Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1159-1168, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38886413

RESUMEN

To understand the responses of radial growth of Fraxinus mandshurica from different provenances to climatic factors, we used the dendrochronological method to establish the standard chronologies of F. mandshurica from 20 provenances in Maoershan provenance test forest, and analyzed the differences in radial growth and their correlation with climate factors. The results showed that the overall trend of F. mandshurica chronologies from 20 provenances was generally similar. There were differences in growth amplitude, with the average radial growth of F. mandshurica from Dailing, Lushuihe and Sanchazi being the highest. The radial growth of F. mandshurica from 20 provenances was significantly positively correlated with the highest temperature in July and the average temperature in July except for Huinan. The radial growth of F. mandshurica from 14 provenances was significantly positively correlated with the precipitation in August. The radial growth of F. mandshurica was constrained by temperature and precipitation during the growing season. There was difference in radial growth among F. mandshurica from different provenances under drought stress. F. mandshurica from Wangqing, Dailing, and Hailin had stronger resistance to drought, while that from Wandianzi, Zhanhe, and Xinglong had better recovery ability after drought.


Asunto(s)
Clima , Fraxinus , Fraxinus/crecimiento & desarrollo , China , Ecosistema , Sequías , Temperatura , Tallos de la Planta/crecimiento & desarrollo
2.
Plant Physiol ; 196(1): 153-163, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38757896

RESUMEN

Microcomputed tomography (µCT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, the impact on plant physiological processes such as carbon (C) uptake, transport, and use is unknown. Yet, these damages could be particularly relevant for studies that track embolism and C fluxes over time. We examined the physiological consequences of µCT scanning for xylem embolism over 3 mo by monitoring net photosynthesis (Anet), diameter growth, chlorophyll (Chl) concentration, and foliar nonstructural carbohydrate (NSC) content in 4 deciduous tree species: hedge maple (Acer campestre), ash (Fraxinus excelsior), European hornbeam (Carpinus betulus), and sessile oak (Quercus petraea). C transport from the canopy to the roots was also assessed through 13C labeling. Our results show that monthly X-ray application did not impact foliar Anet, Chl, NSC content, and C transport. Although X-ray effects did not vary between species, the most pronounced impact was observed in sessile oak, marked by stopped growth and stem deformations around the irradiated area. The absence of adverse impacts on plant physiology for all the tested treatments indicates that laboratory-based µCT systems can be used with different beam energy levels and doses without threatening the integrity of plant physiology within the range of tested parameters. However, the impacts of repetitive µCT on the stem radial growth at the irradiated zone leading to deformations in sessile oak might have lasting implications for studies tracking plant embolism in the longer-term.


Asunto(s)
Acer , Hojas de la Planta , Tallos de la Planta , Quercus , Microtomografía por Rayos X , Microtomografía por Rayos X/métodos , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Acer/crecimiento & desarrollo , Acer/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Fotosíntesis , Xilema/crecimiento & desarrollo , Xilema/fisiología , Xilema/metabolismo , Carbono/metabolismo , Clorofila/metabolismo , Fraxinus/crecimiento & desarrollo , Fraxinus/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Árboles/fisiología , Transporte Biológico , Betulaceae/crecimiento & desarrollo
3.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575023

RESUMEN

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Asunto(s)
Sequías , Bosques , Árboles , Árboles/fisiología , Italia , Quercus/crecimiento & desarrollo , Quercus/fisiología , Cambio Climático , Pinus/fisiología , Pinus/crecimiento & desarrollo , Monitoreo del Ambiente , Fraxinus/fisiología , Fraxinus/crecimiento & desarrollo , Acer/crecimiento & desarrollo , Acer/fisiología
4.
BMC Plant Biol ; 21(1): 556, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34814837

RESUMEN

BACKGROUND: Understanding the ecological strategies of urban trees to the urban environment is crucial to the selection and management of urban trees. However, it is still unclear whether urban tree pit cover will affect plant functional traits. Here, we study the response of urban trees to different tree pit covers, analyzed the effects of different cover types on soil properties and their trade-off strategies based on leaf functional traits. RESULTS: We found that there were obvious differences in the physical properties of the soil in different tree pit covers. Under the different tree pit cover types, soil bulk density and soil porosity reached the maximum under cement cover and turf cover, respectively. We found that tree pit cover significantly affected the leaf properties of urban trees. Leaf thickness, chlorophyll content index and stomatal density were mainly affected by soil bulk density and non-capillary porosity in a positive direction, and were affected by soil total porosity and capillary porosity in a negative direction. Leaf dry matter content and stomata area were mainly negatively affected by soil bulk density and non-capillary porosity, and positively affected by soil total porosity and capillary porosity. Covering materials of tree pits promoted the functional adjustment of plants and form the best combination of functions. CONCLUSION: Under the influence of tree pit cover, plant have low specific leaf area, stomata density, high leaf thickness, chlorophyll content index, leaf dry matter content, leaf tissue density and stomata area, which belong to "quick investment-return" type in the leaf economics spectrum.


Asunto(s)
Adaptación Fisiológica , Fraxinus/crecimiento & desarrollo , Jardinería/métodos , Hojas de la Planta/crecimiento & desarrollo , Suelo/química , Árboles/crecimiento & desarrollo , China , Ciudades , Plásticos , Madera
5.
Plant Physiol Biochem ; 160: 352-364, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33548802

RESUMEN

In Fraxinus mandshurica, we successfully isolated and identified the loose, uniform and creamy-white cambial meristematic cells (CMCs) from newborn shoots, and established a culture technology for induction, proliferation and differentiation of CMCs. In this technology, higher induction rate (83.0%, 0.57-fold to the control) was obtained by an effective pretreatment after 28-day induction culture, CMCs can be better proliferation cultured than common calli and maintain same growth states after several times of cultures and 3.3% CMCs primarily realized differentiation. Gene expressions in the differentiated CMCs revealed that, low expression of FmWOX5 (regulator in establishment of competence for shoot formation, 0.09-fold to the control) and high expressions of FmWOX4 (cambium stem cell regulator, 16.7-fold to the control) and 9 key genes in shoot regeneration (2.4-fold-72.1-fold to the control) function in CMCs differentiation. In addition to the function of high expression of PHAVOLUTA (FmPHV) in CMCs differentiation (5.4-fold-157.3-fold to undifferentiated CMCs), functions of high expression of FmPHV in CMCs identification (22.4-fold to common calli) and generating more shoots (2.3-fold to the control) by significantly changing expressions of key regulators in HD-Zip Class III related shoot regeneration networks in positive transgenic plants through the hypocotyl transforming system in F. mandshurica, were further revealed. These works were of profound significance in providing the culture technology of CMCs from newborn shoots in F. mandshurica for the first time and revealing the positive functions of FmPHV in CMCs identification and differentiation in F. mandshurica and promoting the shoot regeneration by hypocotyls.


Asunto(s)
Cámbium/citología , Fraxinus/crecimiento & desarrollo , Hipocótilo/crecimiento & desarrollo , Brotes de la Planta/citología , Técnicas de Cultivo de Tejidos , Diferenciación Celular , Fraxinus/citología , Hipocótilo/citología
6.
Sci Rep ; 10(1): 5310, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32210276

RESUMEN

Determining the impacts of invasive pathogens on tree mortality and growth is a difficult task, in particular in the case of species occurring naturally at low frequencies in mixed stands. In this study, we quantify such effects by comparing national forest inventory data collected before and after pathogen invasion. In Norway, Fraxinus excelsior is a minor species representing less than 1% of the trees in the forests and being attacked by the invasive pathogen Hymenoscyphus fraxineus since 2006. By studying deviations between inventories, we estimated a 74% higher-than-expected average ash mortality and a 13% slower-than-expected growth of the surviving ash trees, indicating a lack of compensation by the remaining ash. We could confidently assign mortality and growth losses to ash dieback as no mortality or growth shifts were observed for co-occurring tree species in the same plots. The mortality comparisons also show regional patterns with higher mortality in areas with the longest disease history in Norway. Considering that ash is currently mostly growing in mixed forests and that no signs of compensation were observed by the surviving ash trees, a significant habitat loss and niche replacement could be anticipated in the mid-term.


Asunto(s)
Ascomicetos/patogenicidad , Fraxinus/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Árboles/crecimiento & desarrollo , Virulencia , Biodiversidad , Fraxinus/microbiología , Árboles/microbiología
7.
Glob Chang Biol ; 25(1): 201-217, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30346104

RESUMEN

Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global-change drivers such as climate change or atmospheric deposition, as well as to local land-use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global-change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global-change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global-change drivers, with species-specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus' growth, highlighting species-specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus' growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global-change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.


Asunto(s)
Cambio Climático , Fagus/crecimiento & desarrollo , Fraxinus/crecimiento & desarrollo , Quercus/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Sequías , Europa (Continente) , Bosques , Ciclo del Nitrógeno , Temperatura
8.
Ann Agric Environ Med ; 25(2): 285-291, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29936810

RESUMEN

INTRODUCTION AND OBJECTIVE: The timings of Fraxinus and Betula flowering and pollen release overlap, which may cause increased allergic reactions in sensitive people. The aim of the present study was to characterize Fraxinus pollen seasons in Lublin (central-eastern Poland) and to identify meteorological factors that most determine the occurrence of airborne pollen of this taxon, as well as obtain forecast models for the basic characteristics of the pollen season. MATERIAL AND METHODS: The study was conducted in Lublin during the period 2001-2016, employing the volumetric method. The seasons were compared by PCA (Principal Component Analysis). To determine relationships between meteorological conditions and the pattern of pollen seasons, regression analysis was used. Data for the period 2001-2015 were used to create forecast models by applying regression analysis, while the 2016 data served to verify these models. RESULTS: Season end date and seasonal peak date were characterized by the lowest variation. The biggest differences were found for peak value and total annual pollen sum. The average dates of occurrence of ash pollen grains in the air of Lublin were between 13 April 13 - 3 May 3, whereas, on average, the pollen peak date occurred on 23 April. The factor loading values for the PC1 variable indicate that it is most strongly correlated with peak value and total pollen sum, while the PC2 variable correlated with the pollen season start date and season duration (a negative correlation). Regression models were developed for the following pollen season characteristics: season start, end and duration, seasonal peak date, and total annual pollen sum. CONCLUSIONS: The fit of the forecast models was at the level of 62-94%. Analysis of the data showed that weather conditions mainly in February were important factors controlling the Fraxinus pollen season.


Asunto(s)
Contaminantes Atmosféricos/análisis , Fraxinus/crecimiento & desarrollo , Polen/química , Contaminantes Atmosféricos/inmunología , Contaminación del Aire/análisis , Fraxinus/química , Hipersensibilidad/epidemiología , Conceptos Meteorológicos , Polonia/epidemiología , Polen/crecimiento & desarrollo , Análisis de Regresión , Estaciones del Año , Tiempo (Meteorología)
9.
Environ Monit Assess ; 190(6): 355, 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789963

RESUMEN

The afforestation of arid lands faces many challenges, and perhaps the most important key for success is choosing one or more species that are adapted well for local environmental conditions. We explored species that would be suitable for the steppe region of Central Anatolia. Intensive site preparation included ripping the subsoil (to 80 cm) and plowing the upper soil before planting seedlings of Elaeagnus angustifolia, Robinia pseudoacacia, Fraxinus angustifolia, and Pinus nigra were used as tree species. We also tested the success of several shrub species: Amygdalus orientalis, Calligonum polygonoides, and Spartium junceum. After five growing seasons, E. angustifolia showed the highest survival, with 80% of planted seedlings remaining. For the shrubs, A. orientalis was the most successful species with a 95% survival rate. Broad-leaved trees grew a cumulative average of 34 cm in height in 5 years, whereas P. nigra seedings grew only 9 cm. The greatest height growth occurred in the shrubs, with A. orientalis gaining 40 cm in height in 5 years. Overall, E. angustifolia and A. orientalis appeared best suited for afforestation in these areas. R. pseodoacacia and F. angustifolia may also be used as alternative species.


Asunto(s)
Fraxinus/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Robinia/crecimiento & desarrollo , Bosques , Plantones/crecimiento & desarrollo , Suelo , Árboles , Turquía
10.
Int J Biometeorol ; 62(6): 949-959, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29404687

RESUMEN

It has been widely reported that the urban environment alters leaf and flowering phenophases; however, it remains unclear if land pavement is correlated with these alterations. In this paper, two popular deciduous urban trees in northern China, ash (Fraxinus chinensis) and maple (Acer truncatum), were planted in pervious and impervious pavements at three spacings (0.5 m × 0.5 m, 1.0 m × 1.0 m, and 2.0 m × 2.0 m apart). The beginning and end dates of the processes of leaf budburst and senescence were recorded in spring and fall of 2015, respectively. The results show that leaf budburst and senescence were significantly advanced in pavement compared to non-pavement lands. The date of full leaf budburst was earlier by 0.7-9.3 days for ash and by 0.3-2.3 days for maple under pavements than non-pavements, respectively. As tree spacing increases, the advanced days of leaf budburst became longer. Our results clearly indicate that alteration of leaf phenophases is attributed to land pavement, which should be taken into consideration in urban planning and urban plant management.


Asunto(s)
Acer/crecimiento & desarrollo , Fraxinus/crecimiento & desarrollo , Microclima , Hojas de la Planta/crecimiento & desarrollo , China , Planificación de Ciudades , Materiales Manufacturados , Estaciones del Año , Temperatura , Urbanización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA