Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem J ; 472(2): 225-37, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26417114

RESUMEN

Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo. We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1 complex was modulated by intermediate metabolites, but only in the presence of K(+). We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate (DHAP) and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, in vivo FRET studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level through the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes.


Asunto(s)
Metabolismo Energético , Fructosa-Bifosfatasa/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Gluconeogénesis , Glucólisis , Hepatocitos/metabolismo , Modelos Biológicos , Animales , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Técnica del Anticuerpo Fluorescente , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/genética , Células HeLa , Hepatocitos/citología , Hepatocitos/enzimología , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Masculino , Microscopía Confocal , Transporte de Proteínas , Ratas Wistar , Proteínas Recombinantes de Fusión/metabolismo
2.
Biochim Biophys Acta ; 1840(6): 1798-807, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24444799

RESUMEN

BACKGROUND: Fructose-1,6-bisphosphatase, a major enzyme of gluconeogenesis, is inhibited by AMP, Fru-2,6-P2 and by high concentrations of its substrate Fru-1,6-P2. The mechanism that produces substrate inhibition continues to be obscure. METHODS: Four types of experiments were used to shed light on this: (1) kinetic measurements over a very wide range of substrate concentrations, subjected to detailed statistical analysis; (2) fluorescence studies of mutants in which phenylalanine residues were replaced by tryptophan; (3) effect of Fru-2,6-P2 and Fru-1,6-P2 on the exchange of subunits between wild-type and Glu-tagged oligomers; and (4) kinetic studies of hybrid forms of the enzyme containing subunits mutated at the active site residue tyrosine-244. RESULTS: The kinetic experiments with the wild-type enzyme indicate that the binding of Fru-1,6-P2 induces the appearance of catalytic sites with lower affinity for substrate and lower catalytic activity. Binding of substrate to the high-affinity sites, but not to the low-affinity sites, enhances the fluorescence emission of the Phe219Trp mutant; the inhibitor, Fru-2,6-P2, competes with the substrate for the high-affinity sites. Binding of substrate to the low-affinity sites acts as a "stapler" that prevents dissociation of the tetramer and hence exchange of subunits, and results in substrate inhibition. CONCLUSIONS: Binding of the first substrate molecule, in one dimer of the enzyme, produces a conformational change at the other dimer, reducing the substrate affinity and catalytic activity of its subunits. GENERAL SIGNIFICANCE: Mimics of the substrate inhibition of fructose-1,6-bisphosphatase may provide a future option for combatting both postprandial and fasting hyperglycemia.


Asunto(s)
Biocatálisis , Fructosa-Bifosfatasa/química , Riñón/enzimología , Animales , Secuencia de Bases , Sitios de Unión , Fructosa-Bifosfatasa/antagonistas & inhibidores , Fructosa-Bifosfatasa/metabolismo , Fructosadifosfatos/química , Datos de Secuencia Molecular , Subunidades de Proteína , Especificidad por Sustrato , Porcinos
3.
FEBS J ; 274(20): 5337-49, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17894826

RESUMEN

Pig kidney fructose-1,6-bisphosphatase is a homotetrameric enzyme which does not contain tryptophan. In a previous report the guanidine hydrochloride-induced unfolding of the enzyme has been described as a multistate process [Reyes, A. M., Ludwig, H. C., Yañez, A. J., Rodriguez, P. H and Slebe, J. C. (2003) Biochemistry 42, 6956-6964]. To monitor spectroscopically the unfolding transitions, four mutants were constructed containing a single tryptophan residue either near the C1-C2 or the C1-C4 intersubunit interface of the tetramer. The mutants were shown to retain essentially all of the structural and kinetic properties of the enzyme isolated from pig kidney. The enzymatic activity, intrinsic fluorescence, size-exclusion chromatographic profiles and 1-anilinonaphthalene-8-sulfonate binding by the mutants were studied under unfolding equilibrium conditions. The unfolding profiles were multisteps, and formation of hydrophobic structures was detected. The enzymatic activity of wild-type and mutant FBPases as a function of guanidine hydrochloride concentration showed an initial enhancement (maximum approximately 30%) followed by a biphasic decay. The activity and fluorescence results indicate that these transitions involve conformational changes in the fructose-1,6-bisphosphate and AMP domains. The representation of intrinsic fluorescence data as a 'phase diagram' reveals the existence of five intermediates, including two catalytically active intermediates that have not been previously described, and provides the first spectroscopic evidence for the formation of dimers. The intrinsic fluorescence unfolding profiles indicate that the dimers are formed by selective disruption of the C1-C2 interface.


Asunto(s)
Fructosa-Bifosfatasa/química , Riñón/enzimología , Mutación/genética , Triptófano/genética , Naftalenosulfonatos de Anilina/química , Animales , Catálisis , Cromatografía en Gel , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Guanidina/química , Cinética , Magnesio/química , Magnesio/farmacología , Mutagénesis Sitio-Dirigida , Desnaturalización Proteica , Pliegue de Proteína , Renaturación de Proteína , Espectrometría de Fluorescencia , Compuestos de Sulfhidrilo/química , Reactivos de Sulfhidrilo/química , Porcinos
4.
Biochem Biophys Res Commun ; 355(3): 722-7, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17307139

RESUMEN

2-Cys peroxiredoxin (2-Cys Prx) is a large group of proteins that participate in cell proliferation, differentiation, apoptosis, and photosynthesis. In the prevailing view, this ubiquitous peroxidase poises the concentration of H2O2 and, in so doing, regulates signal transduction pathways or protects macromolecules against oxidative damage. Here, we describe the first purification of 2-Cys Prx from higher plants and subsequently we show that the native and the recombinant forms of rapeseed leaves stimulate the activity of chloroplast fructose-1,6-bisphosphatase (CFBPase), a key enzyme of the photosynthetic CO2 assimilation. The absence of reductants, the strict requirement of both fructose 1,6-bisphosphate and Ca2+, and the response of single mutants C174S and C179S CFBPase bring forward clear differences with the well-known stimulation mediated by reduced thioredoxin via the regulatory 170's loop of CFBPase. Taken together, these findings provide an unprecedented insight into chloroplast enzyme regulation wherein both 2-Cys Prx and the 170's loop of CFBPase exhibit novel functions.


Asunto(s)
Brassica rapa/enzimología , Cloroplastos/enzimología , Fructosa-Bifosfatasa/metabolismo , Peroxidasas/metabolismo , Brassica rapa/genética , Catálisis , Cloroplastos/genética , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/genética , Oxidación-Reducción , Peroxidasas/química , Peroxidasas/aislamiento & purificación , Peroxirredoxinas , Hojas de la Planta/enzimología
5.
Anal Biochem ; 339(1): 150-6, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15766722

RESUMEN

A high-throughput screening was developed for the detection of phosphatase activity in bacterial colonies. Unlike other methods, the current procedure can be applied to any phosphatase because it uses physiological substrates and detects the compelled product of all phosphatase reactions, that is, orthophosphate. In this method, substrates diffuse from a filter paper across a nitrocellulose membrane to bacterial colonies situated on the opposite face, and then reaction products flow back to the paper. Finally, a colorimetric reagent discloses the presence of orthophosphate in the filter paper. We validated the performance of this assay with several substrates and experimental conditions and with different phosphatases, including a library of randomly mutagenized rapeseed chloroplast fructose-1,6-bisphosphatase. This procedure could be extended to other enzymatic activities provided that an appropriate detection of reaction products is available.


Asunto(s)
Fosfatasa Alcalina/química , Brassica rapa/enzimología , Escherichia coli/enzimología , Fructosa-Bifosfatasa/química , Glucosa-6-Fosfatasa/química , Biblioteca de Péptidos , Fosfatasa Alcalina/fisiología , Cloroplastos/enzimología , Evaluación Preclínica de Medicamentos , Fructosa-Bifosfatasa/fisiología , Fructosafosfatos/metabolismo , Glucosa-6-Fosfatasa/fisiología , Glucofosfatos/metabolismo , Mutagénesis , Especificidad por Sustrato
6.
Biochemistry ; 42(23): 6956-64, 2003 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-12795590

RESUMEN

The unfolding and dissociation of the tetrameric enzyme fructose-1,6-bisphosphatase from pig kidney by guanidine hydrochloride have been investigated at equilibrium by monitoring enzyme activity, ANS binding, intrinsic (tyrosine) protein fluorescence, exposure of thiol groups, fluorescence of extrinsic probes (AEDANS, MIANS), and size-exclusion chromatography. The unfolding is a multistate process involving as the first intermediate a catalytically inactive tetramer. The evidence that indicates the existence of this intermediate is as follows: (1) the loss of enzymatic activity and the concomitant increase of ANS binding, at low concentrations of Gdn.HCl (midpoint at 0.75 M), are both protein concentration independent, and (2) the enzyme remains in a tetrameric state at 0.9 M Gdn.HCl as shown by size-exclusion chromatography. At slightly higher Gdn.HCl concentrations the inactive tetramer dissociates to a compact dimer which is prone to aggregate. Further evidence for dissociation of tetramers to dimers and of dimers to monomers comes from the concentration dependence of AEDANS-labeled enzyme anisotropy data. Above 2.3 M Gdn.HCl the change of AEDANS anisotropy is concentration independent, indicative of monomer unfolding, which also is detected by a red shift of MIANS-labeled enzyme emission. At Gdn.HCl concentrations higher than 3.0 M, the protein elutes from the size-exclusion column as a single peak, with a retention volume smaller than that of the native protein, corresponding to the completely unfolded monomer. In the presence of its cofactor Mg(2+), the denaturated enzyme could be successfully reconstituted into the active enzyme with a yield of approximately 70-90%. Refolding kinetic data indicate that rapid refolding and reassociation of the monomers into a nativelike tetramer and reactivation of the tetramer are sequential events, the latter involving slow and small conformational rearrangements in the refolded enzyme.


Asunto(s)
Fructosa-Bifosfatasa/química , Riñón/enzimología , Naftalenosulfonatos de Anilina/química , Animales , Anisotropía , Cromatografía en Gel , Fructosa-Bifosfatasa/metabolismo , Guanidina/química , Cinética , Magnesio/química , Magnesio/farmacología , Naftalenosulfonatos/química , Desnaturalización Proteica , Pliegue de Proteína , Renaturación de Proteína , Espectrometría de Fluorescencia , Compuestos de Sulfhidrilo/química , Reactivos de Sulfhidrilo/química , Porcinos , Tirosina/química
7.
Biochem Biophys Res Commun ; 232(2): 388-93, 1997 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-9125187

RESUMEN

In higher plants, light enhances the activity of chloroplast fructose-1,6-bisphosphatase via a cascade of thiol/disulfide exchanges. We have examined the structural and functional role of seven conserved cysteine residues in the rapeseed (Brassica napus) enzyme by site-directed mutagenesis. After lysis of Escherichia coli cells, C53S and C191S variants partitioned mainly in the insoluble fraction whereas C96S, C157S, C174S, C179S, and C307S mutants were soluble. Homogeneous preparations of the latter hydrolyzed fructose 1,6-bisphosphate at similar rates in the presence of 10 mM Mg2+ but only C157S, C174S and C179S mutants were both efficient catalysts at 1 mM Mg2+ and nearly insensitive to dithiothreitol. These results demonstrate the contribution of Cys53 and Cys191 to the stability of the enzyme and the participation of Cys157, Cys174 and Cys179 in the reductive process responsive of the light-dependent regulation. Given that mutations at Cys96 and Cys307 neither destabilize the enzyme nor affect the reductive modulation, their function remains unknown.


Asunto(s)
Brassica/enzimología , Cloroplastos/enzimología , Cisteína/química , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/metabolismo , Secuencia de Aminoácidos , Brassica/genética , Catálisis , Cisteína/genética , Cisteína/aislamiento & purificación , Activación Enzimática , Estabilidad de Enzimas , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción
8.
FEBS Lett ; 380(1-2): 123-6, 1996 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-8603719

RESUMEN

Although all thioredoxins contain a highly conserved amino acid sequence responsible for thiol/disulfide exchanges, only chloroplast thioredoxin-f is effective in the reductive stimulation of chloroplast fructose-1,6-bisphosphatase. We set out to determine whether Escherichia coli thioredoxin becomes functional when selected modulators alter the conformation of the target enzyme. Wild type and chimeric Escherichia coli thioredoxins match the chloroplast counterpart when the activation of chloroplast fructose 1,6-biphosphatase is performed in the presence of fructose 1,6-bisphosphate, Ca2+, and either trichloroacetate or 2-propanol. These modulators of enzyme activity do change the conformation of chloroplast fructose-1,6-bisphosphatase whereas bacterial thioredoxins remain unaltered. Given that fructose 1,6-bisphosphate, Ca2+, and non-physiological perturbants modify non-covalent interactions of the protein but do not participate in redox reactions, these results strongly suggest that the conformation of the target enzyme regulates the rate of thiol/disulfide exchanges catalyzed by protein disulfide oxidoreductases.


Asunto(s)
Cloroplastos/enzimología , Activación Enzimática/efectos de los fármacos , Fructosa-Bifosfatasa/metabolismo , Tiorredoxinas/farmacología , Secuencia de Aminoácidos , Escherichia coli/química , Fructosa-Bifosfatasa/química , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes de Fusión , Tiorredoxinas/química , Ácido Tricloroacético/farmacología
9.
Eur J Biochem ; 222(2): 467-74, 1994 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-8020485

RESUMEN

To characterize the mechanism of chloroplast fructose-1,6-bisphosphatase activation, we have examined kinetic and structural changes elicited by protein perturbants and reductants. At variance with its well-known capacity for enzyme inactivation, 150 mM sodium trichloroacetate yielded an activatable chloroplast fructose-1,6-bisphosphatase in the presence of 1.0 mM fructose 1,6-bisphosphate and 0.1 mM Ca2+. Other sugar bisphosphates did not replace fructose 1,6-bisphosphate whereas Mg2+ and Mn2+ were functional in place of Ca2+. Variations of the emission fluorescence of intrinsic fluorophores and a noncovalently bound extrinsic probe [2-(p-toluidinyl)naphthalene-6-sulfonate] indicated the presence of conformations different from the native form. A similar conclusion was drawn from the analysis of absorption spectra by means of fourth-derivative spectrophotometry. The effect of these conformational changes on the reductive process was studied by subsequently incubating the enzyme with dithiothreitol. The reaction of chloroplast fructose-1,6-bisphosphatase with dithiothreitol was accelerated 13-fold by the chaotropic anion: second-order rate constants were 48.1 M-1.min-1 and 3.7 M-1.min-1 in the presence and in the absence of trichloroacetate, respectively. Thus, the enhancement of the reductive activation by compounds devoid of redox activity illustrated that the modification of intramolecular noncovalent interactions of chloroplast fructose-1,6-bisphosphatase plays an essential role in the conversion of enzyme disulfide bonds to sulfhydryl groups. In consequence, a conformational change would operate concertedly with the reduction of disulfide bridges in the light-dependent activation mediated by the ferredoxin-thioredoxin system.


Asunto(s)
Cloroplastos/enzimología , Fructosa-Bifosfatasa/metabolismo , Verduras/enzimología , Cationes Bivalentes/farmacología , Fructosa-Bifosfatasa/antagonistas & inhibidores , Fructosa-Bifosfatasa/química , Fructosadifosfatos/farmacología , Cinética , Oxidación-Reducción , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Ácido Tricloroacético/farmacología
10.
Arch Biol Med Exp ; 21(1): 117-21, 1988 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2856482

RESUMEN

The sequence of the NH2-terminal 25-amino acid residues of purified spinach chloroplast fructose-1,6-bisphosphatase was determined by automated Edman degradation. The amino acid sequence is as follows: Ala-Ala-Val-Gly-Glu-Ala-Ala-Thr-Gln-Thr-Lys-Ala- Arg-Thr-Arg-Ser-Lys-Tyr-Glu-Ile-Glu-Thr-Leu-Thr-Gly. A comparison of this sequence with the corresponding region of pig kidney and yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatases shows that the sequence of residues 1-19 of the chloroplast enzyme has no homology with the other fructose-1,6-bisphosphatases, but homology is evident after residue 20. The dissimilar sequence contains a region (residues (8-17) rich in basic and hydroxylated amino acids, a structure which is typical of presequences of mitochondrial and chloroplast proteins. Since chloroplast fructose-1,6-bisphosphatase is nuclear in origin, these results suggest that the chloroplast targeting region may have been retained within the amino acid sequence of the mature protein.


Asunto(s)
Cloroplastos/enzimología , Fructosa-Bifosfatasa/química , Verduras , Secuencia de Aminoácidos , Animales , Fructosa-Bifosfatasa/aislamiento & purificación , Riñón/enzimología , Datos de Secuencia Molecular , Porcinos
11.
Arch Biol Med Exp ; 20(3-4): 371-8, 1987.
Artículo en Inglés | MEDLINE | ID: mdl-8816077

RESUMEN

The hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate is a key reaction of carbohydrate metabolism. The enzyme that catalyzes this reaction, fructose-1,6-bisphosphatase, appears to be present in all forms of living organisms. Regulation of the enzyme activity, however, occurs by a variety of distinct mechanisms. These include AMP inhibition (most sources), cyclic AMP-dependent phosphorylation (yeast), and light-dependent activation (chloroplast). In this short review, we have analyzed the function of several fructose-1,6-bisphosphatases and we have made a comparison of partial amino acid sequences obtained from the enzymes of the yeast Saccharomyces cerevisiae, Escherichia coli, and spinach chloroplasts with the known entire amino acid sequence of a mammalian gluconeogenic fructose-1,6-bisphosphatase. These results demonstrate a very high degree of sequence conservation, suggesting a common evolutionary origin for all fructose-1,6-bisphosphatases.


Asunto(s)
Fructosa-Bifosfatasa/fisiología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Secuencia de Consenso , AMP Cíclico/fisiología , Activación Enzimática , Evolución Molecular , Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/genética , Fructosadifosfatos/metabolismo , Fructosafosfatos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiología , Gluconeogénesis , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA