Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 912
Filtrar
1.
PLoS One ; 19(5): e0294998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713688

RESUMEN

Tularemia is a zoonotic disease caused by the facultative intracellular gram-negative bacterium Francisella tularensis. F. tularensis has a very low infection dose by the aerosol route which can result in an acute, and potentially lethal, infection in humans. Consequently, it is classified as a Category A bioterrorism agent by the US Centers for Disease Control (CDC) and is a pathogen of concern for the International Biodefence community. There are currently no licenced tularemia vaccines. In this study we report on the continued assessment of a tularemia subunit vaccine utilising ß-glucan particles (GPs) as a vaccine delivery platform for immunogenic F. tularensis antigens. Using a Fischer 344 rat infection model, we demonstrate that a GP based vaccine comprising the F. tularensis lipopolysaccharide antigen together with the protein antigen FTT0814 provided partial protection of F344 rats against an aerosol challenge with a high virulence strain of F. tularensis, SCHU S4. Inclusion of imiquimod as an adjuvant failed to enhance protective efficacy. Moreover, the level of protection afforded was dependant on the challenge dose. Immunological characterisation of this vaccine demonstrated that it induced strong antibody immunoglobulin responses to both polysaccharide and protein antigens. Furthermore, we demonstrate that the FTT0814 component of the GP vaccine primed CD4+ and CD8+ T-cells from immunised F344 rats to express interferon-γ, and CD4+ cells to express interleukin-17, in an antigen specific manner. These data demonstrate the development potential of this tularemia subunit vaccine and builds on a body of work highlighting GPs as a promising vaccine platform for difficult to treat pathogens including those of concern to the bio-defence community.


Asunto(s)
Vacunas Bacterianas , Modelos Animales de Enfermedad , Francisella tularensis , Ratas Endogámicas F344 , Tularemia , Vacunas de Subunidad , Animales , Tularemia/prevención & control , Tularemia/inmunología , Ratas , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Francisella tularensis/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Glucanos/inmunología , Glucanos/farmacología , Linfocitos T/inmunología , Femenino , Antígenos Bacterianos/inmunología
2.
J Immunol ; 208(5): 1180-1188, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149529

RESUMEN

Pulmonary infections elicit a combination of tissue-resident and circulating T cell responses. Understanding the contribution of these anatomically distinct cellular pools in protective immune responses is critical for vaccine development. Francisella tularensis is a highly virulent bacterium capable of causing lethal systemic disease following pulmonary infection for which there is no currently licensed vaccine. Although T cells are required for survival of F. tularensis infection, the relative contribution of tissue-resident and circulating T cells is not completely understood, hampering design of effective, long-lasting vaccines directed against this bacterium. We have previously shown that resident T cells were not sufficient to protect against F. tularensis, suggesting circulating cells may serve a critical role in host defense. To elucidate the role of circulating T cells, we used a model of vaccination and challenge of parabiotic mice. Intranasally infected naive mice conjoined to immune animals had increased numbers of circulating memory T cells and similar splenic bacterial burdens as vaccinated-vaccinated pairs. However, bacterial loads in the lungs of naive parabionts were significantly greater than those observed in vaccinated-vaccinated pairs, but despite early control of F. tularensis replication, all naive-vaccinated pairs succumbed to infection. Together, these data define the specific roles of circulating and resident T cells in defense against infection that is initiated in the pulmonary compartment but ultimately causes disseminated disease. These data also provide evidence for employing vaccination strategies that elicit both pools of T cells for immunity against F. tularensis and may be a common theme for other disseminating bacterial infections.


Asunto(s)
Vacunas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Francisella tularensis/inmunología , Células T de Memoria/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Carga Bacteriana/inmunología , Femenino , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/microbiología , Enfermedades Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Tularemia/inmunología , Tularemia/patología , Vacunación
3.
Front Immunol ; 12: 701341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777335

RESUMEN

The essential micronutrient Selenium (Se) is co-translationally incorporated as selenocysteine into proteins. Selenoproteins contain one or more selenocysteines and are vital for optimum immunity. Interestingly, many pathogenic bacteria utilize Se for various biological processes suggesting that Se may play a role in bacterial pathogenesis. A previous study had speculated that Francisella tularensis, a facultative intracellular bacterium and the causative agent of tularemia, sequesters Se by upregulating Se-metabolism genes in type II alveolar epithelial cells. Therefore, we investigated the contribution of host vs. pathogen-associated selenoproteins in bacterial disease using F. tularensis as a model organism. We found that F. tularensis was devoid of any Se utilization traits, neither incorporated elemental Se, nor exhibited Se-dependent growth. However, 100% of Se-deficient mice (0.01 ppm Se), which express low levels of selenoproteins, succumbed to F. tularensis-live vaccine strain pulmonary challenge, whereas 50% of mice on Se-supplemented (0.4 ppm Se) and 25% of mice on Se-adequate (0.1 ppm Se) diet succumbed to infection. Median survival time for Se-deficient mice was 8 days post-infection while Se-supplemented and -adequate mice was 11.5 and >14 days post-infection, respectively. Se-deficient macrophages permitted significantly higher intracellular bacterial replication than Se-supplemented macrophages ex vivo, corroborating in vivo observations. Since Francisella replicates in alveolar macrophages during the acute phase of pneumonic infection, we hypothesized that macrophage-specific host selenoproteins may restrict replication and systemic spread of bacteria. F. tularensis infection led to an increased expression of several macrophage selenoproteins, suggesting their key role in limiting bacterial replication. Upon challenge with F. tularensis, mice lacking selenoproteins in macrophages (TrspM) displayed lower survival and increased bacterial burden in the lung and systemic tissues in comparison to WT littermate controls. Furthermore, macrophages from TrspM mice were unable to restrict bacterial replication ex vivo in comparison to macrophages from littermate controls. We herein describe a novel function of host macrophage-specific selenoproteins in restriction of intracellular bacterial replication. These data suggest that host selenoproteins may be considered as novel targets for modulating immune response to control a bacterial infection.


Asunto(s)
Francisella tularensis/inmunología , Interacciones Huésped-Patógeno/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Selenoproteínas/metabolismo , Tularemia/etiología , Tularemia/metabolismo , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Francisella tularensis/genética , Francisella tularensis/patogenicidad , Ratones , Neumonía/inmunología , Neumonía/metabolismo , Neumonía/microbiología , Neumonía/patología , Tularemia/mortalidad , Virulencia/genética , Factores de Virulencia/genética
4.
Front Immunol ; 12: 716676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659206

RESUMEN

Peptide-based subunit vaccines are coming to the forefront of current vaccine approaches, with safety and cost-effective production among their top advantages. Peptide vaccine formulations consist of multiple synthetic linear epitopes that together trigger desired immune responses that can result in robust immune memory. The advantages of linear compared to conformational epitopes are their simple structure, ease of synthesis, and ability to stimulate immune responses by means that do not require complex 3D conformation. Prediction of linear epitopes through use of computational tools is fast and cost-effective, but typically of low accuracy, necessitating extensive experimentation to verify results. On the other hand, identification of linear epitopes through experimental screening has been an inefficient process that requires thorough characterization of previously identified full-length protein antigens, or laborious techniques involving genetic manipulation of organisms. In this study, we apply a newly developed generalizable screening method that enables efficient identification of B-cell epitopes in the proteomes of pathogenic bacteria. As a test case, we used this method to identify epitopes in the proteome of Francisella tularensis (Ft), a Select Agent with a well-characterized immunoproteome. Our screen identified many peptides that map to known antigens, including verified and predicted outer membrane proteins and extracellular proteins, validating the utility of this approach. We then used the method to identify seroreactive peptides in the less characterized immunoproteome of Select Agent Burkholderia pseudomallei (Bp). This screen revealed known Bp antigens as well as proteins that have not been previously identified as antigens. Although B-cell epitope prediction tools Bepipred 2.0 and iBCE-EL classified many of our seroreactive peptides as epitopes, they did not score them significantly higher than the non-reactive tryptic peptides in our study, nor did they assign higher scores to seroreactive peptides from known Ft or Bp antigens, highlighting the need for experimental data instead of relying on computational epitope predictions alone. The present workflow is easily adaptable to detecting peptide targets relevant to the immune systems of other mammalian species, including humans (depending upon the availability of convalescent sera from patients), and could aid in accelerating the discovery of B-cell epitopes and development of vaccines to counter emerging biological threats.


Asunto(s)
Mapeo Epitopo/métodos , Epítopos de Linfocito B/inmunología , Proteoma , Proteómica , Animales , Antígenos Bacterianos/inmunología , Vacunas Bacterianas/inmunología , Biología Computacional/métodos , Francisella tularensis/inmunología , Humanos , Inmunización , Ratones , Péptidos/inmunología , Proteómica/métodos , Vacunas de Subunidad/inmunología
5.
PLoS Pathog ; 17(8): e1009905, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34449811

RESUMEN

B1 cells, a subset of B lymphocytes whose developmental origin, phenotype, and function differ from that of conventional B2 cells, are the main source of "natural" IgM but can also respond to infection by rapidly producing pathogen-specific IgM directed against T-independent antigens. Francisella tularensis (Ft) is a Gram-negative bacterium that causes tularemia. Infection with Ft Live Vaccine Strain activates B1 cells for production of IgM directed against the bacterial LPS in a process incompletely understood. Here we show that immunization with purified Ft LPS elicits production of LPS-specific IgM and IgG3 by B1 cells independently of TLR2 or MyD88. Immunization, but not infection, generated peritoneum-resident memory B1 cells that differentiated into LPS-specific antibody secreting cells (ASC) upon secondary challenge. IL-5 was rapidly induced by immunization with Ft LPS and was required for production of LPS-specific IgM. Antibody-mediated depletion of ILC2 indicated that these cells were the source of IL-5 and were required for IgM production. IL-25, an alarmin that strongly activates ILC2, was rapidly secreted in response to immunization or infection and its administration to mice significantly increased IgM production and B1 cell differentiation to ASC. Conversely, mice lacking IL-17RB, the IL-25 receptor, showed impaired IL-5 induction, IgM production, and B1 ASC differentiation in response to immunization. Administration of IL-5 to Il17rb-/- mice rescued these B1 cells-mediated responses. Il17rb-/- mice were more susceptible to infection with Ft LVS and failed to develop immunity upon secondary challenge suggesting that LPS-specific IgM is one of the protective adaptive immune mechanisms against tularemia. Our results indicated that immunization with Ft LPS triggers production of IL-25 that, through stimulation of IL-5 release by ILC2, promotes B1 cells activation and differentiation into IgM secreting cells. By revealing the existence of an IL-25-ILC2-IL-5 axis our results suggest novel strategies to improve vaccination against T-independent bacterial antigens.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Subgrupos de Linfocitos B/inmunología , Francisella tularensis/inmunología , Inmunoglobulina M/inmunología , Interleucina-5/metabolismo , Interleucinas/metabolismo , Lipopolisacáridos/farmacología , Animales , Anticuerpos Antibacterianos/metabolismo , Subgrupos de Linfocitos B/metabolismo , Inmunidad Innata , Inmunoglobulina M/metabolismo , Interleucina-5/genética , Interleucinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/fisiología , Receptores de Interleucina-17/fisiología , Receptor Toll-Like 2/fisiología , Tularemia/inmunología , Tularemia/microbiología , Tularemia/patología
6.
Nat Commun ; 12(1): 4355, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272362

RESUMEN

Mucosal-associated Invariant T (MAIT) cells are recognized for their antibacterial functions. The protective capacity of MAIT cells has been demonstrated in murine models of local infection, including in the lungs. Here we show that during systemic infection of mice with Francisella tularensis live vaccine strain results in evident MAIT cell expansion in the liver, lungs, kidney and spleen and peripheral blood. The responding MAIT cells manifest a polarised Th1-like MAIT-1 phenotype, including transcription factor and cytokine profile, and confer a critical role in controlling bacterial load. Post resolution of the primary infection, the expanded MAIT cells form stable memory-like MAIT-1 cell populations, suggesting a basis for vaccination. Indeed, a systemic vaccination with synthetic antigen 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil in combination with CpG adjuvant similarly boosts MAIT cells, and results in enhanced protection against both systemic and local infections with different bacteria. Our study highlights the potential utility of targeting MAIT cells to combat a range of bacterial pathogens.


Asunto(s)
Citocinas/metabolismo , Francisella tularensis/inmunología , Inmunidad Innata , Células T Invariantes Asociadas a Mucosa/inmunología , Adyuvantes Inmunológicos , Animales , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Hígado/inmunología , Pulmón/inmunología , Ratones , Ratones Noqueados , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo , Fenotipo , RNA-Seq , Ribitol/análogos & derivados , Ribitol/inmunología , Análisis de la Célula Individual , Bazo/inmunología , Células TH1/inmunología , Células TH1/metabolismo , Transcriptoma/genética , Uracilo/análogos & derivados , Uracilo/inmunología , Vacunas Atenuadas/inmunología
7.
Methods Mol Biol ; 2321: 75-100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34048009

RESUMEN

Sepsis results from the dysregulated immune response to infection. While the stimulator and progression of the septic response is poorly understood, the systemic production of a storm of cytokines is common in all etiologies of sepsis. While the complexity of this uncontrolled cascade is difficult to replicate using single molecule agonist, for example, lipopolysaccharide (LPS), several whole organism models can stimulate this cytokine storm. Herein, we detail protocols developed to trigger and analyze the systemic septic response in mouse models using the bacterium Francisella tularensis.


Asunto(s)
Francisella tularensis/inmunología , Sepsis/inmunología , Sepsis/microbiología , Tularemia/inmunología , Tularemia/microbiología , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL
8.
Microbiologyopen ; 10(2): e1170, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33970545

RESUMEN

Tularemia is a zoonotic disease of global proportions. Francisella tularensis subspecies tularensis (type A) and holarctica (type B) cause disease in healthy humans, with type A infections resulting in higher mortality. Repeated passage of a type B strain in the mid-20th century generated the Live Vaccine Strain (LVS). LVS remains unlicensed, does not protect against high inhalational doses of type A, and its exact mechanisms of attenuation are poorly understood. Recent data suggest that live attenuated vaccines derived from type B may cross-protect against type A. However, there is a dearth of knowledge regarding virulent type B pathogenesis and its capacity to stimulate the host's innate immune response. We therefore sought to increase our understanding of virulent type B in vitro characteristics using strain OR96-0246 as a model. Adding to our knowledge of innate immune kinetics in macrophages following infection with virulent type B, we observed robust replication of strain OR96-0246 in murine and human macrophages, reduced expression of pro-inflammatory cytokine genes from "wild type" type B-infected macrophages compared to LVS, and delayed macrophage cell death suggesting that virulent type B may suppress macrophage activation. One disruption in LVS is in the gene encoding the chloride transporter ClcA. We investigated the role of ClcA in macrophage infection and observed a replication delay in a clcA mutant. Here, we propose its role in acid tolerance. A greater understanding of LVS attenuation may reveal new mechanisms of pathogenesis and inform strategies toward the development of an improved vaccine against tularemia.


Asunto(s)
Proteínas Bacterianas/inmunología , Canales de Cloruro/inmunología , Francisella tularensis/inmunología , Inmunidad Innata , Tularemia/inmunología , Tularemia/microbiología , Animales , Proteínas Bacterianas/genética , Canales de Cloruro/genética , Modelos Animales de Enfermedad , Francisella tularensis/clasificación , Francisella tularensis/genética , Francisella tularensis/patogenicidad , Humanos , Cinética , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL
9.
Infect Immun ; 89(7): e0013421, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33875472

RESUMEN

Francisella tularensis is a facultative, intracellular, Gram-negative bacterium that causes a fatal disease known as tularemia. Due to its extremely high virulence, ease of spread by aerosolization, and potential to be used as a bioterror agent, F. tularensis is classified by the CDC as a tier 1 category A select agent. Previous studies have demonstrated the roles of the inflammasome sensors absent in melanoma 2 (AIM2) and NLRP3 in the generation of innate immune responses to F. tularensis infection. However, contributions of both the AIM2 and NLRP3 to the development of vaccine-induced adaptive immune responses against F. tularensis are not known. This study determined the contributions of Aim2 and Nlrp3 inflammasome sensors to vaccine-induced immune responses in a mouse model of respiratory tularemia. We developed a model to vaccinate Aim2- and Nlrp3-deficient (Aim2-/- and Nlrp3-/-) mice using the emrA1 mutant of the F. tularensis live vaccine strain (LVS). The results demonstrate that the innate immune responses in Aim2-/- and Nlrp3-/- mice vaccinated with the emrA1 mutant differ from those of their wild-type counterparts. However, despite these differences in the innate immune responses, both Aim2-/- and Nlrp3-/- mice are fully protected against an intranasal lethal challenge dose of F. tularensis LVS. Moreover, the lack of both Aim2 and Nlrp3 inflammasome sensors does not affect the production of vaccination-induced antibody and cell-mediated responses. Overall, this study reports a novel finding that both Aim2 and Nlrp3 are dispensable for vaccination-induced immunity against respiratory tularemia caused by F. tularensis.


Asunto(s)
Vacunas Bacterianas/inmunología , Proteínas de Unión al ADN/genética , Francisella tularensis/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Tularemia/genética , Tularemia/inmunología , Animales , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Humoral , Inmunización , Ratones , Ratones Noqueados , Mutación , Tularemia/microbiología , Tularemia/prevención & control , Vacunas Atenuadas , Virulencia
10.
PLoS One ; 16(3): e0249142, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33760886

RESUMEN

CCR2 is the major chemokine receptor that regulates appropriate trafficking of inflammatory monocytes, but the role of this chemokine receptor and its ligands during primary and secondary infection with intracellular infections remains incompletely understood. Here we used murine infection with the Live Vaccine Strain (LVS) of Francisella tularensis to evaluate the role of CCR2 during primary and secondary parenteral responses to this prototype intracellular bacterium. We find that mice deficient in CCR2 are highly compromised in their ability to survive intradermal infection with LVS, indicating the importance of this receptor during primary parenteral responses. Interestingly, this defect could not be readily attributed to the activities of the known murine CCR2 ligands MCP-1/CCL2, MCP-3/CCL7, or MCP-5/CCL12. Nonetheless, CCR2 knockout mice vaccinated by infection with low doses of LVS generated optimal T cell responses that controlled the intramacrophage replication of Francisella, and LVS-immune CCR2 knockout mice survived maximal lethal Francisella challenge. Thus, fully protective adaptive immune memory responses to this intracellular bacterium can be readily generated in the absence of CCR2.


Asunto(s)
Francisella tularensis/fisiología , Receptores CCR2/genética , Tularemia/inmunología , Animales , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Quimiocina CCL2/deficiencia , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Quimiocina CCL7/deficiencia , Quimiocina CCL7/genética , Quimiocina CCL7/inmunología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Francisella tularensis/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/citología , Monocitos/metabolismo , Receptores CCR2/deficiencia , Tasa de Supervivencia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Tularemia/mortalidad , Tularemia/patología , Tularemia/prevención & control , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
11.
Front Cell Infect Microbiol ; 10: 512090, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194778

RESUMEN

Tularemia is a zoonotic disease caused by the bacterium Francisella tularensis. The predominant sources, routes of infection, and clinical manifestations of human infections greatly vary according to the geographic area considered. Moreover, clinical suspicion of tularemia is often tricky because of the lack of specificity of the clinical manifestations. Because F. tularensis isolation is tedious and detection of its DNA usually requires removal of infected tissues, serological techniques are most often used for diagnostic confirmation. However, these techniques are varied and poorly standardized. The microagglutination test (MAT), the indirect immunofluorescence assay (IFA), and ELISA tests are currently the most frequently used techniques. These home-made and commercial tests are mainly used for tularemia diagnosis but also seroprevalence studies. ELISA tests detect specific antibodies within two weeks of disease evaluation, compared to 2-3 weeks for MAT and IFA. However, more false-positive results are usually reported with ELISA. The long-term persistence of anti-F. tularensis antibodies in patients with past tularemia infection hampers the diagnostic specificity of all these tests. Also, cross-reacting antibodies have been described (especially with Brucella and Yersinia species), although usually at a low level. The immunoblotting technique can highlight these serological cross-reactions. Tularemia remains an underdiagnosed disease in most endemic areas, and the clinical presentations of this disease are evolving. It is necessary to improve further speed and accuracy of tularemia diagnosis, as well as the standardization of diagnostic procedures.


Asunto(s)
Francisella tularensis , Tularemia , Adolescente , Adulto , Animales , Anticuerpos Antibacterianos , Niño , Femenino , Francisella tularensis/inmunología , Humanos , Masculino , Persona de Mediana Edad , Estudios Seroepidemiológicos , Tularemia/diagnóstico , Adulto Joven , Zoonosis/diagnóstico
12.
Front Immunol ; 11: 1773, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849637

RESUMEN

Mucosa-associated invariant T (MAIT) cells are a unique T cell subset that contributes to protective immunity against microbial pathogens, but little is known about the role of chemokines in recruiting MAIT cells to the site of infection. Pulmonary infection with Francisella tularensis live vaccine strain (LVS) stimulates the accrual of large numbers of MAIT cells in the lungs of mice. Using this infection model, we find that MAIT cells are predominantly CXCR6+ but do not require CXCR6 for accumulation in the lungs. However, CXCR6 does contribute to long-term retention of MAIT cells in the airway lumen after clearance of the infection. We also find that MAIT cells are not recruited from secondary lymphoid organs and largely proliferate in situ in the lungs after infection. Nevertheless, the only known ligand for CXCR6, CXCL16, is sufficient to drive MAIT cell accumulation in the lungs in the absence of infection when administered in combination with the MAIT cell antigen 5-OP-RU. Overall, this new data advances the understanding of mechanisms that facilitate MAIT cell accumulation and retention in the lungs.


Asunto(s)
Quimiocina CXCL16/administración & dosificación , Quimiotaxis de Leucocito/efectos de los fármacos , Francisella tularensis/patogenicidad , Pulmón/efectos de los fármacos , Células T Invariantes Asociadas a Mucosa/efectos de los fármacos , Neumonía Bacteriana/metabolismo , Receptores CXCR6/metabolismo , Administración Intranasal , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CXCL16/metabolismo , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Francisella tularensis/inmunología , Interacciones Huésped-Patógeno , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Activación de Linfocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo , Células T Invariantes Asociadas a Mucosa/microbiología , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/microbiología , Receptores CXCR6/deficiencia , Receptores CXCR6/genética , Ribitol/administración & dosificación , Ribitol/análogos & derivados , Transducción de Señal , Uracilo/administración & dosificación , Uracilo/análogos & derivados
13.
PLoS One ; 15(8): e0237034, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32745117

RESUMEN

Production of IFN-γ is a key innate immune mechanism that limits replication of intracellular bacteria such as Francisella tularensis (Ft) until adaptive immune responses develop. Previously, we demonstrated that the host cell types responsible for IFN-γ production in response to murine Francisella infection include not only natural killer (NK) and T cells, but also a variety of myeloid cells. However, production of IFN-γ by mouse dendritic cells (DC) is controversial. Here, we directly demonstrated substantial production of IFN-γ by DC, as well as hybrid NK-DC, from LVS-infected wild type C57BL/6 or Rag1 knockout mice. We demonstrated that the numbers of conventional DC producing IFN-γ increased progressively over the course of 8 days of LVS infection. In contrast, the numbers of conventional NK cells producing IFN-γ, which represented about 40% of non-B/T IFN-γ-producing cells, peaked at day 4 after LVS infection and declined thereafter. This pattern was similar to that of hybrid NK-DC. To further confirm IFN-γ production by infected cells, DC and neutrophils were sorted from naïve and LVS-infected mice and analyzed for gene expression. Quantification of LVS by PCR revealed the presence of Ft DNA not only in macrophages, but also in highly purified, IFN-γ producing DC and neutrophils. Finally, production of IFN-γ by infected DC was confirmed by immunohistochemistry and confocal microscopy. Notably, IFN-γ production patterns similar to those in wild type mice were observed in cells derived from LVS-infected TLR2, TLR4, and TLR2xTLR9 knockout (KO) mice, but not from MyD88 KO mice. Taken together, these studies demonstrate the pivotal roles of DC and MyD88 in IFN-γ production and in initiating innate immune responses to this intracellular bacterium.


Asunto(s)
Interferón gamma/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Francisella tularensis/inmunología , Inmunidad Innata/inmunología , Células Asesinas Naturales/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Neutrófilos/metabolismo , Bazo/metabolismo , Linfocitos T/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/inmunología , Tularemia/microbiología
14.
Sci Rep ; 10(1): 12023, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694562

RESUMEN

Francisella tularensis is a highly infectious intracellular bacterium that causes tularemia by invading and replicating in mammalian myeloid cells. Francisella primarily invades host macrophages, where it escapes phagosomes within a few hours and replicates in the cytoplasm. Less is known about how Francisella traffics within macrophages or exits into the extracellular environment for further infection. Immune T lymphocytes control the replication of Francisella within macrophages in vitro by a variety of mechanisms, but nothing is known about intracellular bacterial trafficking in the face of such immune pressure. Here we used a murine model of infection with a Francisella attenuated live vaccine strain (LVS), which is under study as a human vaccine, to evaluate the hypothesis that immune T cells control intramacrophage bacterial growth by re-directing bacteria into toxic intracellular compartments of infected macrophages. We visualized the interactions of lymphocytes and LVS-infected macrophages using confocal microscopy and characterized LVS intramacrophage trafficking when co-cultured with immune lymphocytes. We focused on the late stages of infection after bacteria escape from phagosomes, through bacterial replication and the death of macrophages. We found that the majority of LVS remained cytosolic in the absence of immune pressure, eventually resulting in macrophage death. In contrast, co-culture of LVS-infected macrophages with LVS-immune lymphocytes halted LVS replication and inhibited the spread of LVS infection between macrophages, but bacteria did not return to vacuoles such as lysosomes or autophagosomes and macrophages did not die. Therefore, immune lymphocytes directly limit intracellular bacterial replication within the cytoplasm of infected macrophages.


Asunto(s)
Vacunas Bacterianas/inmunología , Citoplasma/microbiología , Francisella tularensis/inmunología , Macrófagos/microbiología , Linfocitos T/inmunología , Tularemia/inmunología , Replicación Viral/inmunología , Animales , Citoplasma/inmunología , Modelos Animales de Enfermedad , Inmunización , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Fagosomas/microbiología , Tularemia/microbiología , Tularemia/prevención & control , Vacunas Atenuadas
15.
FEBS Lett ; 594(17): 2782-2799, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32484234

RESUMEN

Intracellular pathogens affect diverse host cellular defence and metabolic pathways. Here, we used infection with Francisella tularensis to identify SON DNA-binding protein as a central determinant of macrophage activities. RNAi knockdown of SON increases survival of human macrophages following F. tularensis infection or inflammasome stimulation. SON is required for macrophage autophagy, interferon response factor 3 expression, type I interferon response and inflammasome-associated readouts. SON knockdown has gene- and stimulus-specific effects on inflammatory gene expression. SON is required for accurate splicing and expression of GBF1, a key mediator of cis-Golgi structure and function. Chemical GBF1 inhibition has similar effects to SON knockdown, suggesting that SON controls macrophage functions at least in part by controlling Golgi-associated processes.


Asunto(s)
Autofagia/genética , Proteínas de Unión al ADN/genética , Francisella tularensis/patogenicidad , Aparato de Golgi/inmunología , Factores de Intercambio de Guanina Nucleótido/genética , Interacciones Huésped-Patógeno/genética , Macrófagos/inmunología , Antígenos de Histocompatibilidad Menor/genética , Autofagia/efectos de los fármacos , Muerte Celular , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/inmunología , Francisella tularensis/genética , Francisella tularensis/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/microbiología , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Antígenos de Histocompatibilidad Menor/inmunología , Piridinas/farmacología , Quinolinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Células THP-1 , Acetato de Tetradecanoilforbol/farmacología
16.
Front Immunol ; 11: 679, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391009

RESUMEN

Francisella tularensis(Ft) is a highly virulent, intracellular Gram-negative bacterial pathogen. Acute Ft infection by aerosol route causes pneumonic tularemia, characterized by nodular hemorrhagic lesions, neutrophil-predominant influx, necrotic debris, fibrin deposition, and severe alveolitis. Ft suppresses activity of neutrophils by impairing their respiratory burst and phagocytic activity. However, the fate of the massive numbers of neutrophils recruited to the infection site is unclear. Here, we show that Ft infection resulted in prominent induction of neutrophil extracellular traps (NETs) within damaged lungs of mice infected with the live attenuated vaccine strain of Ft(Ft-LVS), as well as in the lungs of domestic cats and rabbits naturally infected with Ft. Further, Ft-LVS infection increased lung myeloperoxidase (MPO) activity, which mediates histone protein degradation during NETosis and anchors chromatin scaffolds in NETs. In addition, Ft infection also induced expression of peptidylarginine deiminase 4, an enzyme that causes citrullination of histones during formation of NETs. The released NETs were found largely attached to the alveolar epithelium, and disrupted the thin alveolar epithelial barrier. Furthermore, Ft infection induced a concentration-dependent release of NETs from neutrophils in vitro. Pharmacological blocking of MPO reduced Ft-induced NETs release, whereas addition of H2O2 (a substrate of MPO) significantly augmented NETs release, thus indicating a critical role of MPO in Ft-induced NETs. Although immunofluorescence and electron microscopy revealed that NETs could efficiently trap Ft bacteria, NETs failed to exert bactericidal effects. Taken together, these findings suggest that NETs exacerbate tissue damage in pulmonary Ft infection, and that targeting NETosis may offer novel therapeutic interventions in alleviating Ft-induced tissue damage.


Asunto(s)
Células Epiteliales Alveolares/patología , Trampas Extracelulares/metabolismo , Francisella tularensis/inmunología , Pulmón/patología , Neutrófilos/inmunología , Tularemia/inmunología , Animales , Gatos , Células Cultivadas , Peróxido de Hidrógeno/metabolismo , Ratones , Peroxidasa/metabolismo , Conejos
17.
Virulence ; 11(1): 283-294, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32241221

RESUMEN

There is a need for development of an effective vaccine against Francisella tularensis, as this potential bioweapon has a high mortality rate and low infectious dose when delivered via the aerosol route. Moreover, this Tier 1 agent has a history of weaponization. We engineered targeted mutations in the Type A strain F. tularensis subspecies tularensis Schu S4 in aro genes encoding critical enzymes in aromatic amino acid biosynthesis. F. tularensis Schu S4ΔaroC, Schu S4ΔaroD, and Schu S4ΔaroCΔaroD mutant strains were attenuated for intracellular growth in vitro and for virulence in vivo and, conferred protection against pulmonary wild-type (WT) F. tularensis Schu S4 challenge in the C57BL/6 mouse model. F. tularensis Schu S4ΔaroD was identified as the most promising vaccine candidate, demonstrating protection against high-dose intranasal challenge; it protected against 1,000 CFU Schu S4, the highest level of protection tested to date. It also provided complete protection against challenge with 92 CFU of a F. tularensis subspecies holarctica strain (Type B). Mice responded to vaccination with Schu S4ΔaroD with systemic IgM and IgG2c, as well as the production of a functional T cell response as measured in the splenocyte-macrophage co-culture assay. This vaccine was further characterized for dissemination, histopathology, and cytokine/chemokine gene induction at defined time points following intranasal vaccination which confirmed its attenuation compared to WT Schu S4. Cytokine, chemokine, and antibody induction patterns compared to wild-type Schu S4 distinguish protective vs. pathogenic responses to F. tularensis and elucidate correlates of protection associated with vaccination against this agent.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Vacunas Bacterianas/inmunología , Citocinas/inmunología , Francisella tularensis/genética , Francisella tularensis/inmunología , Macrófagos/inmunología , Animales , Vacunas Bacterianas/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Vacunas Atenuadas/inmunología , Virulencia
19.
J Immunol Methods ; 477: 112693, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31689421

RESUMEN

Methods used to prepare bone marrow-derived macrophages (BMDMs) may influence the outcomes of immunological assays in which they are used. Supernatant conditioned by growth of L929 cells has often been used to generate mouse macrophages from bone marrow in vitro but is subject to lot-to-lot variability. To reduce experimental variability and to standardize techniques across laboratories, we investigated recombinant M-CSF (rM-CSF) as an alternative supplement for BMDM maturation in the context of macrophage infection, using the intracellular bacterium Live Vaccine Strain (LVS) of Francisella tularensis as a prototype. We compared rM-CSF with L929 supernatant in terms of their effects on mouse and rat macrophage growth, maturation patterns, surface marker expression, and the expression of selected genes. Further, we compared macrophage infectivity and bacterial replication using LVS. Finally, we compared the in vitro function of BMDMs co-cultured with splenocytes from vaccinated animals in terms of their control of intramacrophage bacterial replication, as well as production of cytokines and nitric oxide. We demonstrated that rM-CSF produced BMDMs with similar, or minimal, phenotypic and gene expression outcomes compared to those generated with media containing L929 supernatant. Most importantly, functional outcomes were similar. Taken together, our data support the use of the rM-CSF in cell culture media as an alternative to L929-supplemented media for functional bioassays that use C57BL/6J mouse or Fischer 344 rat BMDMs to study intracellular infections. This comparison therefore facilitates future protocol standardization.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/farmacología , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/efectos de los fármacos , Animales , Infecciones Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Bioensayo/métodos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Técnicas de Cocultivo/métodos , Femenino , Fibroblastos , Francisella tularensis/inmunología , Regulación de la Expresión Génica/inmunología , Inmunoensayo/métodos , Linfocitos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Endogámicas F344 , Proteínas Recombinantes/metabolismo , Vacunas Atenuadas/inmunología
20.
PLoS One ; 14(12): e0226778, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31877174

RESUMEN

Francisella tularensis, a category-A bioterrorism agent causes tularemia. F. tularensis suppresses the immune response of host cells and intracellularly proliferates. However, the detailed mechanisms of immune suppression and intracellular growth are largely unknown. Here we developed a transposon mutant library to identify novel pathogenic factors of F. tularensis. Among 750 transposon mutants of F. tularensis subsp. novicida (F. novicida), 11 were isolated as less cytotoxic strains, and the genes responsible for cytotoxicity were identified. Among them, the function of slt, which encodes soluble lytic transglycosylase (SLT) was investigated in detail. An slt deletion mutant (Δslt) was less toxic to the human monocyte cell line THP-1 vs the wild-type strain. Although the wild-type strain proliferated in THP-1 cells, the number of intracellular Δslt mutant decreased in comparison. The Δslt mutant escaped from phagosomes during the early stages of infection, but the mutant was detected within the autophagosome, followed by degradation in lysosomes. Moreover, the Δslt mutant induced host cells to produce high levels of cytokines such as tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß, compared with the wild-type strain. These results suggest that the SLT of F. novicida is required for immune suppression and escape from autophagy to allow its survival in host cells.


Asunto(s)
Proteínas Bacterianas/inmunología , Francisella tularensis/inmunología , Glicosiltransferasas/inmunología , Tularemia/inmunología , Animales , Línea Celular , Francisella tularensis/crecimiento & desarrollo , Humanos , Evasión Inmune , Lisosomas/inmunología , Lisosomas/microbiología , Ratones , Monocitos/inmunología , Monocitos/microbiología , Fagosomas/inmunología , Fagosomas/microbiología , Tularemia/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...