17.36%) and ABTS (27.55%) free radical scavenging activities; richer essential terpenoids and fatty acid ethyl esters, such as linalool (11.28%), ethyl hexanoate (14.41%), ethyl octanoate (17.12%), ethyl decanoate (32.49%), and ethyl 9-decenoate (60.64%); pleasant floral and fruity notes compared with juice-fermented wines macerated at normal temperatures; and a lighter color. Overall, juice thermovinification at 50 °C is a potential pre-treatment technique to enhance the nutrition and aroma of strawberry wine.


Asunto(s)
Antioxidantes , Fermentación , Fragaria , Compuestos Orgánicos Volátiles , Vino , Vino/análisis , Compuestos Orgánicos Volátiles/análisis , Fragaria/química , Antioxidantes/análisis , Antioxidantes/química , Odorantes/análisis , Fenoles/análisis , Flavonoides/análisis , Frutas/química , Color
4.
J Hazard Mater ; 470: 134164, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583200

RESUMEN

Strawberry, a globally popular crop whose fruit are known for their taste and health benefits, were used to evaluate the effects of polyethylene microplastics (PE-MPs) on plant physiology and fruit quality. Plants were grown in 2-L pots with natural soil mixed with PE-MPs at two concentrations (0.2% and 0.02%; w/w) and sizes (⌀ 35 and 125 µm). Plant physiological responses, root histochemical and anatomical analyses as well as fruit biometric and quality features were conducted. Plants subjected to ⌀ 35 µm/0.2% PE-MPs exhibited the most severe effects in terms of CO2 assimilation due to stomatal limitations, along with the highest level of oxidative stress in roots. Though no differences were observed in plant biomass, the impact on fruit quality traits was severe in ⌀ 35 µm/0.2% MPs treatment resulting in a drop in fruit weight (-42%), soluble solid (-10%) and anthocyanin contents (-25%). The smallest sized PE-MPs, adsorbed on the root surface, impaired plant water status by damaging the radical apparatus, which finally resulted in alteration of plant physiology and fruit quality. Further research is required to determine if these alterations also occur with other MPs and to understand more deeply the MPs influence on fruit physio-chemistry.


Asunto(s)
Fragaria , Frutas , Microplásticos , Raíces de Plantas , Polietileno , Fragaria/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Frutas/efectos de los fármacos , Polietileno/toxicidad , Microplásticos/toxicidad , Contaminantes del Suelo/toxicidad , Antocianinas/análisis , Estrés Oxidativo/efectos de los fármacos
5.
Compr Rev Food Sci Food Saf ; 23(3): e13354, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38682687

RESUMEN

Red berries have gained popularity as functional and nutritious food due to their health benefits, leading to increased consumer demand and higher production, totaling over 11,000 ktons for strawberries, raspberries, and blueberries combined in 2021. Nutritionally, strawberries, raspberries, and blueberries present high levels of vitamin C (9.7-58.8 mg/100 g dry weight [dw]), folates (6-24 µg/100 g dw), and minerals (96-228 mg/100 g dw). Due to their perishable nature, producers have utilized alcoholic fermentation to extend their shelf life, not only increasing the lifespan of red berries but also attracting consumers through the production of novel beverages. Strawberry, blueberry, and raspberry wines possess low alcohol (5.5-11.1% v/v), high acidity (3.2-17.6 g/L), and interesting bioactive molecules such as phenolic compounds, carotenoids, polysaccharides, and melatonin. Distillation holds tremendous potential for reducing food waste by creating red berry spirits of exceptional quality. Although research on red berry spirits is still in the early stages, future studies should focus on their production and characterization. By incorporating these factors, the production chain would become more sustainable, profitable, and efficient by reducing food waste, capitalizing on consumer acceptance, and leveraging the natural health-promoting characteristics of these products. Therefore, this review aims to provide a comprehensive overview of the characteristics of strawberry, blueberry, and red raspberry in berries, wines, and spirits, with a focus on their chemical composition and production methods.


Asunto(s)
Arándanos Azules (Planta) , Fragaria , Frutas , Rubus , Vino , Frutas/química , Fragaria/química , Vino/análisis , Arándanos Azules (Planta)/química , Rubus/química , Valor Nutritivo , Fermentación
6.
World J Microbiol Biotechnol ; 40(5): 161, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613738

RESUMEN

Rhizopus nigricans (R. nigricans), one of the fungi that grows the fastest, is frequently discovered in postharvest fruits, it's the main pathogen of strawberry root rot. Flavonoids in Sedum aizoon L. (FSAL) is a kind of green and safe natural substance extracted from Sedum aizoon L. which has antifungal activity. In this study, the minimum inhibitory concentration (MIC) of FSAL on R. nigricans and cell apoptosis tests were studied to explore the inhibitory effect of FSAL on R. nigricans. The effects of FSAL on mitochondria of R. nigricans were investigated through the changes of mitochondrial permeability transition pore(mPTP), mitochondrial membrane potential(MMP), Ca2+ content, H2O2 content, cytochrome c (Cyt c) content, the related enzyme activity and related genes of mitochondria. The results showed that the MIC of FSAL on R. nigricans was 1.800 mg/mL, with the addition of FSAL (1.800 mg/mL), the mPTP openness of R. nigricans increased and the MMP reduced. Resulting in an increase in Ca2+ content, accumulation of H2O2 content and decrease of Cyt c content, the activity of related enzymes was inhibited and related genes were up-regulated (VDAC1, ANT) or down-regulated (SDHA, NOX2). This suggests that FSAL may achieve the inhibitory effect of fungi by damaging mitochondria, thereby realizing the postharvest freshness preservation of strawberries. This lays the foundation for the development of a new plant-derived antimicrobial agent.


Asunto(s)
Fragaria , Rhizopus , Sedum , Flavonoides/farmacología , Peróxido de Hidrógeno , Citocromos c , Mitocondrias
7.
Ultrason Sonochem ; 105: 106874, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615436

RESUMEN

Vinegar is renowned for its benefits to human health due to the presence of antioxidants and bioactive components. Firstly, this study optimized the production conditions of ultrasound-treated strawberry vinegar (UT-SV), known for its high consumer appeal. The sensory properties of UT-SV were optimized by response surface methodology (RSM) to create the most appreciated strawberry vinegar. Secondly, various quality parameters of conventional strawberry vinegar (C-SV), UT-SV, and thermally pasteurized strawberry vinegar (P-SV) samples were compared. RSM was employed to craft the best strawberry vinegar based on consumers ratings of UT-SV. Sensory characteristics, bioactive values, phenolic contents, and organic acid contents of C-SV, UT-SV, and P-SV samples were assessed. Through optimization, the ultrasound parameters of the independent variables were determined as 5.3 min and 65.5 % amplitude. The RSM modeling levels exhibited high agreement with pungent sensation at 98.06 %, aromatic intensity at 98.98 %, gustatory impression at 99.17 %, and general appreciation at 99.26 %, respectively. Bioactive components in UT-SV samples increased after ultrasound treatment compared to C-SV and P-SV samples. Additionally, the amount of malic acid, lactic acid, and oxalic acid increased after ultrasound treatment compared to C-SV samples. Ultimately, UT-SV with high organoleptic properties was achieved. The ultrasound treatment positively impacted the bioactive values, phenolic and organic acid content, leading to the development of a new and healthy product.


Asunto(s)
Ácido Acético , Fragaria , Fragaria/química , Ácido Acético/química , Ácido Acético/análisis , Ondas Ultrasónicas , Gusto , Fenoles/análisis
8.
Plant Signal Behav ; 19(1): 2342744, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38630633

RESUMEN

Chloroplast photorelocation is a vital organellar response that optimizes photosynthesis in plants amid fluctuating environmental conditions. Chloroplasts exhibit an accumulation response, in which they move toward weak light to enhance photoreception, and an avoidance response, in which they move away from strong light to avoid photodamage. Although chloroplast photorelocation has been extensively studied in model plants such as Arabidopsis thaliana, little is known about this process in the economically important crop strawberry. Here, we investigated chloroplast photorelocation in leaf mesophyll cells of wild strawberry (Fragaria vesca), a diploid relative of commercially cultivated octoploid strawberry (F. × ananassa). Microscopy observation revealed that the periclinal area of leaf mesophyll cells in F. vesca is considerably smaller than that of A. thaliana. Given this small cell size, we investigated chloroplast photorelocation in F. vesca by measuring light transmittance in leaves. Weak blue light induced the accumulation response, whereas strong blue light induced the avoidance response. Unexpectedly, strong red light also induced the accumulation response in F. vesca. These findings shed light on chloroplast photorelocation as an intracellular response, laying the foundation for enhancing photosynthesis and productivity in Fragaria.


Asunto(s)
Arabidopsis , Fragaria , Arabidopsis/fisiología , Fotosíntesis , Cloroplastos/metabolismo , Hojas de la Planta
9.
Int J Biol Macromol ; 265(Pt 2): 131398, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38599903

RESUMEN

This research aimed to assess the effects of flaxseed mucilage (Mu) coatings supplemented with postbiotics (P) obtained from Lactobacillus acidophilus LA-5 on various physical, biochemical, and microbial characteristics of strawberry fruits. Strawberry fruits were immersed for 2 min in Mu2.5 (2.5 % mucilage in distilled water), Mu5 (5 % mucilage in distilled water), P-Mu2.5 (2.5 % mucilage in undiluted postbiotics) and P-Mu5 (5 % mucilage in undiluted postbiotics) solutions and were stored at 4 °C and 85 RH for 12 days. All coatings were effective in reducing fungal count compared to the uncoated control fruits. Mu5 coating exhibited the highest efficacy, reducing fungal count by 2.85 log10 CFU/g, followed by Mu2.5 (1.47 log10 CFU/g reduction) and P-Mu2.5 groups (0.90 log10 CFU/g reduction). The fruits coated with edible coatings showed significant delays in the change of weight loss, pH, and total soluble solids as compared to the uncoated fruits. The coating containing postbiotics i.e., P-Mu5 also showed a significant increase in the total phenolic contents, total flavonoid content, antioxidant capacity, and total anthocyanin content at the end of storage relative to the uncoated fruits. Thus, Mu and P-Mu coatings may be a useful approach to maintaining the postharvest quality of strawberry fruits during cold storage.


Asunto(s)
Lino , Fragaria , Conservación de Alimentos , Almacenamiento de Alimentos , Fragaria/química , Polisacáridos/farmacología , Agua/farmacología
10.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612898

RESUMEN

The NAC (NAM, ATAF1/2, CUC2) family of transcription factors (TFs) is a vital transcription factor family of plants. It controls multiple parts of plant development, tissue formation, and abiotic stress response. We cloned the FvNAC29 gene from Fragaria vesca (a diploid strawberry) for this research. There is a conserved NAM structural domain in the FvNAC29 protein. The highest homology between FvNAC29 and PaNAC1 was found by phylogenetic tree analysis. Subcellular localization revealed that FvNAC29 is localized onto the nucleus. Compared to other tissues, the expression level of FvNAC29 was higher in young leaves and roots. In addition, Arabidopsis plants overexpressing FvNAC29 had higher cold and high-salinity tolerance than the wild type (WT) and unloaded line with empty vector (UL). The proline and chlorophyll contents of transgenic Arabidopsis plants, along with the activities of the antioxidant enzymes like catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) under 200 mM NaCl treatment or -8 °C treatment, were higher than those activities of the control. Meanwhile, malondialdehyde (MDA) and the reactive oxygen species (ROS) content were higher in the WT and UL lines. FvNAC29 improves transgenic plant resistance to cold and salt stress by regulating the expression levels of AtRD29a, AtCCA1, AtP5CS1, and AtSnRK2.4. It also improves the potential to tolerate cold stress by positively regulating the expression levels of AtCBF1, AtCBF4, AtCOR15a, and AtCOR47. These findings suggest that FvNAC29 may be related to the processes and the molecular mechanisms of F. vesca response to high-salinity stress and LT stress, providing a comprehensive understanding of the NAC TFs.


Asunto(s)
Arabidopsis , Fragaria , Arabidopsis/genética , Fragaria/genética , Filogenia , Peroxidasas , Antioxidantes
11.
Sci Rep ; 14(1): 9586, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671003

RESUMEN

Replacement of water-intensive winter rice with strawberry (Fragaria × ananassa Duch.) may restrict groundwater extraction and improve water productivity and sustainability of agricultural production in the arsenic-contaminated Bengal basin. The potential of strawberry cultivation in terms of yield obtained and water use efficiency need to be evaluated under predominant soil types with mulch applications. Water-driven model AquaCrop was used to predict the canopy cover, soil water storage and above-ground biomass of strawberry in an arsenic-contaminated area in the Bengal basin. After successful calibration and validation over three seasons, AquaCrop was used over a range of management scenarios (nine drip-irrigation × three soil types × four mulch materials) to identify the best irrigation options for a drip-irrigated strawberry crop. The most appropriate irrigation of 176 mm for clay loam soil in lowland and 189 mm for sandy clay loam in medium land rice areas and the use of organic mulch from locally available jute agrotextile improved 1.4 times higher yield and 1.7 times higher water productivity than that of without mulch. Strawberry can be introduced as an alternative crop replacing rice in non-traditional upland and medium land areas of the arsenic-contaminated Bengal basin with 88% lower groundwater extraction load and better economic return to farmers.


Asunto(s)
Riego Agrícola , Arsénico , Fragaria , Fragaria/crecimiento & desarrollo , Riego Agrícola/métodos , Arsénico/análisis , Suelo/química , Productos Agrícolas/crecimiento & desarrollo , Contaminantes Químicos del Agua/análisis , Oryza/crecimiento & desarrollo , Agua , Agua Subterránea/química , Agricultura/métodos , Modelos Teóricos
12.
BMC Plant Biol ; 24(1): 252, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589797

RESUMEN

BACKGROUND: This study explores the impact of various light spectra on the photosynthetic performance of strawberry plants subjected to salinity, alkalinity, and combined salinity/alkalinity stress. We employed supplemental lighting through Light-emitting Diodes (LEDs) with specific wavelengths: monochromatic blue (460 nm), monochromatic red (660 nm), dichromatic blue/red (1:3 ratio), and white/yellow (400-700 nm), all at an intensity of 200 µmol m-2 S-1. Additionally, a control group (ambient light) without LED treatment was included in the study. The tested experimental variants were: optimal growth conditions (control), alkalinity (40 mM NaHCO3), salinity (80 mM NaCl), and a combination of salinity/alkalinity. RESULTS: The results revealed a notable decrease in photosynthetic efficiency under both salinity and alkalinity stresses, especially when these stresses were combined, in comparison to the no-stress condition. However, the application of supplemental lighting, particularly with the red and blue/red spectra, mitigated the adverse effects of stress. The imposed stress conditions had a detrimental impact on both gas exchange parameters and photosynthetic efficiency of the plants. In contrast, treatments involving blue, red, and blue/red light exhibited a beneficial effect on photosynthetic efficiency compared to other lighting conditions. Further analysis of JIP-test parameters confirmed that these specific light treatments significantly ameliorated the stress impacts. CONCLUSIONS: In summary, the utilization of blue, red, and blue/red light spectra has the potential to enhance plant resilience in the face of salinity and alkalinity stresses. This discovery presents a promising strategy for cultivating plants in anticipation of future challenging environmental conditions.


Asunto(s)
Fragaria , Resiliencia Psicológica , Iluminación/métodos , Salinidad , Luz
13.
Fungal Biol ; 128(2): 1705-1713, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575244

RESUMEN

The effects of acoustic waves on growth inhibition of food spoilage fungi (Aspergillus niger, Aspergillus flavus, Aspergillus parasiticus and Botrytis cinerea) on the medium and strawberry surfaces were investigated. Firstly, single-frequency sound waves (250, 500, 1000, 2000, 4000, 8000, 12,000 and 16,000 Hz) were induced on inoculated medium with fungi spores for 24 h and growth diameter of each mold was evaluated during the incubation period. In the second stage, the sound waves with two frequencies of 250 Hz and 16,000 Hz were induced on inoculated strawberries with fungi spores at 5 °C for different times (2, 4, 6, 8 and 10 days). The results from the first stage indicated that the sound waves inhibited the growth of A. niger (20.02%) at 250 Hz and B. cinerea (4/64%) at 4000 Hz on potato dextrose agar (PDA) surface. Also, comparison of the growth diameter of some species of Aspergillus revealed various responses in presence of 250 Hz frequency. In the second stage, applying a frequency of 250 Hz over a period of 10 days proved to be more effective in inhibiting the growth of A. niger and B. cinerea on strawberries inoculated with fungal spores. Consequently, the shelf lives of the strawberries significantly increased to 26 days and 18 days, respectively, under this treatment. Based on the findings, it is concluded that sounding with acoustic waves can be used as a green and cheap technology along with other technologies to improve food safety.


Asunto(s)
Fragaria , Fragaria/microbiología , Frutas/microbiología , Esporas Fúngicas , Aspergillus niger , Sonido
14.
Food Chem ; 449: 139244, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583397

RESUMEN

This study aimed to investigate the effects of edible gum addition on moisture changes in freeze-dried restructured strawberry blocks (FRSB), which involved five groups: the control, 1.2% guar gum, 1.2% gelatin, 1.2% pectin, and the composite group with 0.5% guar gum, 0.5% gelatin, and 0.45% pectin. The results indicated that the drying rates of the five groups of FRSB presented similar early acceleration and later deceleration trends. Moisture content in FRSB was linearly predicted by peak area of low field nuclear magnetic resonance with R2 higher than 0.90 for all the five groups. The FRSB samples in the gelatin and composition groups formed a denser porous structure and had a lower hygroscopicity after four days of storage. This study provides a theoretical basis for controlling the processing of FRSB.


Asunto(s)
Fragaria , Liofilización , Galactanos , Gelatina , Mananos , Pectinas , Gomas de Plantas , Agua , Galactanos/química , Gomas de Plantas/química , Mananos/química , Gelatina/química , Pectinas/química , Fragaria/química , Agua/química , Frutas/química
15.
Nat Commun ; 15(1): 2468, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504104

RESUMEN

The annual production of strawberry has increased by one million tonnes in the US and 8.4 million tonnes worldwide since 1960. Here we show that the US expansion was driven by genetic gains from Green Revolution breeding and production advances that increased yields by 2,755%. Using a California population with a century-long breeding history and phenotypes of hybrids observed in coastal California environments, we estimate that breeding has increased fruit yields by 2,974-6,636%, counts by 1,454-3,940%, weights by 228-504%, and firmness by 239-769%. Using genomic prediction approaches, we pinpoint the origin of the Green Revolution to the early 1950s and uncover significant increases in additive genetic variation caused by transgressive segregation and phenotypic diversification. Lastly, we show that the most consequential Green Revolution breeding breakthrough was the introduction of photoperiod-insensitive, PERPETUAL FLOWERING hybrids in the 1970s that doubled yields and drove the dramatic expansion of strawberry production in California.


Asunto(s)
Fragaria , Fragaria/genética , Fitomejoramiento , Fenotipo , Ambiente , Genómica
16.
Nat Commun ; 15(1): 2491, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509076

RESUMEN

Subgenome dominance has been reported in diverse allopolyploid species, where genes from one subgenome are preferentially retained and are more highly expressed than those from other subgenome(s). However, the molecular mechanisms responsible for subgenome dominance remain poorly understood. Here, we develop genome-wide map of accessible chromatin regions (ACRs) in cultivated strawberry (2n = 8x = 56, with A, B, C, D subgenomes). Each ACR is identified as an MNase hypersensitive site (MHS). We discover that the dominant subgenome A contains a greater number of total MHSs and MHS per gene than the submissive B/C/D subgenomes. Subgenome A suffers fewer losses of MHS-related DNA sequences and fewer MHS fragmentations caused by insertions of transposable elements. We also discover that genes and MHSs related to stress response have been preferentially retained in subgenome A. We conclude that preservation of genes and their cognate ACRs, especially those related to stress responses, play a major role in the establishment of subgenome dominance in octoploid strawberry.


Asunto(s)
Fragaria , Genoma de Planta , Genoma de Planta/genética , Fragaria/genética , Cromatina/genética , Poliploidía , Mapeo Cromosómico
17.
Plant Cell Environ ; 47(6): 2258-2273, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38482979

RESUMEN

Sirtuins (SRTs) are a group of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that target both histone and nonhistone proteins. The biological function of SRT in horticultural plants has been rarely studied. In this study, FaSRT1-2 was identified as a key member of the 8 FaSRTs encoded in cultivated strawberry genome. Transient overexpression of FaSRT1-2 in strawberry fruit accelerated ripening, increased the content of anthocyanins and sugars, enhanced ripening-related gene expression. Moreover, stable transformation of FaSRT1-2 in strawberry plants resulted in enhanced vegetative growth, increased sensitivity to heat stress and increased susceptibility to Botrytis cinerea infection. Interestingly, knocking out the homologous gene in woodland strawberry had the opposite effects. Additionally, we found the content of stress-related hormone abscisic acid (ABA) was decreased, while the growth-related gibberellin (GA) concentration was increased in FaSRT1-2 overexpression lines. Gene expression analysis revealed induction of heat shock proteins, transcription factors, stress-related and antioxidant genes in the FaSRT1-2-overexpressed plants while knocked-out of the gene had the opposite impact. In conclusion, our findings demonstrated that FaSRT1-2 could positively promote strawberry plant vegetative growth and fruit ripening by affecting ABA and GA pathways. However, it negatively regulates the resistance to heat stress and B. cinerea infection by influencing the related gene expression.


Asunto(s)
Botrytis , Fragaria , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Fragaria/genética , Fragaria/crecimiento & desarrollo , Fragaria/fisiología , Fragaria/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Botrytis/fisiología , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/metabolismo , Plantas Modificadas Genéticamente , Resistencia a la Enfermedad/genética
18.
PLoS One ; 19(3): e0285912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38527020

RESUMEN

Remote sensing of spectral reflectance is a crucial parameter in precision agriculture. In particular, the visual color produced from reflected light can be used to determine plant health (VIS-IR) or attract pollinators (Near-UV). However, the UV spectral reflectance studies largely focus on non-crop plants, even though they provide essential information for plant-pollinator interactions. This literature review presents an overview of UV-reflectance in crops, identifies gaps in the literature, and contributes new data based on strawberry cultivars. The study found that most crop spectral reflectance studies relied on lab-based methodologies and examined a wide spectral range (Near UV to IR). Moreover, the plant family distribution largely mirrored global food market trends. Through a spectral comparison of white flowering strawberry cultivars, this study discovered visual differences for pollinators in the Near UV and Blue ranges. The variation in pollinator visibility within strawberry cultivars underscores the importance of considering UV spectral reflectance when developing new crop breeding lines and managing pollinator preferences in agricultural fields.


Asunto(s)
Fragaria , Tecnología de Sensores Remotos , Fitomejoramiento , Productos Agrícolas
19.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542376

RESUMEN

MYB (myoblast) protein comes in large quantities and a wide variety of types and plays a role in most eukaryotes in the form of transcription factors (TFs). One of its important functions is to regulate plant responses to various stresses. However, the role of MYB TFs in regulating stress tolerance in strawberries is not yet well understood. Therefore, in order to investigate the response of MYB family members to abiotic stress in strawberries, a new MYB TF gene was cloned from Fragaria vesca (a diploid strawberry) and named FvMYB108 based on its structural characteristics and evolutionary relationships. After a bioinformatics analysis, it was determined that the gene belongs to the R2R3-MYB subfamily, and its conserved domain, phylogenetic relationships, predicted protein structure and physicochemical properties, subcellular localization, etc. were analyzed. After qPCR analysis of the expression level of FvMYB108 in organs, such as the roots, stems, and leaves of strawberries, it was found that this gene is more easily expressed in young leaves and roots. After multiple stress treatments, it was found that the target gene in young leaves and roots is more sensitive to low temperatures and salt stimulation. After these two stress treatments, various physiological and biochemical indicators related to stress in transgenic Arabidopsis showed corresponding changes, indicating that FvMYB108 may be involved in regulating the plant's ability to cope with cold and high-salt stress. Further research has found that the overexpression of this gene can upregulate the expression of AtCBF1, AtCOR47, AtERD10, and AtDREB1A related to low-temperature stress, as well as AtCCA1, AtRD29a, AtP5CS1, and AtSnRK2.4 related to salt stress, enhancing the ability of overexpressed plants to cope with stress.


Asunto(s)
Arabidopsis , Fragaria , Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Fragaria/genética , Fragaria/metabolismo , Filogenia , Genes myb , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
20.
Nutrients ; 16(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542735

RESUMEN

I read with interest the paper by Krikorian et al [...].


Asunto(s)
Envejecimiento Cognitivo , Fragaria , Nutrientes , Suplementos Dietéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...