Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 865
Filtrar
1.
J Agric Food Chem ; 72(19): 11013-11028, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691641

RESUMEN

Five GH29B α-1,3/4-l-fucosidases (EC 3.2.1.111) were investigated for their ability to catalyze the formation of the human milk oligosaccharide lacto-N-fucopentaose II (LNFP II) from lacto-N-tetraose (LNT) and 3-fucosyllactose (3FL) via transglycosylation. We studied the effect of pH on transfucosylation and hydrolysis and explored the impact of specific mutations using molecular dynamics simulations. LNFP II yields of 91 and 65% were obtained for the wild-type SpGH29C and CpAfc2 enzymes, respectively, being the highest LNFP II transglycosylation yields reported to date. BbAfcB and BiAfcB are highly hydrolytic enzymes. The results indicate that the effects of pH and buffer systems are enzyme-dependent yet relevant to consider when designing transglycosylation reactions. Replacing Thr284 in BiAfcB with Val resulted in increased transglycosylation yields, while the opposite replacement of Val258 in SpGH29C and Val289 CpAfc2 with Thr decreased the transfucosylation, confirming a role of Thr and Val in controlling the flexibility of the acid/base loop in the enzymes, which in turn affects transglycosylation. The substitution of an Ala residue with His almost abolished secondary hydrolysis in CpAfc2 and BbAfcB. The results are directly applicable in the enhancement of transglycosylation and may have significant implications for manufacturing of LNFP II as a new infant formula ingredient.


Asunto(s)
Leche Humana , Oligosacáridos , alfa-L-Fucosidasa , Leche Humana/química , Humanos , Oligosacáridos/química , Oligosacáridos/metabolismo , alfa-L-Fucosidasa/metabolismo , alfa-L-Fucosidasa/química , alfa-L-Fucosidasa/genética , Glicosilación , Hidrólisis , Fucosa/metabolismo , Fucosa/química , Concentración de Iones de Hidrógeno , Biocatálisis
2.
Glycobiology ; 34(6)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38590172

RESUMEN

Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.


Asunto(s)
Glicoproteínas , Humanos , Glicoproteínas/metabolismo , Glicoproteínas/química , Proteómica/métodos , Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Grupos Sanguíneos/química , Polisacáridos/química , Polisacáridos/metabolismo , Fucosa/metabolismo , Fucosa/química , Fenotipo , Glicosilación , Sistema del Grupo Sanguíneo ABO/metabolismo , Sistema del Grupo Sanguíneo ABO/química
3.
Mar Drugs ; 22(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667801

RESUMEN

Fucosylated chondroitin sulfate is a unique glycosaminoglycan isolated from sea cucumbers, with excellent anticoagulant activity. The fucosyl branch in FCS is generally located at the 3-OH of D-glucuronic acid but, recently, a novel structure with α-L-fucose linked to the 6-OH of N-acetyl-galactosamine has been found. Here, using functionalized monosaccharide building blocks, we prepared novel FCS tetrasaccharides with fucosyl branches both at the 6-OH of GalNAc and 3-OH of GlcA. In the synthesis, the protective group strategy of selective O-sulfation, as well as stereoselective glycosylation, was established, which enabled the efficient synthesis of the specific tetrasaccharide compounds. This research enriches knowledge on the structural types of FCS oligosaccharides and facilitates the exploration of the structure-activity relationship in the future.


Asunto(s)
Sulfatos de Condroitina , Oligosacáridos , Pepinos de Mar , Sulfatos de Condroitina/química , Sulfatos de Condroitina/síntesis química , Sulfatos de Condroitina/farmacología , Animales , Oligosacáridos/síntesis química , Oligosacáridos/química , Pepinos de Mar/química , Glicosilación , Fucosa/química , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/síntesis química , Relación Estructura-Actividad , Acetilgalactosamina/química , Acetilgalactosamina/análogos & derivados
4.
Anal Chem ; 96(15): 5741-5745, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38573003

RESUMEN

Fucosylation is an important structural feature of glycans and plays an essential role in the regulation of glycoprotein functions. Fucosylation can be classified into core- (CF) and antenna-fucosylation (AF, also known as (sialyl-) Lewis) based on the location on N-glycans, and they perform distinct biological functions. In this study, core- and antenna-fucosylated N-glycans on human serum glycoproteins that hold great clinical application values were systematically characterized at the site-specific level using StrucGP combined with the recently developed fucosylation assignment method. The results showed that fucosylation was widely distributed on serum glycoproteins, with 50% of fucosylated glycopeptides modified by AF N-glycans, 37% by CF N-glycans, and 13% by dual-fucosylated N-glycans. Interestingly, CF and AF N-glycans preferred to modify different groups of serum glycoproteins with different tissue origins and were involved in distinctive biological processes. Specifically, AF N-glycoproteins are mainly from the liver and participated in complement activation, blood coagulation, and endopeptidase activities, while CF N-glycoproteins originate from diverse tissues and are mainly involved in cell adhesion and signaling transduction. These data further enhanced our understanding of fucosylation on circulation glycoproteins.


Asunto(s)
Glicoproteínas , Hígado , Humanos , Glicoproteínas/química , Glicosilación , Hígado/metabolismo , Polisacáridos/química , Fucosa/química
5.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396650

RESUMEN

Lipopolysaccharides (LPSs) are major components of the outer membranes of Gram-negative bacteria. In this work, the structure of the O-polysaccharide of Ochrobactrum quorumnocens T1Kr02 was identified by nuclear magnetic resonance (NMR), and the physical-chemical properties and biological activity of LPS were also investigated. The NMR analysis showed that the O-polysaccharide has the following structure: →2)-ß-d-Fucf-(1→3)-ß-d-Fucp-(1→. The structure of the periplasmic glucan coextracted with LPS was established by NMR spectroscopy and chemical methods: →2)-ß-d-Glcp-(1→. Non-stoichiometric modifications were identified in both polysaccharides: 50% of d-fucofuranose residues at position 3 were O-acetylated, and 15% of d-Glcp residues at position 6 were linked with succinate. This is the first report of a polysaccharide containing both d-fucopyranose and d-fucofuranose residues. The fatty acid analysis of the LPS showed the prevalence of 3-hydroxytetradecanoic, hexadecenoic, octadecenoic, lactobacillic, and 27-hydroxyoctacosanoic acids. The dynamic light scattering demonstrated that LPS (in an aqueous solution) formed supramolecular particles with a size of 72.2 nm and a zeta-potential of -21.5 mV. The LPS solution (10 mkg/mL) promoted the growth of potato microplants under in vitro conditions. Thus, LPS of O. quorumnocens T1Kr02 can be recommended as a promoter for plants and as a source of biotechnological production of d-fucose.


Asunto(s)
Lipopolisacáridos , Ochrobactrum , Lipopolisacáridos/química , Fucosa/química , Antígenos O/química , Bacterias
6.
Int J Biol Macromol ; 255: 128309, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995778

RESUMEN

PhoSL (Pholiota squarrosa Lectin) has an exceptional binding affinity for biomolecules with core-fucosylated N-glycans. This modification involves the addition of fucose to the inner N-acetylglucosamine within the N-glycan structure and is known to influence many physiological processes. Nevertheless, the molecular interactions underlying high-affinity binding of native PhoSL to core-fucosylated N-glycans remain largely unknown. In this study, we devised a strategy to produce PhoSL with the essential structural characteristics of the native protein (n-PhoSL). To do so, a fusion protein was expressed in E. coli and purified. Then, enzymatic cleavage and incubation with glutathione were utilized to recapitulate the native primary structure and disulfide bonding pattern. Subsequently, we identified the residues crucial for n-PhoSL binding to core-fucosylated chitobiose (N2F) via NMR spectroscopy. Additionally, crystal structures were solved for both apo n-PhoSL and its N2F complex. These analyses suggested a pivotal role of the N-terminal amine in maintaining the integrity of the binding pocket and actively contributing to core-fucose recognition. In support of this idea, the inclusion of additional residues at the N-terminus considerably reduced binding affinity and PhoSL cytotoxicity toward breast cancer cells. Taken together, these findings can facilitate the utilization of PhoSL in basic research, diagnostics and therapeutic strategies.


Asunto(s)
Escherichia coli , Fucosa , Fucosa/química , Escherichia coli/genética , Escherichia coli/metabolismo , Polisacáridos/química , Lectinas/química , Glicosilación
7.
Viruses ; 15(7)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37515170

RESUMEN

The majority of nonbacterial gastroenteritis in humans and livestock is caused by noroviruses. Like most RNA viruses, frequent mutations result in various norovirus variants. The strain-dependent binding profiles of noroviruses to fucose are supposed to facilitate norovirus infection. It remains unclear, however, what the molecular mechanism behind strain-dependent functioning is. In this study, by applying atomic force microscopy (AFM) nanoindentation technology, we studied norovirus-like particles (noroVLPs) of three distinct human norovirus variants. We found differences in viral mechanical properties even between the norovirus variants from the same genogroup. The noroVLPs were then subjected to fucose treatment. Surprisingly, after fucose treatment, the previously found considerable differences in viral mechanical properties among these variants were diminished. We attribute a dynamic switch of the norovirus P domain upon fucose binding to the reduced differences in viral mechanical properties across the tested norovirus variants. These findings shed light on the mechanisms used by norovirus capsids to adapt to environmental changes and, possibly, increase cell infection. Hereby, a new step towards connecting viral mechanical properties to viral prevalence is taken.


Asunto(s)
Infecciones por Caliciviridae , Norovirus , Humanos , Norovirus/metabolismo , Fucosa/química , Fucosa/metabolismo , Proteínas de la Cápside/genética , Cápside/metabolismo , Mutación
8.
Carbohydr Polym ; 313: 120847, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182947

RESUMEN

The structural and functional relationships of glycosaminoglycans (GAGs) derived from marine organisms have been investigated, suggesting that marine invertebrates, particularly Bivalvia, are abundant sources of highly sulfated or branched GAGs. In this study, we identified a novel fucosylated heparan sulfate (Fuc-HS) from the midgut gland of the Japanese scallop, Patinopecten yessoensis. Scallop HS showed resistance to GAG-degrading enzymes, including chondroitinases and heparinases, and susceptibility to heparinases increased when scallop HS was treated with mild acid hydrolysis, which removes the fucosyl group. Moreover, 1H NMR detected significant signals near 1.2-1.3 ppm corresponding to the H-6 methyl proton of fucose residues and small H-3 (3.59 ppm) or H-2 (3.39 ppm) signals of glucuronate (GlcA) were detected, suggesting that the fucose moiety is attached to the C-3 position of GlcA in scallop HS. GC-MS detected peaks corresponding to 1, 3, 5-tri-O-acetyl-2, 4-di-O-methyl-L-fucitol and 1, 4, 5-tri-O-acetyl-2, 3-di-O-methyl-L-fucitol, suggesting that the fucose moiety is 3-O- or 4-O-sulfated. Furthermore, scallop HS showed anti-coagulant and neurite outgrowth-promoting (NOP) activities. These results suggest that the midgut gland of scallops is a valuable source of Fuc-HS with biological activities.


Asunto(s)
Sulfatos de Condroitina , Pectinidae , Animales , Sulfatos de Condroitina/química , Fucosa/química , Glicosaminoglicanos/química , Heparitina Sulfato , Ácido Glucurónico , Glucuronatos
9.
Carbohydr Polym ; 315: 121028, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230628

RESUMEN

Lacto-N-fucopentaose I (LNFP I) is an abundant and important fucosylated human milk oligosaccharide (HMO). Here, an efficient LNFP I-producing strain without by-product 2'-fucosyllactose (2'-FL) was developed by advisable stepwise de novo pathway construction in Escherichia coli. Specifically, the genetically stable lacto-N-triose II (LNTri II)-producing strains were constructed by the multicopy integration of ß1,3-N-acetylglucosaminyltransferase. LNTri II can be further converted to lacto-N-tetraose (LNT) by LNT-producing ß1,3-galactosyltransferase. The de novo and salvage pathways of GDP-fucose were introduced into highly efficient LNT-producing chassis. Specific α1,2-fucosyltransferase was verified to eliminate by-product 2'-FL, and binding free energy of the complex was analyzed to explain the product distribution. Subsequently, further attempts aiming to improve α1,2-fucosyltransferase activity and the supply of GDP-fucose were carried out. Our engineering strategies enabled the stepwise de novo construction of strains that produced up to 30.47 g/L of extracellular LNFP I, without accumulation of 2'-FL, and with only minor intermediates residue.


Asunto(s)
Escherichia coli , Fucosiltransferasas , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/análisis , Fucosiltransferasas/metabolismo , Fucosa/química , Oligosacáridos/química , Leche Humana/química
10.
Glycobiology ; 33(5): 396-410, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37014745

RESUMEN

Glycoside hydrolase family 29 (GH29) encompasses α-L-fucosidases, i.e. enzymes that catalyze the hydrolytic release of fucose from fucosylated glycans, including N- and O-linked glycans on proteins, and these α-L-fucosidases clearly play important roles in biology. GH29 enzymes work via a retaining exo-action mechanism, and some can catalyze transfucosylation. There is no formal subfamily division of GH29 α-L-fucosidases, but they are nonetheless divided into two subfamilies: GH29A having a range of substrate specificities and GH29B having narrower substrate specificity. However, the sequence traits that determine the substrate specificity and transglycosylation ability of GH29 enzymes are not well characterized. Here, we present a new functional map of family GH29 members based on peptide-motif clustering via CUPP (conserved unique peptide patterns) and compare the substrate specificity and transglycosylation activity of 21 representative α-L-fucosidases across the 53 CUPP groups identified. The 21 enzymes exhibited different enzymatic rates on 8 test substrates, CNP-Fuc, 2'FL, 3FL, Lewisa, Lewisx, Fuc-α1,6-GlcNAc, Fuc-α1,3-GlcNAc, and Fuc-α1,4-GlcNAc. Certain CUPP groups clearly harbored a particular type of enzymes, e.g. the majority of the enzymes having activity on Lewisa or Lewisx categorized in the same CUPP clusters. In general, CUPP was useful for resolving GH29 into functional diversity subgroups when considering hydrolytic activity. In contrast, the transglycosylation capacity of GH29 α-L-fucosidases was distributed across a range of CUPP groups. Transglycosylation thus appears to be a common trait among these enzymes and not readily predicted from sequence comparison.


Asunto(s)
Polisacáridos , alfa-L-Fucosidasa , alfa-L-Fucosidasa/metabolismo , Especificidad por Sustrato , Fucosa/química
11.
Mar Drugs ; 21(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36976232

RESUMEN

Brown macroalgae are an important source of polysaccharides, mainly fucose-containing sulphated polysaccharides (FCSPs), associated with several biological activities. However, the structural diversity and structure-function relationships for their bioactivities are still undisclosed. Thus, the aim of this work was to characterize the chemical structure of water-soluble Saccharina latissima polysaccharides and evaluate their immunostimulatory and hypocholesterolemic activities, helping to pinpoint a structure-activity relationship. Alginate, laminarans (F1, neutral glucose-rich polysaccharides), and two fractions (F2 and F3) of FCSPs (negatively charged) were studied. Whereas F2 is rich in uronic acids (45 mol%) and fucose (29 mol%), F3 is rich in fucose (59 mol%) and galactose (21 mol%). These two fractions of FCSPs showed immunostimulatory activity on B lymphocytes, which could be associated with the presence of sulphate groups. Only F2 exhibited a significant effect in reductions in in vitro cholesterol's bioaccessibility attributed to the sequestration of bile salts. Therefore, S. latissima FCSPs were shown to have potential as immunostimulatory and hypocholesterolemic functional ingredients, where their content in uronic acids and sulphation seem to be relevant for the bioactive and healthy properties.


Asunto(s)
Laminaria , Phaeophyceae , Fucosa/química , Agua , Phaeophyceae/química , Polisacáridos/farmacología , Polisacáridos/química , Sulfatos , Ácidos Urónicos
12.
Molecules ; 28(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985569

RESUMEN

The d-GlcNAc moiety in sialyl Lewisx (sLex, 1) acts predominantly as a linker to position the d-Gal and the l-Fuc moieties in the bioactive spatial orientation. The hypothesis has been made that the NHAc group of GlcNAc pushes the fucose underneath the galactose and, thus, contributes to the stabilization of the bioactive conformation of the core of sLex (1). To test this hypothesis, GlcNAc mimetics consisting of (R,R)-1,2-cyclohexanediols substituted with alkyl and aryl substituents adjacent to the linking position of the fucose moiety were synthesized. To explore a broad range of extended and spatially demanding R-groups, an enzymatic approach for the synthesis of 3-alkyl/aryl-1,2-cyclohexanediols (3b-n) was applied. These cyclohexanediol derivatives were incorporated into the sLex mimetics 2b-n. For analyzing the relationship of affinity and core conformation, a 1H NMR structural-reporter-group concept was applied. Thus, the chemical shift of H-C5Fuc proved to be a sensitive indicator for the degree of pre-organization of the core of this class of sLex mimetics and therefore could be used to quantify the contribution of the R-groups.


Asunto(s)
Fucosa , Oligosacáridos , Antígeno Sialil Lewis X , Oligosacáridos/química , Fucosa/química , Conformación Molecular , Espectroscopía de Resonancia Magnética
13.
Angew Chem Int Ed Engl ; 62(24): e202302883, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-36939315

RESUMEN

Fucose is a signaling carbohydrate that is attached at the end of glycan processing. It is involved in a range of processes, such as the selectin-dependent leukocyte adhesion or pathogen-receptor interactions. Mass-spectrometric techniques, which are commonly used to determine the structure of glycans, frequently show fucose-containing chimeric fragments that obfuscate the analysis. The rearrangement leading to these fragments-often referred to as fucose migration-has been known for more than 25 years, but the chemical identity of the rearrangement product remains unclear. In this work, we combine ion-mobility spectrometry, radical-directed dissociation mass spectrometry, cryogenic IR spectroscopy of ions, and density-functional theory calculations to deduce the product of the rearrangement in the model trisaccharides Lewis x and blood group H2. The structural search yields the fucose moiety attached to the galactose with an α(1→6) glycosidic bond as the most likely product.


Asunto(s)
Antígenos de Grupos Sanguíneos , Fucosa , Fucosa/química , Secuencia de Carbohidratos , Epítopos/química , Espectrometría de Masas , Polisacáridos/química
14.
Molecules ; 28(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36771163

RESUMEN

The inhibition of carbohydrate-lectin interactions is being explored as an efficient approach to anti adhesion therapy and biofilm destabilization, two alternative antimicrobial strategies that are being explored against resistant pathogens. BC2L-C is a new type of lectin from Burkholderia cenocepacia that binds (mammalian) fucosides at the N-terminal domain and (bacterial) mannosides at the C-terminal domain. This double carbohydrate specificity allows the lectin to crosslink host cells and bacterial cells. We have recently reported the design and generation of the first glycomimetic antagonists of BC2L-C, ß-C- or ß-N-fucosides that target the fucose-specific N-terminal domain (BC2L-C-Nt). The low water solubility of the designed N-fucosides prevented a full examination of this promising series of ligands. In this work, we describe the synthesis and biophysical evaluation of new L-fucosyl and L-galactosyl amides, designed to be water soluble and to interact with BC2L-C-Nt. The protein-ligand interaction was investigated by Saturation Transfer Difference NMR, Isothermal Titration Calorimetry and crystallographic studies. STD-NMR experiments showed that both fucosyl and galactosyl amides compete with α-methyl fucoside for lectin binding. A new hit compound was identified with good water solubility and an affinity for BC2L-C-Nt of 159 µM (ITC), which represents a one order of magnitude gain over α-methyl fucoside. The x-ray structure of its complex with BC2L-C-Nt was solved at 1.55 Å resolution.


Asunto(s)
Burkholderia cenocepacia , Lectinas , Animales , Lectinas/química , Burkholderia cenocepacia/química , Ligandos , Amidas/metabolismo , Fucosa/química , Mamíferos/metabolismo
15.
Angew Chem Int Ed Engl ; 62(17): e202300538, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36825496

RESUMEN

Fucose is a ubiquitous monosaccharide associated to major classes of glycans. A main obstacle to the sequencing of fucosylated glycans is the migration of fucose, which leads to misinterpretations in mass spectrometry analysis. Here, using ion vibrational spectroscopy, we resolve the structure of fucosylated fragments of Lewis and blood group H antigen trisaccharides and we unveil the position and linkage of the fucose after migration. Our findings demonstrate that the structure of fragment ions resulting from fucose migration can be characterized. Additionally, we report a new type of fucose migration, which does not feature any change of mass and therefore had not been previously reported: it consists of a local migration where the fucose changes its position remaining on the initial residue. Our approach allows the characterization of glycans, an essential step to interpret glycomics data, as well as to understand underlying processes at play in mass spectrometry.


Asunto(s)
Fucosa , Polisacáridos , Fucosa/química , Espectrometría de Masas , Polisacáridos/química , Glicosilación , Iones , Oligosacáridos/química
16.
Essays Biochem ; 67(3): 399-414, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36805644

RESUMEN

Fucose is a monosaccharide commonly found in mammalian, insect, microbial and plant glycans. The removal of terminal α-l-fucosyl residues from oligosaccharides and glycoconjugates is catalysed by α-l-fucosidases. To date, glycoside hydrolases (GHs) with exo-fucosidase activity on α-l-fucosylated substrates (EC 3.2.1.51, EC 3.2.1.-) have been reported in the GH29, GH95, GH139, GH141 and GH151 families of the Carbohydrate Active Enzymes (CAZy) database. Microbes generally encode several fucosidases in their genomes, often from more than one GH family, reflecting the high diversity of naturally occuring fucosylated structures they encounter. Functionally characterised microbial α-l-fucosidases have been shown to act on a range of substrates with α-1,2, α-1,3, α-1,4 or α-1,6 fucosylated linkages depending on the GH family and microorganism. Fucosidases show a modular organisation with catalytic domains of GH29 and GH151 displaying a (ß/α)8-barrel fold while GH95 and GH141 show a (α/α)6 barrel and parallel ß-helix fold, respectively. A number of crystal structures have been solved in complex with ligands, providing structural basis for their substrate specificity. Fucosidases can also be used in transglycosylation reactions to synthesise oligosaccharides. This mini review provides an overview of the enzymatic and structural properties of microbial α-l-fucosidases and some insights into their biological function and biotechnological applications.


Asunto(s)
Oligosacáridos , alfa-L-Fucosidasa , Animales , alfa-L-Fucosidasa/genética , alfa-L-Fucosidasa/química , alfa-L-Fucosidasa/metabolismo , Oligosacáridos/química , Fucosa/química , Especificidad por Sustrato , Mamíferos/metabolismo
17.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36626732

RESUMEN

AIMS: l-Fuculose is a valuable rare sugar that is used to treat a variety of ailments, including HIV, cancer, Hepatitis B, human lysosomal disease (fucosidosis), and cardio-protective medications. The enzymatic approach for the production of l-fuculose using l-fucose as a substrate would be an advantageous method with a wide range of industrial applications. The objective of this study is the characterization of recombinant l-fucose isomerase from Paenibacillus rhizosphaerae (Pa-LFI) for the production of l-fuculose from an inexpensive and natural source (fucoidan) as well as its comparison with commercial l-fucose (Sigma-Aldrich). METHODS AND RESULTS: Fucoidan, a fucose-containing polysaccharide (FPs), was isolated from Undaria pinnatifida, subsequently hydrolyzed, and characterized before the enzymatic production of l-fuculose. The results elaborate that FPs contain 35.9% of fucose along with other kinds of monosaccharides. The purified Pa-LFI exhibited a single band at 65 kDa and showed it as a hexamer with a native molecular mass of 396 kDa. The highest activity of 104.5 U mg-1 of Pa-LFI was perceived at a temperature of 50°C and pH 6.5 in the presence of 1 mM of Mn2+. The Pa-LFI revealed a melting temperature (Tm) of 75°C and a half-life of 12.6 h at 50°C. It exhibited that Pa-LFI with aldose substrate (l-fucose), has a stronger isomerizing activity, disclosing Km,kcat, and kcat/Km 86.2 mM, 32 831 min-1, and 335 min-1 mM-1, respectively. After reaching equilibrium, Pa-LFI efficiently catalyzed the reaction to convert l-fucose into l-fuculose and the conversion ratios of l-fuculose from 100 g L-1 of FPs and commercial fucose were around 6% (5.6 g L-1) and 30% (30.2 g L-1), respectively. CONCLUSIONS: According to the findings of the current study, the Pa-LFI will be useful in the manufacturing of l-fuculose using an effective and easy approach that produces no by-products.


Asunto(s)
Fucosa , Polisacáridos , Humanos , Fucosa/química , Polisacáridos/química
18.
Int J Biol Macromol ; 232: 123372, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36706886

RESUMEN

Biologically active phytochemicals from pumpkin reveal versatile medical applications, though little is known about their antiviral activity. The fucose-rich polysaccharide extraction conditions were optimized through Box-Behnken design and purified by column chromatography. The purified fucose-rich polysaccharide was characterized through SEM, FT-IR, 1H NMR, XRD, TGA, and GS-MS. The analysis results revealed an irregular and porous surface of the purified polysaccharide with high fucose, rhamnose, galactose, and glucose contents. The tested fucose-rich polysaccharides revealed significant antioxidant and anti-inflammatory activity at very low concentrations. The purified fucose-rich polysaccharides exerted a broad-spectrum antiviral activity against both DNA and RNA viruses, accompanied by high safety toward normal cells, where the maximum safe doses (EC100) were estimated to be about 3-3.9 mg/mL for both Vero and PBMC cell lines. Treatment of HCV, ADV7, HSV1, and HIV viruses with the purified polysaccharides showed a potent dose-dependent inhibitory activity with IC50 values of 95.475, 20.96, 5.213, and 461.75 µg/mL, respectively. This activity was hypothesized to be through inhibiting the viral entry in HCV infection and inhibiting the reverse transcriptase activity in HIV. The current study firstly reported the antioxidant, anti-inflammatory, and antiviral activities of Cucurbita maxima fucose-rich polysaccharide against several viral infections.


Asunto(s)
Cucurbita , Infecciones por VIH , Antioxidantes/farmacología , Antioxidantes/química , Cucurbita/química , Fucosa/química , Espectroscopía Infrarroja por Transformada de Fourier , Antivirales/farmacología , Leucocitos Mononucleares , Polisacáridos/farmacología , Polisacáridos/química
19.
Int J Biol Macromol ; 229: 199-209, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36584780

RESUMEN

Fucoidans are fucose rich sulfated polysaccharides that are found in the cell wall of brown seaweeds and have been shown to have several beneficial bioactivities. In the present study, we report a new enzymatic extraction technique for the production of pure and intact fucoidans from the two brown seaweeds Saccharina latissima and Alaria esculenta. This new extraction protocol uses the commercial cellulase blend Cellic® CTec2 in combination with endo- and exo-acting thermophilic alginate lyases. The fucoidans obtained by this extraction technique are compared to traditionally extracted fucoidans in terms of chemical compositions and molecular weights and are shown to contain significantly higher amounts of fucose and sulfate, the main components of fucoidans, while cellulose, laminarin, and alginate contamination is low. Thus, by using this combination of enzymes, the extracted fucoidans do not undergo depolymerization during extraction and additional purification steps are not needed. The high purity fucoidans isolated by this new enzymatic extraction technique can be used to provide insight into the different fucoidan structures and biological activities.


Asunto(s)
Celulasas , Phaeophyceae , Algas Marinas , Fucosa/química , Polisacáridos/química , Algas Marinas/química , Phaeophyceae/química , Alginatos
20.
FEBS J ; 290(2): 412-427, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007953

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S protein) is highly N-glycosylated, and a "glycan shield" is formed to limit the access of other molecules; however, a small open area coincides with the interface to the host's receptor and also neutralising antibodies. Most of the variants of concern have mutations in this area, which could reduce the efficacy of existing antibodies. In contrast, N-glycosylation sites are relatively invariant, and some are essential for infection. Here, we observed that the S proteins of the ancestral (Wuhan) and Omicron strains bind with Pholiota squarrosa lectin (PhoSL), a 40-amino-acid chemically synthesised peptide specific to core-fucosylated N-glycans. The affinities were at a low nanomolar level, which were ~ 1000-fold stronger than those between PhoSL and the core-fucosylated N-glycans at the micromolar level. We demonstrated that PhoSL inhibited infection by both strains at similar submicromolar levels, suggesting its broad-spectrum effect on SARS-CoV-2 variants. Cryogenic electron microscopy revealed that PhoSL caused an aggregation of the S protein, which was likely due to the multivalence of both the trimeric PhoSL and S protein. This characteristic is likely relevant to the inhibitory mechanism. Structural modelling of the PhoSL-S protein complex indicated that PhoSL was in contact with the amino acids of the S protein, which explains the enhanced affinity with S protein and also indicates the significant potential for developing specific binders by the engineering of PhoSL.


Asunto(s)
Antivirales , Lectinas , SARS-CoV-2 , Humanos , COVID-19 , Fucosa/química , Lectinas/farmacología , Polisacáridos/química , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Pholiota/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...