Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 109(3): 568-584, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767672

RESUMEN

Charophyte green algae (CGA) are assigned to be the closest relatives of land plants and therefore enlighten processes in the colonization of terrestrial habitats. For the transition from water to land, plants needed significant physiological and structural changes, as well as with regard to cell wall composition. Sequential extraction of cell walls of Nitellopsis obtusa (Charophyceae) and Spirogyra pratensis (Zygnematophyceae) offered a comparative overview on cell wall composition of late branching CGA. Because arabinogalactan-proteins (AGPs) are considered common for all land plant cell walls, we were interested in whether these special glycoproteins are present in CGA. Therefore, we investigated both species with regard to characteristic features of AGPs. In the cell wall of Nitellopsis, no hydroxyproline was present and no AGP was precipitable with the ß-glucosyl Yariv's reagent (ßGlcY). By contrast, ßGlcY precipitation of the water-soluble cell wall fraction of Spirogyra yielded a glycoprotein fraction rich in hydroxyproline, indicating the presence of AGPs. Putative AGPs in the cell walls of non-conjugating Spirogyra filaments, especially in the area of transverse walls, were detected by staining with ßGlcY. Labelling increased strongly in generative growth stages, especially during zygospore development. Investigations of the fine structure of the glycan part of ßGlcY-precipitated molecules revealed that the galactan backbone resembled that of AGPs with 1,3- 1,6- and 1,3,6-linked Galp moieties. Araf was present only in small amounts and the terminating sugars consisted predominantly of pyranosidic terminal and 1,3-linked rhamnose residues. We introduce the term 'rhamnogalactan-protein' for this special AGP-modification present in S. pratensis.


Asunto(s)
Evolución Biológica , Pared Celular/química , Embryophyta/química , Galactanos/química , Mucoproteínas/química , Proteínas de Plantas/química , Spirogyra/química , Spirogyra/genética , Carofíceas/química , Carofíceas/genética , Galactanos/genética , Mucoproteínas/genética , Proteínas de Plantas/genética
2.
Genes (Basel) ; 12(7)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206279

RESUMEN

Guar (Cyamopsis tetragonoloba (L.) Taub.) is an annual legume crop native to India and Pakistan. Seeds of the plant serve as a source of galactomannan polysaccharide (guar gum) used in the food industry as a stabilizer (E412) and as a gelling agent in oil and gas fracturing fluids. There were several attempts to introduce this crop to countries of more northern latitudes. However, guar is a plant of a short photoperiod, therefore, its introduction, for example, to Russia is complicated by a long day length during the growing season. Breeding of new guar varieties insensitive to photoperiod slowed down due to the lack of information on functional molecular markers, which, in turn, requires information on guar genome. Modern breeding strategies, e.g., genomic predictions, benefit from integration of multi-omics approaches such as transcriptome, proteome and metabolome assays. Here we present an attempt to use transcriptome-metabolome integration to understand the genetic determination of flowering time variation among guar plants that differ in their photoperiod sensitivity. This study was performed on nine early- and six delayed-flowering guar varieties with the goal to find a connection between 63 metabolites and 1,067 differentially expressed transcripts using Shiny GAM approach. For the key biomarker of flowering in guar myo-inositol we also evaluated the KEGG biochemical pathway maps available for Arabidopsis thaliana. We found that the phosphatidylinositol signaling pathway is initiated in guar plants that are ready for flowering through the activation of the phospholipase C (PLC) gene, resulting in an exponential increase in the amount of myo-inositol in its free form observed on GC-MS chromatograms. The signaling pathway is performed by suppression of myo-inositol phosphate kinases (phosphorylation) and alternative overexpression of phosphatases (dephosphorylation). Our study suggests that metabolome and transcriptome information taken together, provide valuable information about biomarkers that can be used as a tool for marker-assisted breeding, metabolomics and functional genomics of this important legume crop.


Asunto(s)
Cyamopsis/genética , Redes y Vías Metabólicas/genética , Metaboloma/genética , Transcriptoma/genética , Biomarcadores/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Galactanos/genética , Galactanos/metabolismo , Perfilación de la Expresión Génica , Humanos , Mananos/genética , Mananos/metabolismo , Fotoperiodo , Desarrollo de la Planta/genética , Gomas de Plantas/genética , Gomas de Plantas/metabolismo
3.
Gene ; 791: 145727, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34010707

RESUMEN

Cluster bean (Guar) is the major source of industrial gum. Knowledge on the molecular events regulating galactomannan gum accumulation in guar will pave way for accelerated development of gummy guar genotypes. RNA Seq analysis in the immature seeds of contrasting cluster bean genotypes HGS 563 (gum type) and Pusa Navbahar (vegetable type) resulted in the generation of 19,855,490 and 21,488,472 quality reads. Data analysis identified 4938 differentially expressed genes between the gummy vs vegetable genotypes. A set of 2241 genes were up-regulated and 2587 genes were down-regulated in gummy guar. Significant up-regulation of genes involved in the biosynthesis of galactomannan and cell wall storage polysaccharides was observed in the gummy HGS 563. Genes involved in carotenoids, flavonoids, non mevalonic acid, terpenoids, and wax metabolism were also up-regulated in HGS 563. Mannose and galactose were the major nucleotide sugars in Pusa Navbahar and HGS 563 immature seeds. Immature seeds of HGS 563 showed high concentration of mannose and galactose accumulation compared to Pusa Navbahar. qRT-PCR analysis of selected genes confirmed the findings of transcriptome data.


Asunto(s)
Cyamopsis/genética , Cyamopsis/metabolismo , Galactanos/genética , Mananos/genética , Gomas de Plantas/genética , Cyamopsis/crecimiento & desarrollo , Galactanos/metabolismo , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Mananos/metabolismo , Metaboloma/genética , Metabolómica/métodos , Gomas de Plantas/metabolismo , Polisacáridos/metabolismo , Semillas/genética , Transcriptoma/genética
4.
BMC Plant Biol ; 21(1): 16, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407116

RESUMEN

BACKGROUND: Arabinogalactan-proteins (AGPs) are a class of hydroxyproline-rich proteins (HRGPs) that are heavily glycosylated (> 90%) with type II arabinogalactans (AGs). AGPs are implicated in various plant growth and development processes including cell expansion, somatic embryogenesis, root and stem growth, salt tolerance, hormone signaling, male and female gametophyte development, and defense. To date, eight Hyp-O-galactosyltransferases (GALT2-6, HPGT1-3) have been identified; these enzymes are responsible for adding the first sugar, galactose, onto AGPs. Due to gene redundancy among the GALTs, single or double galt genetic knockout mutants are often not sufficient to fully reveal their biological functions. RESULTS: Here, we report the successful application of CRISPR-Cas9 gene editing/multiplexing technology to generate higher-order knockout mutants of five members of the GALT gene family (GALT2-6). AGPs analysis of higher-order galt mutants (galt2 galt5, galt3 galt4 galt6, and galt2 galt3 galt4 galt5 gal6) demonstrated significantly less glycosylated AGPs in rosette leaves, stems, and siliques compared to the corresponding wild-type organs. Monosaccharide composition analysis of AGPs isolated from rosette leaves revealed significant decreases in arabinose and galactose in all the higher-order galt mutants. Phenotypic analyses revealed that mutation of two or more GALT genes was able to overcome the growth inhibitory effect of ß-D-Gal-Yariv reagent, which specifically binds to ß-1,3-galactan backbones on AGPs. In addition, the galt2 galt3 galt4 galt5 gal6 mutant exhibited reduced overall growth, impaired root growth, abnormal pollen, shorter siliques, and reduced seed set. Reciprocal crossing experiments demonstrated that galt2 galt3 galt4 galt5 gal6 mutants had defects in the female gametophyte which were responsible for reduced seed set. CONCLUSIONS: Our CRISPR/Cas9 gene editing/multiplexing approach provides a simpler and faster way to generate higher-order mutants for functional characterization compared to conventional genetic crossing of T-DNA mutant lines. Higher-order galt mutants produced and characterized in this study provide insight into the relationship between sugar decorations and the various biological functions attributed to AGPs in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Galactanos/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Edición Génica , Mucoproteínas/metabolismo , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas , Galactanos/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genoma de Planta , Genotipo , Glicosilación , Mucoproteínas/genética , Mutación , Fitomejoramiento/métodos
5.
PLoS One ; 15(12): e0240497, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33383576

RESUMEN

Corynebacteriales are Actinobacteria that possess an atypical didermic cell envelope. One of the principal features of this cell envelope is the presence of a large complex made up of peptidoglycan, arabinogalactan and mycolic acids. This covalent complex constitutes the backbone of the cell wall and supports an outer membrane, called mycomembrane in reference to the mycolic acids that are its major component. The biosynthesis of the cell envelope of Corynebacteriales has been extensively studied, in particular because it is crucial for the survival of important pathogens such as Mycobacterium tuberculosis and is therefore a key target for anti-tuberculosis drugs. In this study, we explore the biogenesis of the cell envelope of Corynebacterium glutamicum, a non-pathogenic Corynebacteriales, which can tolerate dramatic modifications of its cell envelope as important as the loss of its mycomembrane. For this purpose, we used a genetic approach based on genome-wide transposon mutagenesis. We developed a highly effective immunological test based on the use of anti-cell wall antibodies that allowed us to rapidly identify bacteria exhibiting an altered cell envelope. A very large number (10,073) of insertional mutants were screened by means of this test, and 80 were finally selected, representing 55 different loci. Bioinformatics analyses of these loci showed that approximately 60% corresponded to genes already characterized, 63% of which are known to be directly involved in cell wall processes, and more specifically in the biosynthesis of the mycoloyl-arabinogalactan-peptidoglycan complex. We identified 22 new loci potentially involved in cell envelope biogenesis, 76% of which encode putative cell envelope proteins. A mutant of particular interest was further characterized and revealed a new player in mycolic acid metabolism. Because a large proportion of the genes identified by our study is conserved in Corynebacteriales, the library described here provides a new resource of genes whose characterization could lead to a better understanding of the biosynthesis of the envelope components of these bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Pared Celular/genética , Corynebacterium glutamicum/genética , Galactanos/metabolismo , Genoma Bacteriano , Ácidos Micólicos/metabolismo , Peptidoglicano/metabolismo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Biología Computacional/métodos , Corynebacterium glutamicum/metabolismo , Elementos Transponibles de ADN , Galactanos/genética , Expresión Génica , Ontología de Genes , Sitios Genéticos , Anotación de Secuencia Molecular , Mutagénesis Insercional , Peptidoglicano/genética , Plásmidos/química , Plásmidos/metabolismo
6.
Sci Rep ; 10(1): 20562, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239665

RESUMEN

Utilizing plant biomass for bioethanol production requires an understanding of the molecular mechanisms involved in plant cell wall assembly. Arabinogalactan-proteins (AGPs) are glycoproteins that interact with other cell wall polymers to influence plant growth and developmental processes. Glucuronic acid, which is transferred to the AGP glycan by ß-glucuronosyltransferases (GLCATs), is the only acidic sugar in AGPs with the ability to bind calcium. We carried out a comprehensive genome-wide analysis of a putative GLCAT gene family involved in AGP biosynthesis by examining its sequence diversity, genetic architecture, phylogenetic and motif characteristics, selection pressure and gene expression in plants. We report the identification of 161 putative GLCAT genes distributed across 14 plant genomes and a widely conserved GLCAT catalytic domain. We discovered a phylogenetic clade shared between bryophytes and higher land plants of monocot grass and dicot lineages and identified positively selected sites that do not result in functional divergence of GLCATs. RNA-seq and microarray data analyses of the putative GLCAT genes revealed gene expression signatures that likely influence the assembly of plant cell wall polymers which is critical to the overall growth and development of edible and bioenergy crops.


Asunto(s)
Galactanos/biosíntesis , Glucuronosiltransferasa/genética , Mucoproteínas/biosíntesis , Secuencia de Aminoácidos , Pared Celular/metabolismo , Galactanos/genética , Genoma de Planta , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Glucuronosiltransferasa/metabolismo , Glicoproteínas/metabolismo , Mucoproteínas/genética , Filogenia , Desarrollo de la Planta , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas/genética , Plantas/metabolismo , Análisis de Secuencia de ADN/métodos
7.
BMC Plant Biol ; 20(1): 305, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611364

RESUMEN

BACKGROUND: Nicotiana benthamiana is widely used as a model plant to study plant-pathogen interactions. Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), participate in mediating plant growth, development and response to abiotic stress. However, the members of FLAs in N. benthamiana and their response to plant pathogens are unknown. RESULTS: 38 NbFLAs were identified from a genome-wide study. NbFLAs could be divided into four subclasses, and their gene structure and motif composition were conserved in each subclass. NbFLAs may be regulated by cis-acting elements such as STRE and MBS, and may be the targets of transcription factors like C2H2. Quantitative real time polymerase chain reaction (RT-qPCR) results showed that selected NbFLAs were differentially expressed in different tissues. All of the selected NbFLAs were significantly downregulated following infection by turnip mosaic virus (TuMV) and most of them also by Pseudomonas syringae pv tomato strain DC3000 (Pst DC3000), suggesting possible roles in response to pathogenic infection. CONCLUSIONS: This study systematically identified FLAs in N. benthamiana, and indicates their potential roles in response to biotic stress. The identification of NbFLAs will facilitate further studies of their role in plant immunity in N. benthamiana.


Asunto(s)
Galactanos/genética , Nicotiana/genética , Secuencias de Aminoácidos , Galactanos/química , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudio de Asociación del Genoma Completo , Familia de Multigenes , Filogenia , Estrés Fisiológico , Factores de Transcripción/química , Factores de Transcripción/genética
8.
Genomics ; 112(2): 1536-1544, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31494197

RESUMEN

Red algae are a major source of marine sulfated galactans. In this study, orthologs and inparalogs from seven red algae were analyzed and compared with the aim to discover differences in algal galactan biosynthesis and related pathways of these algae. Red algal orthologs for putative carbohydrate sulfotransferases were found to be prevalent in Porphyridium purpureum, Florideophytes and Bangiophytes, while red algal orthologs for putative chondroitin sulfate synthases, sulfurylases, and porphyranases /carrageenases were found exclusively in Florideophytes and Bangiophytes. The acquirement of these genes could have happened after the divergence from Cyanidiales red algae. Cyanidiales red algae were found to have more number and types of putative sulfate permeases, suggesting that these genes could have been acquired in adaptation to the environmental stresses and biogeochemistry of respective habitats. The findings of this study shed lights on the evolution of different homeostasis mechanisms by the early and late diverging red algal orders.


Asunto(s)
Galactanos/biosíntesis , Especiación Genética , Genoma de Planta , Porphyridium/genética , Galactanos/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Porphyridium/clasificación , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Carbohidrato Sulfotransferasas
9.
Sci Rep ; 9(1): 11539, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395961

RESUMEN

Cyamopsis tetragonoloba (L) endosperm predominantly contains guar gum a polysaccharide, which has tremendous industrial applications in food, textile, paper, oil drilling and water treatment. In order to understand the genes controlling galactomannan biosynthesis, mRNA was isolated from seeds collected at different developmental stages; young pods, mature pods and young leaf from two guar varieties, HG365 and HG870 and subjected to Illumina sequencing. De novo assembly of fourteen individual read files from two varieties of guar representing seven developmental stages gave a total of 1,13,607 contigs with an N50 of 1,244 bases. Annotation of assemblies with GO mapping revealed three levels of distribution, namely, Biological Processes, Molecular Functions and Cellular Components. GO studies identified major genes involved in galactomannan biosynthesis: Cellulose synthase D1 (CS D1) and GAUT-like gene families. Among the polysaccharide biosynthetic process (GO:0000271) genes the transcript abundance for CS was found to be predominantly more in leaf samples, whereas, the transcript abundance for GAUT-like steadily increased from 65% to 90% and above from stage1 to stage5 indicating accumulation of galactomannan in developing seeds; and validated by qRT-PCR analysis. Galactomannan quantification by HPLC showed HG365 (12.98-20.66%) and HG870 (7.035-41.2%) gradually increasing from stage1 to stage 5 (10-50 DAA) and highest accumulation occurred in mature and dry seeds with 3.8 to 7.1 fold increase, respectively. This is the first report of transcriptome sequencing and complete profiling of guar seeds at different developmental stages, young pods, mature pods and young leaf material from two commercially important Indian varieties and elucidation of galactomannan biosynthesis pathway. It is envisaged that the data presented herein will be very useful for improvement of guar through biotechnological interventions in future.


Asunto(s)
Cyamopsis/genética , Mananos/biosíntesis , Desarrollo de la Planta/genética , Transcriptoma/genética , Vías Biosintéticas/genética , Metabolismo de los Hidratos de Carbono/genética , Cyamopsis/crecimiento & desarrollo , Endospermo/genética , Endospermo/crecimiento & desarrollo , Galactanos/genética , Galactosa/análogos & derivados , Regulación de la Expresión Génica de las Plantas , Mananos/genética , Gomas de Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Secuenciación del Exoma
10.
Sci Rep ; 9(1): 10991, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358893

RESUMEN

Guar gum is an important raw material in the food, textile and oil industries, but the biosynthesis of guar gum remains unclear. To illuminate the genes involved in guar gum biosynthesis, guar beans from 30 and 40 days after flowering (DAF) were used for RNA sequencing in this study. A total of 2,535 and 2,724 preferentially expressed genes were found in 30 and 40 DAF endosperm, and 3,720 and 2,530 preferentially expressed genes were found in 30 and 40 DAF embryos, respectively. Of these, mannan synthase genes, α-galactosyltransferase genes and cellulose synthase genes were preferentially expressed in the endosperm from 30 and 40 DAF. The high expression level of these glycometabolism genes in endosperm is consistent with the expectation that the main component of guar gum is galactomannan. We believe that genes related to guar gum biosynthesis found in this study will be useful for both new variety development via genetic engineering and synthetic biology research on guar gum biosynthesis in the future.


Asunto(s)
Cyamopsis/genética , Galactanos/genética , Mananos/genética , Gomas de Plantas/genética , Vías Biosintéticas , Cyamopsis/metabolismo , Endospermo/genética , Endospermo/metabolismo , Galactanos/metabolismo , Genes de Plantas , Mananos/metabolismo , Gomas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta/genética , Análisis de Secuencia de ARN
11.
Proc Natl Acad Sci U S A ; 116(28): 14349-14357, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239335

RESUMEN

Endocytosis is essential to all eukaryotes, but how cargoes are selected for internalization remains poorly characterized. Extracellular cargoes are thought to be selected by transmembrane receptors that bind intracellular adaptors proteins to initiate endocytosis. Here, we report a mechanism for clathrin-mediated endocytosis (CME) of extracellular lanthanum [La(III)] cargoes, which requires extracellular arabinogalactan proteins (AGPs) that are anchored on the outer face of the plasma membrane. AGPs were colocalized with La(III) on the cell surface and in La(III)-induced endocytic vesicles in Arabidopsis leaf cells. Superresolution imaging showed that La(III) triggered AGP movement across the plasma membrane. AGPs were then colocalized and physically associated with the µ subunit of the intracellular adaptor protein 2 (AP2) complexes. The AGP-AP2 interaction was independent of CME, whereas AGP's internalization required CME and AP2. Moreover, we show that AGP-dependent endocytosis in the presence of La(III) also occurred in human cells. These findings indicate that extracellular AGPs act as conserved CME cargo receptors, thus challenging the current paradigm about endocytosis of extracellular cargoes.


Asunto(s)
Endocitosis/genética , Galactanos/metabolismo , Lantano/farmacología , Metales de Tierras Raras/farmacología , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Membrana Celular/efectos de los fármacos , Clatrina/química , Endocitosis/efectos de los fármacos , Galactanos/genética , Humanos , Lantano/química , Lantano/metabolismo , Metales de Tierras Raras/química , Metales de Tierras Raras/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo
12.
Fungal Genet Biol ; 123: 53-59, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30496805

RESUMEN

l-Arabinose and d-galactose are the principal constituents of l-arabinogalactan, and also co-occur in other hemicelluloses and pectins. In this work we hypothesized that similar to the induction of relevant glycoside hydrolases by monomers liberated from these plant heteropolymers, their respective catabolisms in saprophytic and phytopathogenic fungi may respond to the presence of the other sugar to promote synergistic use of the complex growth substrate. We showed that these two sugars are indeed consumed simultaneously by Aspergillus nidulans, while l-arabinose is utilised faster in the presence than in the absence of d-galactose. Furthermore, the first two genes of the Leloir pathway for d-galactose catabolism - encoding d-galactose 1-epimerase and galactokinase - are induced more rapidly by l-arabinose than by d-galactose eventhough deletion mutants thereof grow as well as a wild type strain on the pentose. d-Galactose 1-epimerase is hyperinduced by l-arabinose, d-xylose and l-arabitol but not by xylitol. The results suggest that in A. nidulans, l-arabinose and d-xylose - both requiring NADPH for their catabolisation - actively promote the enzyme infrastructure necessary to convert ß-d-galactopyranose via the Leloir pathway with its α-anomer specific enzymes, into ß-d-glucose-6-phosphate (the starting substrate of the oxidative part of the pentose phosphate pathway) even in the absence of d-galactose.


Asunto(s)
Arabinosa/metabolismo , Aspergillus nidulans/genética , Galactosa/metabolismo , Xilosa/metabolismo , Aspergillus nidulans/metabolismo , Galactanos/genética , Galactanos/metabolismo , Regulación Fúngica de la Expresión Génica , Redes y Vías Metabólicas/genética , Metabolismo/genética , Pectinas/genética , Pectinas/metabolismo , Polisacáridos/genética , Polisacáridos/metabolismo , UDPglucosa 4-Epimerasa/genética , UDPglucosa 4-Epimerasa/metabolismo , Xilosa/genética
13.
Plant Physiol ; 179(2): 544-557, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30459263

RESUMEN

Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and ß-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to ß-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.


Asunto(s)
Sistemas CRISPR-Cas , Enzimas/genética , Frutas/fisiología , Pectinas/metabolismo , Solanum lycopersicum/fisiología , Pared Celular/química , Pared Celular/metabolismo , Enzimas/metabolismo , Esterificación , Galactanos/genética , Galactanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Solanum lycopersicum/genética , Mutación , Pectinas/genética , Pectinas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
14.
Plant Physiol Biochem ; 127: 573-589, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29727861

RESUMEN

During somatic embryogenesis (SE), explant cells undergo changes in the direction of their differentiation, which lead to diverse cell phenotypes. Although the genetic bases of the SE have been extensively studied in Arabidopsis thaliana, little is known about the chemical characteristics of the wall of the explant cells, which undergo changes in the direction of differentiation. Thus, we examined the occurrence of selected pectic and AGP epitopes in explant cells that display different phenotypes during SE. Explants examinations have been supplemented with an analysis of the ultrastructure. The deposition of selected pectic and AGP epitopes in somatic embryos was determined. Compared to an explant at the initial stage, a/embryogenic/totipotent and meristematic/pluripotent cells were characterized by a decrease in the presence of AGP epitopes, b/the presence of AGP epitopes in differentiated cells was similar, and c/an increase of analyzed epitopes was detected in the callus cells. Totipotent cells could be distinguished from pluripotent cells by: 1/the presence of the LM2 epitope in the latest one, 2/the appearance of the JIM16 epitope in totipotent cells, and 3/the more abundant presence of the JIM7 epitope in the totipotent cells. The LM5 epitope characterized the wall of the cells that were localized within the mass of embryogenic domain. The JIM8, JIM13 and JIM16 AGP epitopes appeared to be the most specific for the callus cells. The results indicate a relationship between the developmental state of the explant cells and the chemical composition of the cell walls.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Galactanos , Pectinas , Células Vegetales , Técnicas de Embriogénesis Somática de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Galactanos/biosíntesis , Galactanos/genética , Pectinas/biosíntesis , Pectinas/genética , Células Vegetales/metabolismo , Células Vegetales/ultraestructura
15.
Physiol Plant ; 164(1): 95-105, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29688577

RESUMEN

Antibody-based approaches have been used to study cell wall architecture and modifications during the ripening process of two important fleshy fruit crops: tomato and strawberry. Cell wall polymers in both unripe and ripe fruits have been sequentially solubilized and fractions analyzed with sets of monoclonal antibodies focusing on the pectic polysaccharides. We demonstrate the specific detection of the LM26 branched galactan epitope, associated with rhamnogalacturonan-I, in cell walls of ripe strawberry fruit. Analytical approaches confirm that the LM26 epitope is linked to sets of rhamnogalacturonan-I and homogalacturonan molecules. The cellulase-degradation of cellulose-rich residues that releases cell wall polymers intimately linked with cellulose microfibrils has been used to explore aspects of branched galactan occurrence and galactan metabolism. In situ analyses of ripe strawberry fruits indicate that the LM26 epitope is present in all primary cell walls and also particularly abundant in vascular tissues. The significance of the occurrence of branched galactan structures in the side chains of rhamnogalacturonan-I pectins in the context of ripening strawberry fruit is discussed.


Asunto(s)
Epítopos/química , Fragaria/metabolismo , Frutas/metabolismo , Galactanos/metabolismo , Solanum lycopersicum/metabolismo , Celulosa/metabolismo , Fragaria/genética , Frutas/genética , Galactanos/genética , Solanum lycopersicum/genética , Pectinas/metabolismo
16.
Plant Physiol Biochem ; 123: 24-33, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29223065

RESUMEN

BACKGROUND AND AIMS: Arabinogalactan proteins are present in the extracellular matrix and their occurrence is developmentally regulated. The studies were carried out to localise arabinogalactan proteins in ovary cells of Fragaria x ananassa Duchesne (strawberry) during megasporogenesis, megagametogenesis, and formation of the embryo. METHODS: The research included studies of ovary histochemistry and immunofluorescence labelling of AGP epitopes was performed with antibodies JIM13, JIM15 and MAC207. The use of the immunogold labelling method allowed specific detection of AGP epitopes at the subcellular level. KEY RESULTS: The localization of AGPs was studied in the cells of the ovary wall and elements building the developing ovule i.e. the integument, nucellus, archespore, megaspores, embryo sac, and embryo of a facultative apomict Fragaria x ananassa cv. 'Mount Everest'. For the first time the presence of AGP epitopes at the stage of a multicellular archespore was described. The occurrence of AGPs in the functional megaspore walls is related to selection of a megaspore continuing development; during later stages of development, AGPs are also evident markers of the female gametophyte. The intense fluorescence indicates the presence of AGPs in the embryo sac wall as well as in the cytoplasm compartment of the egg apparatus and around the secondary nucleus of the central cell. The localization of AGPs in the ovule of F. x ananassa resembles the distribution of these proteins in amphimictic plants. CONCLUSIONS: Arabinogalactan proteins occur in similar parts of the ovule of amphimictic and apomictic plants. The results confirm the participation of AGPs in reproductive structures as a useful marker during development of female gametophyte.


Asunto(s)
Quimera/metabolismo , Flores/metabolismo , Fragaria/metabolismo , Galactanos/metabolismo , Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Quimera/genética , Flores/genética , Fragaria/genética , Galactanos/genética , Glicoproteínas/genética , Proteínas de Plantas/genética
17.
J Biol Chem ; 291(36): 18867-79, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27417139

RESUMEN

The unique cell wall of mycobacteria is essential to their viability and the target of many clinically used anti-tuberculosis drugs and inhibitors under development. Despite intensive efforts to identify the ligase(s) responsible for the covalent attachment of the two major heteropolysaccharides of the mycobacterial cell wall, arabinogalactan (AG) and peptidoglycan (PG), the enzyme or enzymes responsible have remained elusive. We here report on the identification of the two enzymes of Mycobacterium tuberculosis, CpsA1 (Rv3267) and CpsA2 (Rv3484), responsible for this function. CpsA1 and CpsA2 belong to the widespread LytR-Cps2A-Psr (LCP) family of enzymes that has been shown to catalyze a variety of glycopolymer transfer reactions in Gram-positive bacteria, including the attachment of wall teichoic acids to PG. Although individual cpsA1 and cpsA2 knock-outs of M. tuberculosis were readily obtained, the combined inactivation of both genes appears to be lethal. In the closely related microorganism Corynebacterium glutamicum, the ortholog of cpsA1 is the only gene involved in this function, and its conditional knockdown leads to dramatic changes in the cell wall composition and morphology of the bacteria due to extensive shedding of cell wall material in the culture medium as a result of defective attachment of AG to PG. This work marks an important step in our understanding of the biogenesis of the unique cell envelope of mycobacteria and opens new opportunities for drug development.


Asunto(s)
Proteínas Bacterianas/genética , Pared Celular/metabolismo , Galactanos/metabolismo , Mycobacterium tuberculosis/metabolismo , Peptidoglicano/metabolismo , Ácidos Teicoicos/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Galactanos/genética , Mycobacterium tuberculosis/genética , Peptidoglicano/genética , Ácidos Teicoicos/genética
18.
Int J Med Microbiol ; 306(2): 89-98, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26723873

RESUMEN

Klebsiella pneumoniae ST258 is a globally disseminated, extremely drug resistant, nosocomial clone with limited treatment options. We show that the vast majority of ST258 isolates express modified d-galactan-I lipopolysaccharide O-antigen, termed hereinafter as D-galactan-III. The genetic determinant required for galactan-III synthesis was identified as a distinct operon adjacent to the rfb (wb) locus encoding D-galactan-I synthesis. The three genes within the operon encode predicted glycosyltransferases. Testing an isogenic transformant pair revealed that expression of D-galactan-III, in comparison to D-galactan-I, conferred improved survival in the presence of human serum. Eighty-three percent of the more than 200 ST258 draft genome sequences currently available carries the corresponding operon and hence these isolates are predicted to express galactan-III antigens. A D-galactan-III specific monoclonal antibody (mAb) was shown to bind to extracted LPS from a panel of ST258 isolates. The same mAb confirmed accessibility of galactan-III in surface staining of ST258 irrespective of the distinct capsular antigens expressed by both clades described previously. Based on these data, the galactan-III antigen may represent an attractive target for active and passive immunization approaches against K. pneumoniae ST258.


Asunto(s)
Galactanos/metabolismo , Klebsiella pneumoniae/inmunología , Antígenos O/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Antígenos de Superficie/inmunología , Clonación Molecular , Epítopos/inmunología , Femenino , Galactanos/clasificación , Galactanos/genética , Galactanos/inmunología , Hibridomas , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Lipopolisacáridos/inmunología , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Antígenos O/análisis , Antígenos O/genética , Operón/genética , Virulencia
19.
J Biotechnol ; 198: 3-14, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25661839

RESUMEN

Phenotypic heterogeneity, defined as the unequal behavior of individuals in an isogenic population, is prevalent in microorganisms. It has a significant impact both on industrial bioprocesses and microbial ecology. We introduce a new versatile reporter system designed for simultaneous monitoring of the activities of three different promoters, where each promoter is fused to a dedicated fluorescent reporter gene (cerulean, mCherry, and mVenus). The compact 3.1 kb triple reporter cassette can either be carried on a replicating plasmid or integrated into the genome avoiding artifacts associated with variation in copy number of plasmid-borne reporter constructs. This construct was applied to monitor promoter activities related to quorum sensing (sinI promoter) and biosynthesis of the exopolysaccharide galactoglucan (wgeA promoter) at single cell level in colonies of the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti growing in a microfluidics system. The T5-promoter served as a constitutive and homogeneously active control promoter indicating cell viability. wgeA promoter activity was heterogeneous over the whole period of colony development, whereas sinI promoter activity passed through a phase of heterogeneity before becoming homogeneous at late stages. Although quorum sensing-dependent regulation is a major factor activating galactoglucan production, activities of both promoters did not correlate at single cell level. We developed a novel mathematical strategy for classification of the gene expression status in cell populations based on the increase in fluorescence over time in each individual. With respect to galactoglucan biosynthesis, cells in the population were classified into non-contributors, weak contributors, and strong contributors.


Asunto(s)
Regiones Promotoras Genéticas/genética , Sinorhizobium meliloti/genética , Proteínas Bacterianas/genética , Galactanos/genética , Regulación Bacteriana de la Expresión Génica/genética , Genes Reporteros/genética , Glucanos/genética , Proteínas Fluorescentes Verdes/genética , Polisacáridos Bacterianos/genética , Percepción de Quorum/genética
20.
J Biol Chem ; 288(42): 30309-30319, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23986448

RESUMEN

Because tuberculosis is one of the most prevalent and serious infections, countermeasures against it are urgently required. We isolated the antitubercular agents caprazamycins from the culture of an actinomycete strain and created CPZEN-45 as the most promising derivative of the caprazamycins. Herein, we describe the mode of action of CPZEN-45 first against Bacillus subtilis. Unlike the caprazamycins, CPZEN-45 strongly inhibited incorporation of radiolabeled glycerol into growing cultures and showed antibacterial activity against caprazamycin-resistant strains, including a strain overexpressing translocase-I (MraY, involved in the biosynthesis of peptidoglycan), the target of the caprazamycins. By contrast, CPZEN-45 was not effective against a strain overexpressing undecaprenyl-phosphate-GlcNAc-1-phosphate transferase (TagO, involved in the biosynthesis of teichoic acid), and a mutation was found in the tagO gene of the spontaneous CPZEN-45-resistant strain. This suggested that the primary target of CPZEN-45 in B. subtilis is TagO, which is a different target from that of the parent caprazamycins. This suggestion was confirmed by evaluation of the activities of these enzymes. Finally, we showed that CPZEN-45 was effective against WecA (Rv1302, also called Rfe) of Mycobacterium tuberculosis, the ortholog of TagO and involved in the biosynthesis of the mycolylarabinogalactan of the cell wall of M. tuberculosis. The outlook for WecA as a promising target for the development of antituberculous drugs as a countermeasure of drug resistant tuberculosis is discussed.


Asunto(s)
Antituberculosos/farmacología , Azepinas/farmacocinética , Pared Celular/enzimología , Mycobacterium tuberculosis/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/genética , Galactanos/biosíntesis , Galactanos/genética , Mycobacterium tuberculosis/genética , Transferasas/antagonistas & inhibidores , Transferasas/genética , Transferasas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/enzimología , Tuberculosis Resistente a Múltiples Medicamentos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...