Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Intervalo de año de publicación
1.
Arch Virol ; 169(6): 126, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753067

RESUMEN

A novel mitovirus was identified in Fusarium oxysporum f. sp. melonis strain T-SD3 and designated as "Fusarium oxysporum mitovirus 3" (FoMV3). The virus was isolated from diseased muskmelon plants with the typical symptom of fusarium wilt. The complete genome of FoMV3 is 2269 nt in length with a predicted AU content of 61.40% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a polypeptide of 679 amino acids (aa) containing a conserved RNA-dependent RNA polymerase (RdRp) domain with a molecular mass of 77.39 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5'-untranslated region (UTR) and 3'-UTR of FoMV3 were predicted to fold into stem-loop structures. BLASTp analysis revealed that the RdRp of FoMV3 shared the highest aa sequence identity (83.85%) with that of Fusarium asiaticum mitovirus 5 (FaMV5, a member of the family Mitoviridae) infecting F. asiaticum, the causal agent of wheat fusarium head blight. Phylogenetic analysis further suggested that FoMV3 is a new member of the genus Unuamitovirus within the family Mitoviridae. This is the first report of a new mitovirus associated with F. oxysporum f. sp. melonis.


Asunto(s)
Virus Fúngicos , Fusarium , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Fusarium/virología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Virus Fúngicos/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , Virus ARN/clasificación , Secuenciación Completa del Genoma , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Cucumis melo/virología , Cucumis melo/microbiología , Secuencia de Aminoácidos , Regiones no Traducidas 5' , Regiones no Traducidas 3' , Secuencia de Bases
2.
Viruses ; 16(4)2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675949

RESUMEN

In a survey of mycoviruses in Fusarium species that cause sugarcane Pokkah boeng disease, twelve Fusarium strains from three Fusarium species (F. sacchari, F. andiyazi, and F. solani) were found to contain Fusarium sacchari hypovirus 1 (FsHV1), which we reported previously. The genomes of these variants range from 13,966 to 13,983 nucleotides, with 98.6% to 99.9% nucleotide sequence identity and 98.70% to 99.9% protein sequence similarity. Phylogenetic analysis placed these FsHV1 variants within the Alphahypovirus cluster of Hypoviridae. Intriguingly, no clear correlation was found between the geographic origin and host specificity of these viral variants. Additionally, six out of the twelve variants displayed segmental deletions of 1.5 to 1.8 kilobases, suggesting the existence of defective viral dsRNA. The presence of defective viral dsRNA led to a two-thirds reduction in the dsRNA of the wild-type viral genome, yet a tenfold increase in the total viral dsRNA content. To standardize virulence across natural strains, all FsHV1 strains were transferred into a single, virus-free Fusarium recipient strain, FZ06-VF, via mycelial fusion. Strains of Fusarium carrying FsHV1 exhibited suppressed pigment synthesis, diminished microspore production, and a marked decrease in virulence. Inoculation tests revealed varying capacities among different FsHV1 variants to modulate fungal virulence, with the strain harboring the FsHV1-FSA1 showing the lowest virulence, with a disease severity index (DSI) of 3.33, and the FsHV1-FS1 the highest (DSI = 17.66). The identification of highly virulent FsHV1 variants holds promise for the development of biocontrol agents for Pokkah boeng management.


Asunto(s)
Virus Fúngicos , Fusarium , Genoma Viral , Filogenia , Enfermedades de las Plantas , Fusarium/patogenicidad , Fusarium/genética , Fusarium/virología , Virulencia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Virus Fúngicos/genética , Virus Fúngicos/clasificación , Saccharum/virología , Saccharum/microbiología , ARN Viral/genética , Especificidad del Huésped
3.
J Virol ; 97(1): e0138122, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36625579

RESUMEN

Although segmented negative-sense RNA viruses (SNSRVs) have been frequently discovered in various fungi, most SNSRVs reported only the large segments. In this study, we investigated the diversity of the mycoviruses in the phytopathogenic fungus Fusarium asiaticum using the metatranscriptomic technique. We identified 17 fungal single-stranded RNA (ssRNA) viruses including nine viruses within Mitoviridae, one each in Narnaviridae, Botourmiaviridae, Hypoviridae, Fusariviridae, and Narliviridae, two in Mymonaviridae, and one trisegmented virus temporarily named Fusarium asiaticum mycobunyavirus 1 (FaMBV1). The FaMBV1 genome comprises three RNA segments, large (L), medium (M), and small (S) with 6,468, 2,639, and 1,420 nucleotides, respectively. These L, M, and S segments putatively encode the L protein, glycoprotein, and nucleocapsid, respectively. Phylogenetic analysis based on the L protein showed that FaMBV1 is phylogenetically clustered with Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2) and Sclerotinia sclerotiorum negative-stranded RNA virus 5 (SsNSRV5) but distantly related to the members of the family Phenuiviridae. FaMBV1 could be vertically transmitted by asexual spores with lower efficiency (16.7%, 2/42). Comparison between FaMBV1-free and -infected fungal strains revealed that FaMBV1 has little effect on hyphal growth, pathogenicity, and conidium production, and its M segment is dispensable for viral replication and lost during subculture and asexual conidiation. The M and S segments of AtNSRV2 and SsNSRV5 were found using bioinformatics methods, indicating that the two fungal NSRVs harbor trisegmented genomes. Our results provide a new example of the existence and evolution of the segmented negative-sense RNA viruses in fungi. IMPORTANCE Fungal segmented negative-sense RNA viruses (SNSRVs) have been frequently found. Only the large segment encoding RNA-dependent RNA polymerase (RdRp) has been reported in most fungal SNSRVs, except for a few fungal SNSRVs reported to encode nucleocapsids, nonstructural proteins, or movement proteins. Virome analysis of the Fusarium spp. that cause Fusarium head blight discovered a novel virus, Fusarium asiaticum mycobunyavirus 1 (FaMBV1), representing a novel lineage of the family Phenuiviridae. FaMBV1 harbors a trisegmented genome that putatively encodes RdRp, glycoproteins, and nucleocapsids. The putative glycoprotein was first described in fungal SNSRVs and shared homology with glycoprotein of animal phenuivirus but was dispensable for its replication in F. asiaticum. Two other trisegmented fungal SNSRVs that also encode glycoproteins were discovered, implying that three-segment bunyavirus infections may be common in fungi. These findings provide new insights into the ecology and evolution of SNSRVs, particularly those infecting fungi.


Asunto(s)
Virus Fúngicos , Fusarium , Virus ARN , Virus Fúngicos/genética , Genoma Viral , Glicoproteínas/genética , Sistemas de Lectura Abierta , Filogenia , Virus ARN/genética , ARN Viral/genética , Fusarium/virología
4.
Viruses ; 14(1)2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35062353

RESUMEN

A hypovirulent SZ-2-3y strain isolated from diseased Paris polyphylla was identified as Botrytis cinerea. Interestingly, SZ-2-3y was coinfected with a mitovirus, two botouliviruses, and a 3074 nt fusarivirus, designated Botrytis cinerea fusarivirus 8 (BcFV8); it shares an 87.2% sequence identity with the previously identified Botrytis cinerea fusarivirus 6 (BcFV6). The full-length 2945 nt genome sequence of the mitovirus, termed Botrytis cinerea mitovirus 10 (BcMV10), shares a 54% sequence identity with Fusarium boothii mitovirus 1 (FbMV1), and clusters with fungus mitoviruses, plant mitoviruses and plant mitochondria; hence BcMV10 is a new Mitoviridae member. The full-length 2759 nt and 2812 nt genome sequences of the other two botouliviruses, named Botrytis cinerea botoulivirus 18 and 19 (BcBoV18 and 19), share a 40% amino acid sequence identity with RNA-dependent RNA polymerase protein (RdRp), and these are new members of the Botoulivirus genus of Botourmiaviridae. Horizontal transmission analysis showed that BcBoV18, BcBoV19 and BcFV8 are not related to hypovirulence, suggesting that BcMV10 may induce hypovirulence. Intriguingly, a partial BcMV10 sequence was detected in cucumber plants inoculated with SZ-2-3y mycelium or pXT1/BcMV10 agrobacterium. In conclusion, we identified a hypovirulent SZ-2-3y fungal strain from P. polyphylla, coinfected with four novel mycoviruses that could serve as potential biocontrol agents. Our findings provide evidence of cross-kingdom mycoviral sequence transmission.


Asunto(s)
Botrytis/virología , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Liliaceae/microbiología , Botrytis/aislamiento & purificación , Coinfección/microbiología , Coinfección/virología , Virus Fúngicos/genética , Fusarium/virología , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Liliaceae/genética , Enfermedades de las Plantas/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Análisis de Secuencia de ARN , Proteínas Virales/genética
5.
J Gen Virol ; 102(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34850675

RESUMEN

An extensive screening survey was conducted on Pakistani filamentous fungal isolates for the identification of viral infections. A total of 396 fungal samples were screened, of which 36 isolates were found double-stranded (ds) RNA positive with an overall frequency of 9% when analysed by a classical dsRNA isolation method. One of 36 dsRNA-positive strains, strain SP1 of a plant pathogenic fungus Fusarium mangiferae, was subjected to virome analysis. Next-generation sequencing and subsequent completion of the entire genome sequencing by a classical Sanger sequencing method showed the SP1 strain to be co-infected by 11 distinct viruses, at least seven of which should be described as new taxa at the species level according to the ICTV (International Committee on Taxonomy of Viruses) species demarcation criteria. The newly identified F. mangiferae viruses (FmVs) include two partitivirids, one betapartitivirus (FmPV1) and one gammapartitivirus (FmPV2); six mitovirids, three unuamitovirus (FmMV2, FmMV4, FmMV6), one duamitovirus (FmMV5), and two unclassified mitovirids (FmMV1, FmMV3); and three botourmiavirids, two magoulivirus (FmBOV1, FmBOV3) and one scleroulivirus (FmBOV2). The number of coinfecting viruses is among the largest ones of fungal coinfections. Their molecular features are thoroughly described here. This represents the first large virus survey in the Indian sub-continent.


Asunto(s)
Virus Fúngicos/genética , Fusarium/virología , Virus Fúngicos/clasificación , Virus Fúngicos/ultraestructura , Fusarium/aislamiento & purificación , Genoma Viral/genética , Pakistán , Filogenia , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/ultraestructura , ARN Viral/genética , Proteínas Virales/genética , Viroma/genética
6.
Viruses ; 13(10)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34696456

RESUMEN

A novel mycovirus named Fusarium oxysporum alternavirus 1(FoAV1) was identified as infecting Fusarium oxysporum strain BH19, which was isolated from a fusarium wilt diseased stem of Lilium brownii. The genome of FoAV1 contains four double-stranded RNA (dsRNA) segments (dsRNA1, dsRNA 2, dsRNA 3 and dsRNA 4, with lengths of 3.3, 2.6, 2.3 and 1.8 kbp, respectively). Additionally, dsRNA1 encodes RNA-dependent RNA polymerase (RdRp), and dsRNA2- dsRNA3- and dsRNA4-encoded hypothetical proteins (ORF2, ORF3 and ORF4), respectively. A homology BLAST search, along with multiple alignments based on RdRp, ORF2 and ORF3 sequences, identified FoAV1 as a novel member of the proposed family "Alternaviridae". Evolutionary relation analyses indicated that FoAV1 may be related to alternaviruses, thus dividing the family "Alternaviridae" members into four clades. In addition, we determined that dsRNA4 was dispensable for replication and may be a satellite-like RNA of FoAV1-and could perhaps play a role in the evolution of alternaviruses. Our results provided evidence for potential genera establishment within the proposed family "Alternaviridae". Additionally, FoAV1 exhibited biological control of Fusarium wilt. Our results also laid the foundations for the further study of mycoviruses within the family "Alternaviridae", and provide a potential agent for the biocontrol of diseases caused by F. oxysporum.


Asunto(s)
Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Fusarium/virología , Virus no Clasificados/genética , Virus no Clasificados/aislamiento & purificación , Virus Fúngicos/clasificación , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , ARN Bicatenario , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Virus no Clasificados/clasificación
7.
Arch Virol ; 166(11): 3211-3216, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34495411

RESUMEN

Fusarium oxysporum is a cosmopolitan plant pathogen that causes fusarium wilt and fusarium root rot in many economically important crops. There is still limited information about mycoviruses that infect F. oxysporum. Here, a novel mitovirus tentatively named "Fusarium oxysporum mitovirus 1" (FoMV1) was identified in F. oxysporum strain B2-10. The genome of FoMV1 is 2,453 nt in length with a predicted AU content of 71.6% and contains one large open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF putatively encodes an RNA-dependent RNA polymerase (RdRp) of 723 aa with a molecular mass of 84.98 kDa. The RdRp domain of FoMV1 shares 29.01% to 68.43% sequence identity with the members of the family Mitoviridae. Phylogenetic analysis further suggested that FoMV1 is a new member of a distinct species in the genus Mitovirus.


Asunto(s)
Virus Fúngicos/genética , Fusarium/virología , Genoma Viral , Filogenia , Virus ARN/genética , Virus Fúngicos/aislamiento & purificación , Fusarium/patogenicidad , Sistemas de Lectura Abierta , Enfermedades de las Plantas/microbiología , Virus ARN/aislamiento & purificación , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Secuenciación Completa del Genoma
8.
Virology ; 563: 50-57, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34419885

RESUMEN

While the capsid of viruses in the Alphachrysovirus genus is built of subunits of a single coat protein, the capsid of viruses grouped in the Betachrysovirus genus may consist of subunits of two different proteins. For four of these betachrysoviruses, the detected molecular weights of the putative coat proteins differ from the sizes deduced from the nucleic acid sequence. The origin of these modifications remained unclear and it was hypothesized that the coat proteins undergo unspecific degradation. In our study, we show that these modifications are based on processing steps performed by unknown factors present in extracts of several eukaryotic organisms. Furthermore, we show that the C-terminal domain of P3 is fully degraded after capsid processing and particle assembly.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus Fúngicos/metabolismo , Fusarium/virología , Animales , Anticuerpos , Arabidopsis/química , Proteínas de la Cápside/genética , Extractos Celulares , Drosophila/química , Escherichia coli/química , Virus Fúngicos/genética , Regulación Viral de la Expresión Génica/fisiología , Nicotiana/química
9.
Arch Virol ; 166(10): 2711-2722, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34313859

RESUMEN

A unique capsidless virus with a positive-sense, single-stranded RNA genome (hadakavirus 1, HadV1), a member of the extended picorna-like supergroup, was isolated previously from the phytopathogenic fungus Fusarium oxysporum. Here, we describe the molecular and biological characterisation of a second hadakavirus strain from Fusarium nygamai, which has not been investigated in detail previously as a virus host. This virus, hadakavirus 1 strain 1NL (HadV1-1NL), has features similar to the first hadakavirus, HadV1-7n, despite having a different number of segments (10 for HadV1-1NL vs. 11 for HadV1-7n). The 10 genomic RNA segments of HadV1-1NL range in size from 0.9 kb to 2.5 kb. All HadV1-1NL segments show 67% to 86% local nucleotide sequence identity to their HadV1-7n counterparts, whereas HadV1-1NL has no homolog of HadV1-7n RNA8, which encodes a zinc-finger motif. Another interesting feature is the possible coding incapability of HadV1-1NL RNA10. HadV1-1NL was predicted to be capsidless based on the RNase A susceptibility of its replicative form dsRNA. Phenotypic comparison of multiple virus-infected and virus-free single-spore isolates indicated asymptomatic infection by HadV1-1NL. Less-efficient vertical transmission via spores was observed as the infected fungal colonies from which the spores were derived became older, as was observed for HadV1-7n. This study shows a second example of a hadakavirus that appears to have unusual features.


Asunto(s)
Fusarium/virología , Genoma Viral/genética , Virus ARN Monocatenarios Positivos/genética , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Filogenia , Enfermedades de las Plantas/microbiología , Virus ARN Monocatenarios Positivos/clasificación , Virus ARN Monocatenarios Positivos/aislamiento & purificación , ARN Bicatenario/metabolismo , ARN Viral/genética , Ribonucleasas/metabolismo , Análisis de Secuencia de ADN , Especificidad de la Especie , Esporas Fúngicas/virología , Proteínas Virales/genética
10.
J Virol ; 95(17): e0026421, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34132570

RESUMEN

Uncharacterized viral genomes that encode circular replication-associated proteins of single-stranded DNA viruses have been discovered by metagenomics/metatranscriptomics approaches. Some of these novel viruses are classified in the newly formed family Genomoviridae. Here, we determined the host range of a novel genomovirus, SlaGemV-1, through the transfection of Sclerotinia sclerotiorum with infectious clones. Inoculating with the rescued virions, we further transfected Botrytis cinerea and Monilinia fructicola, two economically important members of the family Sclerotiniaceae, and Fusarium oxysporum. SlaGemV-1 causes hypovirulence in S. sclerotiorum, B. cinerea, and M. fructicola. SlaGemV-1 also replicates in Spodoptera frugiperda insect cells but not in Caenorhabditis elegans or plants. By expressing viral genes separately through site-specific integration, the replication protein alone was sufficient to cause debilitation. Our study is the first to demonstrate the reconstruction of a metagenomically discovered genomovirus without known hosts with the potential of inducing hypovirulence, and the infectious clone allows for studying mechanisms of genomovirus-host interactions that are conserved across genera. IMPORTANCE Little is known about the exact host range of widespread genomoviruses. The genome of soybean leaf-associated gemygorvirus-1 (SlaGemV-1) was originally assembled from a metagenomic/metatranscriptomic study without known hosts. Here, we rescued SlaGemV-1 and found that it could infect three important plant-pathogenic fungi and fall armyworm (S. frugiperda Sf9) insect cells but not a model nematode, C. elegans, or model plant species. Most importantly, SlaGemV-1 shows promise for inducing hypovirulence of the tested fungal species in the family Sclerotiniaceae, including Sclerotinia sclerotiorum, Botrytis cinerea, and Monilinia fructicola. The viral determinant of hypovirulence was further identified as replication initiation protein. As a proof of concept, we demonstrate that viromes discovered in plant metagenomes can be a valuable genetic resource when novel viruses are rescued and characterized for their host range.


Asunto(s)
Ascomicetos/virología , Geminiviridae/aislamiento & purificación , Especificidad del Huésped , Metagenoma , Nicotiana/crecimiento & desarrollo , Enfermedades de las Plantas/prevención & control , Virulencia , Animales , Ascomicetos/genética , Ascomicetos/patogenicidad , Botrytis/genética , Botrytis/patogenicidad , Botrytis/virología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/virología , Fusarium/genética , Fusarium/patogenicidad , Fusarium/virología , Geminiviridae/clasificación , Geminiviridae/genética , Genoma Viral , Control Biológico de Vectores , Enfermedades de las Plantas/microbiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Hojas de la Planta/virología , Glycine max/crecimiento & desarrollo , Glycine max/microbiología , Nicotiana/microbiología , Nicotiana/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión
11.
Viruses ; 12(10)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066620

RESUMEN

Mycoviruses appear to be widespread in Fusarium species worldwide. The aim of this work was to identify mycoviral infections in Fusarium spp., isolated from maize and sorghum grown in Argentina, and to estimate their potential effects on the pathogenicity and toxigenesis of the host fungus towards maize. Mycoviruses were identified in 2 out of 105 isolates analyzed; Fusarium verticillioides strain Sec505 and Fusarium andiyazi strain 162. They were characterized as members of the genus Mitovirus by high-throughput sequencing and sequence analysis. The F. verticillioides mitovirus was a novel mycovirus whereas the F. andiyazi mitovirus was found to be a new strain of a previously identified mitovirus. We have named these mitoviruses, Fusarium verticillioides mitovirus 1 (FvMV1) and Fusarium andiyazi mitovirus 1 strain 162 (FaMV1-162). To our knowledge, FvMV1 is the first mycovirus reported as naturally infecting F. verticillioides, the major causal agent of ear rot and fumonisin producer in corn. Both mitoviruses exhibited 100% vertical transmission rate to microconidia. The Fa162 strain infected with FaMV1-162 did not show phenotypic alterations. In contract, F. verticillioides Sec505 infected with FvMV1 showed increased virulence as well as microconidia and fumonisin-B1 production, compared with two uninfected strains. These results suggest that FvMV1 could have a role in modulating F. verticillioides pathogenicity and toxin production worth further exploring.


Asunto(s)
Virus Fúngicos/clasificación , Fusarium/patogenicidad , Fusarium/virología , Sorghum/microbiología , Zea mays/microbiología , Argentina , Virus Fúngicos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/virología
12.
Arch Virol ; 165(12): 2979-2983, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32902666

RESUMEN

To our knowledge, no mycoviruses have been reported in Fusarium cerealis. Here, we describe a novel double-stranded RNA (dsRNA) virus, Fusarium cerealis partitivirus 1 (FcPV1), isolated from F. cerealis strain HN30 from Henan Province, China. The FcPV1 genome consists of two dsRNA segments, 1732 bp (dsRNA1) and 1361 bp (dsRNA2) in length, each containing a single open reading frame potentially encoding a 61.0-kDa protein and a 42.0-kDa protein, respectively. dsRNA1 encodes a putative RNA-dependent RNA polymerase (RdRp), while the dsRNA2 product has no significant similarity to any other capsid proteins (CPs) in the GenBank databases other than limited similarity to hypothetical "capsid" proteins of a few partitiviruses. Sequence alignments and phylogenetic analysis showed that FcPV1 is related to members of the newly proposed genus "Zetapartitivirus" in the family Partitiviridae.


Asunto(s)
Virus Fúngicos/clasificación , Fusarium/virología , Genoma Viral , Filogenia , ARN Bicatenario/genética , Secuencia de Aminoácidos , Proteínas de la Cápside/genética , China , Virus Fúngicos/aislamiento & purificación , Sistemas de Lectura Abierta , Enfermedades de las Plantas/microbiología , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Alineación de Secuencia
13.
Viruses ; 12(5)2020 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397544

RESUMEN

A new mycovirus was found in the Fusarium culmorum strain A104-1 originally sampled on wheat in Belgium. This novel virus, for which the name Fusarium culmorum virus 1 (FcV1) is suggested, is phylogenetically related to members of the previously proposed family ''Unirnaviridae''. FcV1 has a monopartite dsRNA genome of 2898 bp that harbors two large non-overlapping ORFs. A typical -1 slippery motif is found at the end of ORF1, advocating that ORF2 is translated by programmed ribosomal frameshifting. While ORF2 exhibits a conserved replicase domain, ORF1 encodes for an undetermined protein. Interestingly, a hypothetically transcribed gene similar to unirnaviruses ORF1 was found in the genome of Lipomyces starkeyi, presumably resulting from a viral endogenization in this yeast. Conidial isolation and chemical treatment were unsuccessful to obtain a virus-free isogenic line of the fungal host, highlighting a high retention rate for FcV1 but hindering its biological characterization. In parallel, attempt to horizontally transfer FcV1 to another strain of F. culmorum by dual culture failed. Eventually, a screening of other strains of the same fungal species suggests the presence of FcV1 in two other strains from Europe.


Asunto(s)
Virus Fúngicos/aislamiento & purificación , Fusarium/virología , Lipomyces/virología , Secuencia de Aminoácidos , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Genoma Viral , Filogenia , Enfermedades de las Plantas/microbiología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética
14.
mBio ; 11(3)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457242

RESUMEN

The search for viruses infecting fungi, or mycoviruses, has extended our knowledge about the diversity of RNA viruses, as exemplified by the discovery of polymycoviruses, a phylogenetic group of multisegmented RNA viruses with unusual forms. The genomic RNAs of known polymycoviruses, which show a phylogenetic affinity for animal positive-sense single-stranded RNA [(+)RNA] viruses such as caliciviruses, are comprised of four conserved segments with an additional zero to four segments. The double-stranded form of polymycovirus genomic RNA is assumed to be associated with a virally encoded protein (proline-alanine-serine-rich protein [PASrp]) in either of two manners: a capsidless colloidal form or a filamentous encapsidated form. Detailed molecular characterizations of polymycoviruses, however, have been conducted for only a few strains. Here, a novel polymyco-related virus named Hadaka virus 1 (HadV1), from the phytopathogenic fungus Fusarium oxysporum, was characterized. The genomic RNA of HadV1 consisted of an 11-segmented positive-sense RNA with highly conserved terminal nucleotide sequences. HadV1 shared the three conserved segments with known polymycoviruses but lacked the PASrp-encoding segment. Unlike the known polymycoviruses and encapsidated viruses, HadV1 was not pelleted by conventional ultracentrifugation, possibly due to the lack of PASrp. This result implied that HadV1 exists only as a soluble form with naked RNA. Nevertheless, the 11 genomic segments of HadV1 have been stably maintained through host subculturing and conidiation. Taken together, the results of this study revealed a virus with a potential novel virus lifestyle, carrying many genomic segments without typical capsids or PASrp-associated forms.IMPORTANCE Fungi collectively host various RNA viruses. Examples include encapsidated double-stranded RNA (dsRNA) viruses with diverse numbers of genomic segments (from 1 to 12) and capsidless viruses with nonsegmented (+)RNA genomes. Recently, viruses with unusual intermediate features of an infectious entity between encapsidated dsRNA viruses and capsidless (+)RNA viruses were found. They are called polymycoviruses, which typically have four to eight dsRNA genomic segments associated with one of the virus-encoded proteins and are phylogenetically distantly related to animal (+)RNA caliciviruses. Here, we identified a novel virus phylogenetically related to polymycoviruses, from the phytopathogenic fungus Fusarium oxysporum The virus, termed Hadaka virus 1 (HadV1), has 11 (+)RNA genomic segments, the largest number in known (+)RNA viruses. Nevertheless, HadV1 lacked a typical structural protein of polymycoviruses and was not pelleted by standard ultracentrifugation, implying an unusual capsidless nature of HadV1. This study reveals a potential novel lifestyle of multisegmented RNA viruses.


Asunto(s)
Cápside , Virus Fúngicos/clasificación , Fusarium/virología , Genoma Viral , Virus ARN/clasificación , ARN Viral/química , Secuencia de Bases , Virus Fúngicos/aislamiento & purificación , Solanum lycopersicum/microbiología , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/microbiología , Virus ARN/aislamiento & purificación , ARN Viral/genética , Análisis de Secuencia de ADN
15.
Adv Virus Res ; 106: 123-144, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32327146

RESUMEN

In this review, we discuss recent studies of the interaction between Fusarium graminearum viruses (FgVs) and the fungal host, Fusarium graminearum. Comprehensive transcriptome and proteome analyses have shown changes in the expression of host genes in response to infection by diverse FgVs. Using omics data and reverse genetics, researchers have determined the effects of some fungal host proteins (including FgHex1, FgHal2, FgSwi6, and vr1) on virus accumulation, virus transmission, and host symptom development. Recent reports have revealed the functions of the RNAi component in F. graminearum and the functional redundancy of FgDICERs and FgAGOs in the antiviral defense response against different FgV infections. Studies have also documented a unique mechanism used by FgV1 to overcome the antiviral response of the fungal host.


Asunto(s)
Virus Fúngicos/fisiología , Fusarium/virología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virus Fúngicos/genética , Fusarium/genética , Fusarium/metabolismo , Interacciones Huésped-Patógeno , Transcriptoma
16.
Viruses ; 12(3)2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213895

RESUMEN

Fungal viruses (mycoviruses) have attracted more attention for their possible hypovirulence (attenuation of fungal virulence) trait, which may be developed as a biocontrol agent of plant pathogenic fungi. However, most discovered mycoviruses are asymptomatic in their hosts. In most cases, mycovirus hypovirulent factors have not been explored clearly. In this study, we characterized a ssRNA mycovirus in Fusarium graminearum strain HB56-9. The complete nucleotide genome was obtained by combining random sequencing and rapid amplification of cDNA ends (RACE). The full genome was 6621-nucleotides long, excluding the poly(A) tail. The mycovirus was quite interesting because it shared 95.91% nucleotide identities with previously reported Fusarium graminearum virus 1 strain DK21 (FgV1-DK21), while the colony morphology of their fungal hosts on PDA plates were very different. The novel virus was named Fusarium graminearum virus 1 Chinese isolate (FgV1-ch). Like FgV1-DK21, FgV1-ch also contains four putative open reading frames (ORFs), including one long and three short ORFs. A phylogenetic analysis indicated that FgV1-ch is clustered into a proposed family Fusariviridae. FgV1-ch, unlike FgV1-DK21, had mild or no effects on host mycelial growth, spore production and virulence. The nucleotide differences between FgV1-ch and FgV1-DK21 will help to elucidate the hypovirulence determinants during mycovirus-host interaction.


Asunto(s)
Virus Fúngicos/clasificación , Virus Fúngicos/fisiología , Fusarium/virología , Secuencia de Aminoácidos , Biología Computacional , Interacciones Huésped-Patógeno , Filogenia , Enfermedades de las Plantas , Virus ARN/genética , ARN Bicatenario , Secuenciación Completa del Genoma
17.
Viruses ; 12(3)2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138251

RESUMEN

A novel mycovirus named Fusarium oxysporum f. sp. dianthi mitovirus 1 (FodMV1) has been identified infecting a strain of Fusarium oxysporum f. sp. dianthi from Colombia. The genome of FodMV1 is 2313 nt long, and comprises a 172-nt 5'-UTR, a 2025-nt single ORF encoding an RdRp of 675 amino acid residues, and a 113-nt 3´-UTR. Homology BlastX searches identifies FodMV1 as a novel member of the genus Mitovirus in the family Narnaviridae. As the rest of mitoviruses, the genome of FodMV1 presents a high percentage of A+U (58.8%) and contains a number of UGA codons that encode the amino acid tryptophan rather than acting as stop codons as in the universal genetic code. Another common feature with other mitoviruses is that the 5'- and 3'-UTR regions of FodMV1 can be folded into potentially stable stem-loop structures. Result from phylogenetic analysis place FodMV1 in a different clade than the rest of mitoviruses described in other Fusarium spp. Incidence of FodMV1-infections in the collection of F. oxysporum f. sp. dianthi isolates analyzed is relatively high. Of particular interest is the fact that FodMV1 has been detected infecting isolates from two geographical areas as distant as Spain and Colombia.


Asunto(s)
Virus Fúngicos/clasificación , Virus Fúngicos/genética , Fusarium/virología , Virus Fúngicos/aislamiento & purificación , Genoma Viral , Genotipo , Conformación de Ácido Nucleico , Filogenia , Enfermedades de las Plantas/microbiología , Virus ARN/genética , ARN Bicatenario , ARN Viral , Virulencia
18.
Proc Natl Acad Sci U S A ; 117(7): 3779-3788, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015104

RESUMEN

Plants and fungi are closely associated through parasitic or symbiotic relationships in which bidirectional exchanges of cellular contents occur. Recently, a plant virus was shown to be transmitted from a plant to a fungus, but it is unknown whether fungal viruses can also cross host barriers and spread to plants. In this study, we investigated the infectivity of Cryphonectria hypovirus 1 (CHV1, family Hypoviridae), a capsidless, positive-sense (+), single-stranded RNA (ssRNA) fungal virus in a model plant, Nicotiana tabacum CHV1 replicated in mechanically inoculated leaves but did not spread systemically, but coinoculation with an unrelated plant (+)ssRNA virus, tobacco mosaic virus (TMV, family Virgaviridae), or other plant RNA viruses, enabled CHV1 to systemically infect the plant. Likewise, CHV1 systemically infected transgenic plants expressing the TMV movement protein, and coinfection with TMV further enhanced CHV1 accumulation in these plants. Conversely, CHV1 infection increased TMV accumulation when TMV was introduced into a plant pathogenic fungus, Fusarium graminearum In the in planta F. graminearum inoculation experiment, we demonstrated that TMV infection of either the plant or the fungus enabled the horizontal transfer of CHV1 from the fungus to the plant, whereas CHV1 infection enhanced fungal acquisition of TMV. Our results demonstrate two-way facilitative interactions between the plant and fungal viruses that promote cross-kingdom virus infections and suggest the presence of plant-fungal-mediated routes for dissemination of fungal and plant viruses in nature.


Asunto(s)
Virus Fúngicos/fisiología , Fusarium/virología , Nicotiana/virología , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Virus del Mosaico del Tabaco/fisiología , Fusarium/fisiología
19.
Arch Virol ; 165(2): 487-490, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31784910

RESUMEN

A putative novel positive-sense (+) RNA virus was detected in isolate CF16158 of the fungus Fusarium graminearum, the causal agent of Fusarium head blight and crown rot in wheat in China. The full genome of this virus was sequenced and characterized. The complete cDNA sequence is 7,051 nt long and contains four open reading frames (ORFs). ORF2 is predicted to encode helicase (Hel) and RNA-dependent RNA polymerase (RdRp) domains that are conserved among the alphavirus-like viruses. Pairwise comparisons and phylogenetic analysis of the deduced amino acid sequences of Hel and RdRp indicated that this (+) RNA mycovirus is a novel member of a new, yet to be established family of alphavirus-like viruses. Therefore, we named this virus "Fusarium graminearum alphavirus-like virus 1" (FgALV1). This is the first report of a full-length genomic sequence of a putative alphavirus-like virus in F. graminearum.


Asunto(s)
Alphavirus/clasificación , Alphavirus/aislamiento & purificación , Fusarium/virología , Filogenia , Alphavirus/genética , China , Biología Computacional , Fusarium/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Enfermedades de las Plantas/microbiología , ARN Helicasas/genética , ARN Polimerasa Dependiente del ARN/genética , Homología de Secuencia , Triticum , Secuenciación Completa del Genoma
20.
Mol Plant Pathol ; 21(2): 230-243, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31815356

RESUMEN

The filamentous fungus Fusarium graminearum possesses an RNA-interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double-stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence-associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1, which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum. In an FgAGO1- or FgDICER2-promoter/GFP-reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1-infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2-encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICERs and FgAGOs in vitro. These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter-dependent manner.


Asunto(s)
Proteínas Fúngicas/metabolismo , Virus Fúngicos/patogenicidad , Fusarium/metabolismo , Fusarium/virología , Antivirales/metabolismo , Proteínas Fúngicas/genética , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...