Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 579: 129-135, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34597996

RESUMEN

Phosphofructokinase B (PfkB) belongs to the ribokinase family, which uses the phosphorylated sugar as substrate, and catalyzes fructose-6-phosphate into fructose-1,6-diphosphate. However, the structural basis of Mycobacterium marinum PfkB is not clear. Here, we found that the PfkB protein was monomeric in solution, which was different from most enzymes in this family. The crystal structure of PfkB protein from M. marinum was solved at a resolution of 2.21 Å. The PfkB structure consists of two domains, a major three-layered α/ß/α sandwich-like domain characteristic of the ribokinase-like superfamily, and a second domain composed of four-stranded ß sheets. Structural comparison analysis suggested that residues G236, A237, G238, and D239 could be critical for ATP catalysis and substrate binding of PfkB. Our current work provides new insights into understanding the mechanism of the glycolysis in M. marinum.


Asunto(s)
Mycobacterium marinum/enzimología , Fosfofructoquinasa-2/metabolismo , Catálisis , Cromatografía en Gel , Cristalografía por Rayos X , Escherichia coli , Fructosafosfatos/química , Glucólisis , Concentración de Iones de Hidrógeno , Conformación Molecular , Simulación del Acoplamiento Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Dispersión de Radiación , Temperatura
2.
J Biol Chem ; 296: 100219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839685

RESUMEN

ADP-dependent kinases were first described in archaea, although their presence has also been reported in bacteria and eukaryotes (human and mouse). This enzyme family comprises three substrate specificities; specific phosphofructokinases (ADP-PFKs), specific glucokinases (ADP-GKs), and bifunctional enzymes (ADP-PFK/GK). Although many structures are available for members of this family, none exhibits fructose-6-phosphate (F6P) at the active site. Using an ancestral enzyme, we obtain the first structure of an ADP-dependent kinase (AncMsPFK) with F6P at its active site. Key residues for sugar binding and catalysis were identified by alanine scanning, D36 being a critical residue for F6P binding and catalysis. However, this residue hinders glucose binding because its mutation to alanine converts the AncMsPFK enzyme into a specific ADP-GK. Residue K179 is critical for F6P binding, while residues N181 and R212 are also important for this sugar binding, but to a lesser extent. This structure also provides evidence for the requirement of both substrates (sugar and nucleotide) to accomplish the conformational change leading to a closed conformation. This suggests that AncMsPFK mainly populates two states (open and closed) during the catalytic cycle, as reported for specific ADP-PFK. This situation differs from that described for specific ADP-GK enzymes, where each substrate independently causes a sequential domain closure, resulting in three conformational states (open, semiclosed, and closed).


Asunto(s)
Proteínas Arqueales/química , Fructosafosfatos/química , Glucoquinasa/química , Methanosarcinales/química , Fosfofructoquinasas/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Biocatálisis , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Fructosafosfatos/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glucoquinasa/genética , Glucoquinasa/metabolismo , Cinética , Ligandos , Methanosarcinales/enzimología , Methanosarcinales/genética , Modelos Moleculares , Fosfofructoquinasas/genética , Fosfofructoquinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
3.
Acta Biochim Pol ; 68(1): 5-14, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33502838

RESUMEN

Muscle fructose-1,6-bisphosphatase (FBPase), which catalyzes the hydrolysis of fructose-1,6-bisphosphate (F1,6BP) to fructose-6-phosphate (F6P) and inorganic phosphate, regulates glucose homeostasis by controlling the glyconeogenic pathway. FBPase requires divalent cations, such as Mg2+, Mn2+, or Zn2+, for its catalytic activity; however, calcium ions inhibit the muscle isoform of FBPase by interrupting the movement of the catalytic loop. It has been shown that residue E69 in this loop plays a key role in the sensitivity of muscle FBPase towards calcium ions. The study presented here is based on five crystal structures of wild-type human muscle FBPase and its E69Q mutant in complexes with the substrate and product of the enzymatic reaction, namely F1,6BP and F6P. The ligands are bound in the active site of the studied proteins in the same manner and have excellent definition in the electron density maps. In all studied crystals, the homotetrameric enzyme assumes the same cruciform quaternary structure, with the κ angle, which describes the orientation of the upper dimer with respect to the lower dimer, of -85o. This unusual quaternary arrangement of the subunits, characteristic of the R-state of muscle FBPase, is also observed in solution by small-angle X-ray scattering (SAXS).


Asunto(s)
Fructosa-Bifosfatasa/química , Fructosa-Bifosfatasa/metabolismo , Músculos/enzimología , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Biocatálisis , Dominio Catalítico , Cristalización , Fructosafosfatos/química , Fructosafosfatos/metabolismo , Humanos , Enlace de Hidrógeno , Hidrólisis , Ligandos , Modelos Moleculares , Peso Molecular , Músculos/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos
4.
Anal Biochem ; 613: 114022, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33217405

RESUMEN

In a recent paper, we showed the difference between the first stage of the one-substrate and the two-substrate transketolase reactions - the possibility of transfer of glycolaldehyde formed as a result of cleavage of the donor substrate from the thiazole ring of thiamine diphosphate to its aminopyrimidine ring through the tricycle formation stage, which is necessary for binding and splitting the second molecule of donor substrate [O.N. Solovjeva et al., The mechanism of a one-substrate transketolase reaction, Biosci. Rep. 40 (8) (2020) BSR20180246]. Here we show that under the action of the reducing agent a tricycle accumulates in a significant amount. Therefore, a significant decrease in the reaction rate of the one-substrate transketolase reaction compared to the two-substrate reaction is due to the stage of transferring the first glycolaldehyde molecule from the thiazole ring to the aminopyrimidine ring of thiamine diphosphate. Fragmentation of the four-carbon thiamine diphosphate derivatives showed that two glycolaldehyde molecules are bound to both coenzyme rings and the erythrulose molecule is bound to a thiazole ring. It was concluded that in the one-substrate reaction erythrulose is formed on the thiazole ring of thiamine diphosphate from two glycol aldehyde molecules linked to both thiamine diphosphate rings. The kinetic characteristics were determined for the two substrates, fructose 6-phosphate and glycolaldehyde.


Asunto(s)
Transcetolasa/química , Transcetolasa/metabolismo , Acetaldehído/análogos & derivados , Acetaldehído/química , Acetaldehído/metabolismo , Biocatálisis , Borohidruros/química , Coenzimas/metabolismo , Fructosafosfatos/química , Fructosafosfatos/metabolismo , Cinética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato , Tetrosas/metabolismo , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo
5.
Biochem J ; 477(22): 4425-4441, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33141153

RESUMEN

6-Phosphofructokinase-1-kinase (PFK) tetramers catalyse the phosphorylation of fructose 6-phosphate (F6P) to fructose 1,6-bisphosphate (F16BP). Vertebrates have three PFK isoforms (PFK-M, PFK-L, and PFK-P). This study is the first to compare the kinetics, structures, and transcript levels of recombinant human PFK isoforms. Under the conditions tested PFK-M has the highest affinities for F6P and ATP (K0.5ATP 152 µM; K0.5F6P 147 µM), PFK-P the lowest affinities (K0.5ATP 276 µM; K0.5F6P 1333 µM), and PFK-L demonstrates a mixed picture of high ATP affinity and low F6P affinity (K0.5ATP 160 µM; K0.5F6P 1360 µM). PFK-M is more resistant to ATP inhibition compared with PFK-L and PFK-P (respectively, 23%, 31%, 50% decreases in specificity constants). GTP is an alternate phospho donor. Interface 2, which regulates the inactive dimer to active tetramer equilibrium, differs between isoforms, resulting in varying tetrameric stability. Under the conditions tested PFK-M is less sensitive to fructose 2,6-bisphosphate (F26BP) allosteric modulation than PFK-L or PFK-P (allosteric constants [K0.5ATP+F26BP/K0.5ATP] 1.10, 0.92, 0.54, respectively). Structural analysis of two allosteric sites reveals one may be specialised for AMP/ADP and the other for smaller/flexible regulators (citrate or phosphoenolpyruvate). Correlations between PFK-L and PFK-P transcript levels indicate that simultaneous expression may expand metabolic capacity for F16BP production whilst preserving regulatory capabilities. Analysis of cancer samples reveals intriguing parallels between PFK-P and PKM2 (pyruvate kinase M2), and simultaneous increases in PFK-P and PFKFB3 (responsible for F26BP production) transcript levels, suggesting prioritisation of metabolic flexibility in cancers. Our results describe the kinetic and transcript level differences between the three PFK isoforms, explaining how each isoform may be optimised for distinct roles.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Fosfofructoquinasas , Transcripción Genética , Regulación Alostérica , Fructosafosfatos/química , Fructosafosfatos/genética , Fructosafosfatos/metabolismo , Humanos , Isoenzimas/biosíntesis , Isoenzimas/química , Isoenzimas/genética , Especificidad de Órganos , Fosfofructoquinasas/biosíntesis , Fosfofructoquinasas/química , Fosfofructoquinasas/genética , Fosforilación
6.
Biochemistry (Mosc) ; 85(3): 326-333, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32564737

RESUMEN

Hexameric inorganic pyrophosphatase from Mycobacterium tuberculosis (Mt-PPase) has a number of structural and functional features that distinguish it from homologous enzymes widely occurring in living organisms. In particular, it has unusual zones of inter-subunit contacts and lacks the N-terminal region common for other PPases. In this work, we constructed two mutant forms of the enzyme, Ec-Mt-PPase and R14Q-Mt-PPase. In Ec-Mt-PPase, the missing part of the polypeptide chain was compensated with a fragment of PPase from Escherichia coli (Ec-PPase). In R14Q-Mt-PPase, a point mutation was introduced to the contact interface between the two trimers of the hexamer. Both modifications significantly improved the catalytic activity of the enzyme and abolished its inhibition by the cofactor (Mg2+ ion) excess. Activation of Mt-PPase by low (~10 µM) concentrations of ATP, fructose-1-phosphate, L-malate, and non-hydrolyzable substrate analogue methylene bisphosphonate (PCP) was observed. At concentrations of 100 µM and higher, the first three compounds acted as inhibitors. The activating effect of PCP was absent in both mutant forms, and the inhibitory effect of fructose-1-phosphate was absent in Ec-Mt-PPase. The effects of other modulators varied only quantitatively among the mutants. The obtained data indicate the presence of allosteric sites in Mt-PPase, which are located in the zones of inter-subunit contact or associated with them.


Asunto(s)
Difosfatos/química , Pirofosfatasa Inorgánica/química , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Adenosina Trifosfato/química , Sitio Alostérico , Catálisis , Escherichia coli/enzimología , Fructosafosfatos/química , Concentración de Iones de Hidrógeno , Hidrólisis , Pirofosfatasa Inorgánica/genética , Iones , Magnesio/química , Malatos/química , Mutagénesis Sitio-Dirigida , Mutación , Péptidos/química , Mutación Puntual , Conformación Proteica , Dominios Proteicos , Temperatura , Ultracentrifugación
7.
Anal Chem ; 91(24): 15570-15576, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31714059

RESUMEN

We believe that "the simpler we are, the more complete we become" is a key concept of chemical sensing systems. In this work, a "turn-on" fluorescence chemosensor array relying on only two self-assembled molecular chemosensors with ability of both qualitative and quantitative detection of phosphorylated saccharides has been developed. The easy-to-prepare chemosensor array was fabricated by in situ mixing of off-the-shelf reagents (esculetin, 4-methylesculetin, and 3-nitrophenylboronic acid). The fluorescence-based saccharide sensing system was carried out using indicator displacement assay accompanied by photoinduced electron transfer (PeT) under various pH conditions. The simultaneous recognition of 14 types of saccharides including glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P) was achieved with a successful classification rate of 100%. We also succeeded in the quantitative analysis of a mixture of glucose (Glc), as an original substrate, G6P and F6P, as enzymatic products in pseudoglycolysis pathway. Finally, levels of Glc and F6P in human induced pluripotent stem (hiPS) cells were indirectly monitored by using our proposed chemosensor array. Glc and F6P in supernatants of hiPS cells were classified by linear discriminant analysis as a pattern recognition model and the observed clusters represent the activity of hiPS cells. The results show the high accuracy of the proposed chemosensor array in detection of phosphorylated and similarly modified saccharides.


Asunto(s)
Técnicas Biosensibles/métodos , Ácidos Borónicos/química , Fructosafosfatos/análisis , Glucosa-6-Fosfato/análisis , Glucosa/análisis , Células Madre Pluripotentes Inducidas/metabolismo , Células Cultivadas , Fluorescencia , Fructosafosfatos/química , Glucosa/química , Glucosa-6-Fosfato/química , Humanos , Células Madre Pluripotentes Inducidas/citología , Fosforilación
8.
Biochemistry ; 57(40): 5877-5885, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30204427

RESUMEN

d-Fructose 6-phosphate aldolase (FSA) catalyzes the asymmetric cross-aldol addition of phenylacetaldehyde and hydroxyacetone. We conducted structure-guided saturation mutagenesis of noncatalytic active-site residues to produce new FSA variants, with the goal of widening the substrate scope of the wild-type enzyme toward a range of para- and meta-substituted arylated aldehydes. After a single generation of mutagenesis and selection, enzymes with diverse substrate selectivity scopes were identified. The kinetic parameters and stereoselectivities for a subset of enzyme/substrate combinations were determined for the reactions in both the aldol addition and cleavage reaction directions. The achieved collection of new aldolase enzymes provides new tools for controlled asymmetric synthesis of substituted aldols.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Fructosa-Bifosfato Aldolasa/química , Fructosafosfatos/química , Proteínas de Escherichia coli/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosafosfatos/metabolismo , Especificidad por Sustrato
9.
Biochem J ; 475(13): 2241-2256, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29907615

RESUMEN

Biosynthesis of the azasugar 1-deoxynojirimycin (DNJ) critically involves a transamination in the first committed step. Here, we identify the azasugar biosynthetic cluster signature in Paenibacillus polymyxa SC2 (Ppo), homologous to that reported in Bacillus amyloliquefaciens FZB42 (Bam), and report the characterization of the aminotransferase GabT1 (named from Bam). GabT1 from Ppo exhibits a specific activity of 4.9 nmol/min/mg at 30°C (pH 7.5), a somewhat promiscuous amino donor selectivity, and curvilinear steady-state kinetics that do not reflect the predicted ping-pong behavior typical of aminotransferases. Analysis of the first half reaction with l-glutamate in the absence of the acceptor fructose 6-phosphate revealed that it was capable of catalyzing multiple turnovers of glutamate. Kinetic modeling of steady-state initial velocity data was consistent with a novel hybrid branching kinetic mechanism which included dissociation of PMP after the first half reaction to generate the apoenzyme which could bind PLP for another catalytic deamination event. Based on comparative sequence analyses, we identified an uncommon His-Val dyad in the PLP-binding pocket which we hypothesized was responsible for the unusual kinetics. Restoration of the conserved PLP-binding site motif via the mutant H119F restored classic ping-pong kinetic behavior.


Asunto(s)
1-Desoxinojirimicina/química , Bacillus amyloliquefaciens/enzimología , Proteínas Bacterianas/química , Fructosafosfatos/química , Ácido Glutámico/química , Paenibacillus polymyxa/enzimología , Transaminasas/química , 1-Desoxinojirimicina/metabolismo , Proteínas Bacterianas/metabolismo , Catálisis , Fructosafosfatos/metabolismo , Ácido Glutámico/metabolismo , Transaminasas/metabolismo
10.
J Mol Graph Model ; 78: 14-25, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28968565

RESUMEN

Glucosamine-6-phosphate synthase (EC 2.6.1.16) is responsible for catalysis of the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5' diphospho N-acetyl-d-glucosamine (UDP-GlcNAc), is an essential substrate for assembly of bacterial and fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which makes of it a potential target for anti-fungal, anti-bacterial and anti-diabetic therapy. The crystal structure of isomerase domain from human pathogenic fungus Candida albicans has been solved recently but it doesn't reveal the molecular mechanism details of inhibition taking place under UDP-GlcNAc influence, the unique feature of eukaryotic enzyme. The following study is a continuation of the previous research based on comparative molecular dynamics simulations of the structures with and without the enzyme's physiological inhibitor (UDP-GlcNAc) bound. The models used for this study included fructose-6-phosphate, one of the enzyme's substrates in its binding pocket. The simulation results studies demonstrated differences in mobility of the compared structures. Some amino acid residues were determined, for which flexibility is evidently different between the models. Importantly, it has been confirmed that the most fixed residues are related to the inhibitor binding process and to the catalysis reaction. The obtained results constitute an important step towards understanding of the inhibition that GlcN-6-P synthase is subjected by UDP-GlcNAc molecule.


Asunto(s)
Acetilglucosamina/química , Candida albicans/enzimología , Fructosafosfatos/química , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/química , Aminoácidos/química , Candida albicans/química , Catálisis , Glucosamina/análogos & derivados , Glucosamina/química , Glucosa-6-Fosfato/análogos & derivados , Glucosa-6-Fosfato/química , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/antagonistas & inhibidores , Humanos , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica
11.
Biochemistry (Mosc) ; 82(8): 953-956, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28941463

RESUMEN

Pyrophosphate regulates vital cellular reactions, and its level in E. coli cells is under the ultimate control of inorganic pyrophosphatase. The mechanisms involved in the regulation of pyrophosphatase activity still need to be elucidated. The present study demonstrated that fructose-1-phosphate inhibits pyrophosphatase activity by a mechanism not involving competition with substrate for binding to the active site. The inhibition constant governing the binding of the inhibitor to the enzyme-substrate complex is 1.1 mM. Substitutions of Lys112, Lys115, Lys148, and Arg43 in the regulatory site completely or partially abolished the inhibition. Thus, Fru-1-P is a physiological inhibitor of pyrophosphatase that acts via a regulatory site in this enzyme.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Fructosafosfatos/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Regulación Alostérica , Dominio Catalítico , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Fructosafosfatos/química , Hidrólisis , Pirofosfatasa Inorgánica/antagonistas & inhibidores , Pirofosfatasa Inorgánica/genética , Cinética , Mutagénesis Sitio-Dirigida , Unión Proteica
12.
Chemistry ; 23(21): 5005-5009, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28266745

RESUMEN

d-Fructose-6-phosphate aldolase (FSA) was probed for extended nucleophile promiscuity by using a series of fluorogenic substrates to reveal retro-aldol activity. Four nucleophiles ethanal, propanone, butanone, and cyclopentanone were subsequently confirmed to be non-natural substrates in the synthesis direction using the wild-type enzyme and its D6H variant. This exceptional widening of the nucleophile substrate scope offers a rapid entry, in good yields and high stereoselectivity, to less oxygenated alkyl ketones and aldehydes, which was hitherto impossible.


Asunto(s)
Aldehído-Liasas/metabolismo , Aldehídos/química , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosafosfatos/química , Cetonas/química , Aldehído-Liasas/química , Catálisis , Fructosa-Bifosfato Aldolasa/química , Estructura Molecular , Estereoisomerismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-27727023

RESUMEN

Non-covalent complexes (NCC) between hexose monophosphates (HexP) and arginine (R) were analyzed using ESI MS and MS/MS in negative mode under different (hard, HC and soft, SC) desolvation conditions. High resolution mass spectrometry (HRMS) revealed the presence of different ionic species, namely, homo- and heteromultimers of R and HexP. Deprotonated heterodimers and corresponding sodiated species were enhanced under HC likely due to a decrease in available charge number associated with the reduction of H+/Na+ exchange. The quantum calculations showed that the formation of covalent systems is very little exothermic, therefore, such systems are disfavored. Desolvation dependent CID spectra of deprotonated [(HexP+R)‒H]- complexes demonstrated that they can exist within the hydrogen bond (HB) and salt bridge (SB) forms, yielding either NCC separation or covalent bond cleavages, respectively. Although HB forms are the main species, they cannot survive under HC; therefore, the minor SB forms became detectable. Energy-resolved mass spectrometry (ERMS) experiments revealed diagnostic fragment ions from both SB and HB forms, providing evidence that these isomeric forms are inconvertible. SB formation should result from the ionic interactions of highly acidic group of HexP with strongly basic guanidine group of arginine and thus requires an arginine zwitterion (ZW) form. This was confirmed by quantum calculations. Ion-ion interactions are significantly affected by the presence of sodium cation as demonstrated by the fragmentation patterns of sodiated complex species. Regarding CID data, only SB between protonated amino group of R and deprotonated phosphate group of HexP could be suggested, but the primary amine is not enough basic then, the SB must be fleeting. Nevertheless, the observation of the covalent bond cleavages suggests the presence of structures with a free negative charge able to induce fragmentations. Indeed, according to quantum calculations, solvated salt (SS) systems involving Na+/COO- salt solvated by neutral phosphate and negative charge on sugar ring are preferentially formed.


Asunto(s)
Arginina/química , Fructosafosfatos/química , Glucosa-6-Fosfato/química , Glucofosfatos/química , Enlace de Hidrógeno , Isomerismo , Modelos Moleculares , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Termodinámica
14.
Proteins ; 85(1): 117-124, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27802586

RESUMEN

The heart-specific isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) is an important regulator of glycolytic flux in cardiac cells. Here, we present the crystal structures of two PFKFB2 orthologues, human and bovine, at resolutions of 2.0 and 1.8 Å, respectively. Citrate, a TCA cycle intermediate and well-known inhibitor of PFKFB2, co-crystallized in the 2-kinase domains of both orthologues, occupying the fructose-6-phosphate binding-site and extending into the γ-phosphate binding pocket of ATP. This steric and electrostatic occlusion of the γ-phosphate site by citrate proved highly consequential to the binding of co-complexed ATP analogues. The bovine structure, which co-crystallized with ADP, closely resembled the overall structure of other PFKFB isoforms, with ADP mimicking the catalytic binding mode of ATP. The human structure, on the other hand, co-complexed with AMPPNP, which, unlike ADP, contains a γ-phosphate. The presence of this γ-phosphate made adoption of the catalytic ATP binding mode impossible for AMPPNP, forcing the analogue to bind atypically with concomitant conformational changes to the ATP binding-pocket. Inhibition kinetics were used to validate the structural observations, confirming citrate's inhibition mechanism as competitive for F6P and noncompetitive for ATP. Together, these structural and kinetic data establish a molecular basis for citrate's negative feed-back loop of the glycolytic pathway via PFKFB2. Proteins 2016; 85:117-124. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Adenosina Difosfato/química , Adenosina Trifosfato/química , Ácido Cítrico/química , Fructosafosfatos/química , Isoenzimas/química , Miocardio/química , Fosfofructoquinasa-2/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Animales , Sitios de Unión , Bovinos , Ácido Cítrico/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Fructosafosfatos/metabolismo , Expresión Génica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Miocardio/enzimología , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Especificidad por Sustrato
15.
Biochimie ; 128-129: 209-16, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27591700

RESUMEN

We have proposed an allosteric ATP inhibition mechanism of Pfk-2 determining the structure of different forms of the enzyme together with a kinetic enzyme analysis. Here we complement the mechanism by using hybrid oligomers of the homodimeric enzyme to get insights about the allosteric communication pathways between the same sites or different ones located in different subunits. Kinetic analysis of the hybrid enzymes indicate that homotropic interactions between allosteric sites for ATP or between substrate sites for fructose-6-P have a minor effect on the enzymatic inhibition induced by ATP. In fact, the sigmoid response for fructose-6-P observed at elevated ATP concentrations can be eliminated even though the enzymatic inhibition is still operative. Nevertheless, leverage coupling analysis supports heterotropic interactions between the allosteric ATP and fructose-6-P binding occurring between and within each subunit.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Fructosafosfatos/metabolismo , Fosfofructoquinasa-2/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/farmacología , Regulación Alostérica , Sitio Alostérico , Sitios de Unión/genética , Biocatálisis/efectos de los fármacos , Simulación por Computador , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fructosafosfatos/química , Cinética , Modelos Moleculares , Estructura Molecular , Mutación , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/química , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato
16.
Arch Biochem Biophys ; 607: 1-6, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27477958

RESUMEN

The allosteric coupling free energy between ligands fructose-6-phosphate (Fru-6-P) and phospho(enol)pyruvate (PEP) for phosphofructokinase-1 (PFK) from the moderate thermophile, Bacillus stearothermophilus (BsPFK), results from compensating enthalpy and entropy components. In BsPFK the positive coupling free energy that defines inhibition is opposite in sign from the negative enthalpy term and is therefore determined by the larger absolute value of the negative entropy term. Variants of BsPFK were made to determine the effect of adding small cavities to the structure on the allosteric function of the enzyme. The BsPFK Ile → Val (cavity containing) mutants have varied values for the coupling free energy between PEP and Fru-6-P, indicating that the modifications altered the effectiveness of PEP as an inhibitor. Notably, the mutation I153V had a substantial positive impact on the magnitude of inhibition by PEP. Van't Hoff analysis determined that this is the result of decreased entropy-enthalpy compensation with a larger change in the enthalpy term compared to the entropy term.


Asunto(s)
Proteínas Bacterianas/química , Geobacillus stearothermophilus/enzimología , Fosfofructoquinasas/química , Sitio Alostérico , Proteínas Bacterianas/genética , Catálisis , Cristalografía por Rayos X , Fructosafosfatos/química , Geobacillus stearothermophilus/genética , Concentración de Iones de Hidrógeno , Cinética , Conformación Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fosfoenolpiruvato/química , Fosfofructoquinasas/genética , Temperatura
17.
Carbohydr Res ; 431: 1-5, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27258673

RESUMEN

We describe the synthesis and characterization of 6-phosphofructose-aspartic acid, an intermediate in the metabolism of fructose-asparagine by Salmonella. We also report improved syntheses of fructose-asparagine itself and of fructose-aspartic acid.


Asunto(s)
Ácido Aspártico/análogos & derivados , Fructosafosfatos/síntesis química , Asparagina/química , Ácido Aspártico/química , Fructosafosfatos/química , Estructura Molecular
18.
Bioorg Chem ; 66: 41-5, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27014866

RESUMEN

The fate of hydrogen atoms at C-2 of glucose 6-phosphate (G6P) and C-1 of fructose 6-phosphate (F6P) was studied in the reaction catalysed by phosphoglucose isomerase from Thermococcus kodakarensis (TkPGI) through 1D and 2D NMR methods. When the reaction was performed in (2)H2O the hydrogen atoms in the aforementioned positions were exchanged with deuterons indicating that the isomerization occurred by a cis-enediol intermediate involving C-1 pro-R hydrogen of F6P. These features are similar to those described for phosphoglucose isomerases from rabbit muscle and Pyrococcus furiosus.


Asunto(s)
Fructosafosfatos/metabolismo , Glucosa-6-Fosfato Isomerasa/metabolismo , Glucosa-6-Fosfato/metabolismo , Thermococcus/enzimología , Animales , Relación Dosis-Respuesta a Droga , Fructosafosfatos/química , Glucosa-6-Fosfato/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Conejos , Estereoisomerismo , Relación Estructura-Actividad
19.
J Mol Model ; 22(4): 69, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26956120

RESUMEN

Recently inulinase has regained interest due to its usage in the production of fructooligosaccharides, biofuels, and in pharmaceutical industries. Inulinases properties are experimentally reported by nomerous studies but their characteristics are just partially explained by only a few computational investigations. In the present study we have investigated exoinulinase and endoinulinase from different microbial sources toward their catalytic activity. Docking and molecular dynamic (MD) simulation were carried out for microbial endoinulinase and exoinulinase docked with 1-kestose and fructose-6-phosphate respectively. Pseudomonas mucidolens (-7.42 kcal mol(-1) binding energy), docked with fructose-6-phosphate, was recorded as the most favorable binding energy, Pseudomonas mucidolens made hydrogen bonds with fructose-6-phosphate and the amino acids involved were arginine 286, tryptophan 158, and isoleucine 87. After the simulation only tryptophan 158 remained bonded and additionally valine 156 made hydrogen bonds with fructose-6-phosphate. Aspergillus niger docked with 1-kestose was bonded with the involvement of threonine 271, aspartate 285, threonine 288, and proline 283, after the simulation aspartate 285 was retained till the end of the simulation. The present study thus refers to the indication of depicting binding analysis of microbial inulinases.


Asunto(s)
Proteínas Bacterianas/química , Fructosafosfatos/química , Proteínas Fúngicas/química , Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Trisacáridos/química , Aspergillus niger/química , Aspergillus niger/enzimología , Sitios de Unión , Enlace de Hidrógeno , Isoenzimas , Simulación de Dinámica Molecular , Unión Proteica , Pseudomonas/química , Pseudomonas/enzimología , Especificidad de la Especie , Homología Estructural de Proteína , Especificidad por Sustrato , Termodinámica
20.
Comput Biol Chem ; 60: 21-31, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26629747

RESUMEN

Glucokinase (GK) plays a critical role in maintaining glucose homeostasis in the human liver and pancreas. In the liver, the activity of GK is modulated by the glucokinase regulatory protein (GKRP) which functions as a competitive inhibitor of glucose to bind to GK. Moreover, the inhibitory intensity of GKRP-GK is suppressed by fructose 1-phosphate (F1P), and reinforced by fructose 6-phosphate (F6P). Here, we employed a series of computational techniques to explore the interactions of fructose phosphates with GKRP. Calculation results reveal that F1P and F6P can bind to the same active site of GKRP with different binding modes, and electrostatic interaction provides a major driving force for the ligand binding. The presence of fructose phosphate severely influences the motions of protein and the conformational space, and the structural change of sugar phosphate influences its interactions with GKRP, leading to a large conformational rearrangement of loop2 in the SIS2 domain. In particular, the binding of F6P to GKRP facilitates the protruding loop2 contacting with GK to form the stable GK-GKRP complex. The conserved residues 179-184 of GKRP play a major role in the binding of phosphate group and maintaining the stability of GKRP. These results may provide deep insight into the regulatory mechanism of GKRP to the activity of GK.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Fructosafosfatos/química , Dominio Catalítico , Humanos , Lisina/química , Modelos Químicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Dominios Proteicos , Serina/química , Treonina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...