Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Protein Expr Purif ; 222: 106538, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38950762

RESUMEN

Nucleotide sugars (UDP-Sugars) are essential for the production of polysaccharides and glycoconjugates utilized in medicines, cosmetics, and food industries. The enzyme Galactose-1-phosphate uridylyltransferase (GalU; EC 2.7.7.12) is responsible for the synthesis of UDP-galactose from α-d-galactose-1-phosphate (Gal-1P) and UTP. A novel bacterial GalU (TiGalU) encoded from a thermophilic bacterium, Thermodesulfatator indicus, was successfully purified using the Ni-NTA column after being expressed in Escherichia coli. The optimal pH for recombinant TiGalU was determined to be 5.5. The optimum temperature of the enzyme was 45 °C. The activity of TiGalU was not dependent on Mg2+ and was strongly inhibited by SDS. When coupled with galactose kinase (GALK1) and ß-1,4-galactosyltransferase 1 (B4GALT1), the enzyme enabled the one-pot synthesis of Gal-ß-1,4-GlcNAc-X by utilizing galactose and UTP as substrates. This study reported the in vitro biosynthesis of Gal-ß-1,4-GlcNAc-X for the first time, providing an environmentally friendly way to biosynthesis glycosides and other polysaccharides.


Asunto(s)
Escherichia coli , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/aislamiento & purificación , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo , UTP-Hexosa-1-Fosfato Uridililtransferasa/química , Expresión Génica , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/química , Clonación Molecular , Galactosafosfatos/metabolismo , Galactosafosfatos/genética , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Galactosiltransferasas/química
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167340, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38986816

RESUMEN

Classic galactosemia is an inborn error of metabolism caused by mutations in the GALT gene resulting in the diminished activity of the galactose-1-phosphate uridyltransferase enzyme. This reduced GALT activity leads to the buildup of the toxic intermediate galactose-1-phosphate and a decrease in ATP levels upon exposure to galactose. In this work, we focused our attention on mitochondrial oxidative phosphorylation in the context of this metabolic disorder. We observed that galactose-1-phosphate accumulation reduced respiratory rates in vivo and changed mitochondrial function and morphology in yeast models of galactosemia. These alterations are harmful to yeast cells since the mitochondrial retrograde response is activated as part of the cellular adaptation to galactose toxicity. In addition, we found that galactose-1-phosphate directly impairs cytochrome c oxidase activity of mitochondrial preparations derived from yeast, rat liver, and human cell lines. These results highlight the evolutionary conservation of this biochemical effect. Finally, we discovered that two compounds - oleic acid and dihydrolipoic acid - that can improve the growth of cell models of mitochondrial diseases, were also able to improve galactose tolerance in this model of galactosemia. These results reveal a new molecular mechanism relevant to the pathophysiology of classic galactosemia - galactose-1-phosphate-dependent mitochondrial dysfunction - and suggest that therapies designed to treat mitochondrial diseases may be repurposed to treat galactosemia.


Asunto(s)
Complejo IV de Transporte de Electrones , Galactosemias , Galactosafosfatos , Mitocondrias , Galactosemias/metabolismo , Galactosemias/patología , Galactosemias/genética , Galactosafosfatos/metabolismo , Humanos , Animales , Ratas , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/efectos de los fármacos , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fosforilación Oxidativa/efectos de los fármacos , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , Galactosa/metabolismo
3.
J Inherit Metab Dis ; 44(4): 871-878, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33720431

RESUMEN

Classic galactosemia (CG) is a rare inborn error of metabolism that results from profound deficiency of galactose-1-P uridylyltransferase (GALT). Despite early detection and rapid and lifelong dietary restriction of galactose, which is the current standard of care, most patients grow to experience a broad range of complications that can include motor difficulties. The goal of this study was to characterize hand fine motor control deficit among children and adults with classic galactosemia (CG). Specifically, we used Neuroglyphics software to collect digital Archimedes spiral drawings on a touch screen from 57 volunteers with CG (cases) and 80 controls. Hand fine motor control was scored as root mean square (RMS) of spirals drawn relative to an idealized template. Presence of tremor was defined as a peak in periodicity of changes in drawing speed or direction in the 4-8 Hz range. We observed a highly significant difference (P < .001) in RMS scores between cases and controls, with almost 51% of cases showing at least 1 of 4 spirals scoring outside the 95th percentile for controls. The corresponding prevalence for controls was 10%. Similarly, more than 35% of cases, and almost 14% of controls, showed at least 1 of 4 spirals with a tremor amplitude above the 95th % cutoff for controls. Our results both confirm and extend what is known about hand fine motor control deficit among children and adults with CG and establish digital assessment as a useful approach to quantify this outcome.


Asunto(s)
Galactosa/metabolismo , Galactosemias/metabolismo , Galactosafosfatos/metabolismo , Adolescente , Adulto , Animales , Estudios de Casos y Controles , Niño , Femenino , Galactosemias/genética , Humanos , Masculino , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , Adulto Joven
4.
Adv Clin Exp Med ; 29(4): 499-504, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32356415

RESUMEN

BACKGROUND: The pathogenesis of classical galactosemia, a rare metabolic disorder associated with developmental complications in neonates and children due to inherited deficiency of galactose-1-phosphate (Gal-1-P) uridylyltransferase (GALT), is known to be mediated by elevated Gal-1-P levels and involves a cascade of cytokines, reactive oxygen species (ROS) and growth factors. OBJECTIVES: To examine ex vivo the effect of Gal-1-P on the mitogenic activity of different growth factors, particularly insulin-like growth factor-1 (IGF-1), known to regulate growth and development from the fetal stage to adulthood. MATERIAL AND METHODS: Fibroblasts derived from the foreskin of 3-8-day-old healthy neonates were cultured for 1-14 days with 0-20 mM galactose or 0-10 mM Gal-1-P and then stimulated with 5% fetal bovine serum (FBS) or 50 ng/mL of platelet-derived growth factor (PDGF) or fibroblast growth factor (FGF) or IGF-1 for 24 h. DNA synthesis was measured and protein expression of PDGFR, FGFR and IGF-1R was assessed with western blotting. RESULTS: Supra-physiological concentrations of galactose significantly decreased FBSand IGF-1-induced BrdU incorporation. The presence of Gal-1-P (5-10 mM) in culture medium for 7-14 days significantly (p < 0.01) decreased IGF-1-, PDGFand FBS-stimulated DNA synthesis. While treatment with Gal-1-P selectively and significantly (p < 0.01) reduced the protein expression of IGF-1 receptor, galactose treatment did not have any marked effect on examined growth factor receptors. CONCLUSIONS: This study demonstrates that Gal-1-P impairs IGF-1 activity through IGF-1-receptor impairment, thereby providing a new insight into the molecular mechanisms of galactosemia pathogenesis.


Asunto(s)
Fibroblastos/efectos de los fármacos , Galactosemias/patología , Galactosafosfatos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Galactosemias/sangre , Galactosemias/metabolismo , Humanos , Recién Nacido , Factor I del Crecimiento Similar a la Insulina/genética
5.
Comput Biol Med ; 117: 103583, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32072977

RESUMEN

Type I galactosemia is a very rare autosomal recessive genetic metabolic disorder that occurs because of the mutations present in the galactose-1-phosphate uridyl transferase (GALT) gene, resulting in a deficiency of the GALT enzyme. The action of the GALT enzyme is to convert galactose-1-phosphate and uridine diphosphate glucose into glucose-1-phosphate (G1P) and uridine diphosphate-galactose, a crucial second step of the Leloir pathway. A missense mutation in the GALT enzyme leads to variable galactosemia's clinical presentations, ranging from mild to severe. Our study aimed to employ a comprehensive computational pipeline to analyze the most prevalent missense mutations (p.S135L, p.K285 N, p.Q188R, and p.N314D) responsible for galactosemia; these genes could serve as potential targets for chaperone therapy. We analyzed the four mutations through different computational analyses, including amino acid conservation, in silico pathogenicity and stability predictions, and macromolecular simulations (MMS) at 50 ns The stability and pathogenicity predictors showed that the p.Q188R and p.S135L mutants are the most pathogenic and destabilizing. In agreement with these results, MMS analysis demonstrated that the p.Q188R and p.S135L mutants possess higher deviation patterns, reduced compactness, and intramolecular H-bonds of the protein. This could be due to the physicochemical modifications that occurred in the mutants p.S135L and p.Q188R compared to the native. Evolutionary conservation analysis revealed that the most prevalent mutations positions were conserved among different species except N314. The proposed research study is intended to provide a basis for the therapeutic development of drugs and future treatment of classical galactosemia and possibly other genetic diseases using chaperone therapy.


Asunto(s)
Galactosemias , UTP-Hexosa-1-Fosfato Uridililtransferasa , Galactosemias/genética , Galactosafosfatos , Humanos , Mutación/genética , UDP-Glucosa-Hexosa-1-Fosfato Uridiltransferasa/genética , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética
6.
J Biol Chem ; 295(12): 3773-3782, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-31996377

RESUMEN

In the presence of galactose, lithium ions activate the unfolded protein response (UPR) by inhibiting phosphoglucomutase activity and causing the accumulation of galactose-related metabolites, including galactose-1-phosphate. These metabolites also accumulate in humans who have the disease classic galactosemia. Here, we demonstrate that Saccharomyces cerevisiae yeast strains harboring a deletion of UBX4, a gene encoding a partner of Cdc48p in the endoplasmic reticulum-associated degradation (ERAD) pathway, exhibit delayed UPR activation after lithium and galactose exposure because the deletion decreases galactose-1-phosphate levels. The delay in UPR activation did not occur in yeast strains in which key ERAD or proteasomal pathway genes had been disrupted, indicating that the ubx4Δ phenotype is ERAD-independent. We also observed that the ubx4Δ strain displays decreased oxygen consumption. The inhibition of mitochondrial respiration was sufficient to diminish galactose-1-phosphate levels and, consequently, affects UPR activation. Finally, we show that the deletion of the AMP-activated protein kinase ortholog-encoding gene SNF1 can restore the oxygen consumption rate in ubx4Δ strain, thereby reestablishing galactose metabolism, UPR activation, and cellular adaption to lithium-galactose challenge. Our results indicate a role for Ubx4p in yeast mitochondrial function and highlight that mitochondrial and endoplasmic reticulum functions are intertwined through galactose metabolism. These findings also shed new light on the mechanisms of lithium action and on the pathophysiology of galactosemia.


Asunto(s)
Galactosa/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Litio/farmacología , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Retículo Endoplásmico/metabolismo , Galactosa/metabolismo , Galactosafosfatos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Consumo de Oxígeno , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Mol Genet Metab ; 129(3): 171-176, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31954591

RESUMEN

BACKGROUND: The high variability in clinical outcome of patients with Classical Galactosemia (CG) is poorly understood and underlines the importance of prognostic biomarkers, which are currently lacking. The aim of this study was to investigate if residual galactose metabolism capacity is associated with clinical and biochemical outcomes in CG patients with varying geno- and phenotypes. METHODS: Galactose Metabolite Profiling (GMP) was used to determine residual galactose metabolism in fibroblasts of CG patients. The association between the galactose index (GI) defined as the ratio of the measured metabolites [U13C]Gal-1-P/ [13C6]UDP-galactose, and both intellectual and neurological outcome and galactose-1-phosphate (Gal-1-P) levels was investigated. RESULTS: GMP was performed in fibroblasts of 28 patients and 3 control subjects. The GI of the classical phenotype patients (n = 22) was significantly higher than the GI of four variant patients detected by newborn screening (NBS) (p = .002), two homozygous p.Ser135Leu patients (p = .022) and three controls (p = .006). In the classical phenotype patients, 13/18 (72%) had a poor intellectual outcome (IQ < 85) and 6/12 (50%) had a movement disorder. All the NBS detected variant patients (n = 4) had a normal intellectual outcome (IQ ≥ 85) and none of them has a movement disorder. In the classical phenotype patients, there was no significant difference in GI between patients with a poor and normal clinical outcome. The NBS detected variant patients had significantly lower GI levels and thus higher residual galactose metabolism than patients with classical phenotypes. There was a clear correlation between Gal-1-P levels in erythrocytes and the GI (p = .001). CONCLUSIONS: The GI was able to distinguish CG patients with varying geno- and phenotypes and correlated with Gal-1-P. The data of the NBS detected variant patients demonstrated that a higher residual galactose metabolism may result in a more favourable clinical outcome. Further research is needed to enable individual prognostication and treatment in all CG patients.


Asunto(s)
Fibroblastos/metabolismo , Galactosa/metabolismo , Galactosemias/diagnóstico , Galactosemias/metabolismo , Estudios de Cohortes , Femenino , Galactosemias/genética , Galactosemias/fisiopatología , Galactosafosfatos/metabolismo , Genotipo , Homocigoto , Humanos , Recién Nacido , Discapacidad Intelectual/diagnóstico , Masculino , Trastornos del Movimiento/diagnóstico , Tamizaje Neonatal , Fenotipo
8.
Proteins ; 88(5): 669-678, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31693208

RESUMEN

A gene encoding galactose 1-phosphate uridylyltransferase (GalT) was identified in the hyperthermophilic archaeon Pyrobaculum aerophilum. The gene was overexpressed in Escherichia coli, after which its product was purified and characterized. The expressed enzyme was highly thermostable and retained about 90% of its activity after incubation for 10 minutes at temperatures up to 90°C. Two different crystal structures of P. aerophilum GalT were determined: the substrate-free enzyme at 2.33 Å and the UDP-bound H140F mutant enzyme at 1.78 Å. The main-chain coordinates of the P. aerophilum GalT monomer were similar to those in the structures of the E. coli and human GalTs, as was the dimeric arrangement. However, there was a striking topological difference between P. aerophilum GalT and the other two enzymes. In the E. coli and human enzymes, the N-terminal chain extends from one subunit into the other and forms part of the substrate-binding pocket in the neighboring subunit. By contrast, the N-terminal chain in P. aerophilum GalT extends to the substrate-binding site in the same subunit. Amino acid sequence alignment showed that a shorter surface loop in the N-terminal region contributes to the unique topology of P. aerophilum GalT. Structural comparison of the substrate-free enzyme with UDP-bound H140F suggests that binding of the glucose moiety of the substrate, but not the UDP moiety, gives rise to a large structural change around the active site. This may in turn provide an appropriate environment for the enzyme reaction.


Asunto(s)
Proteínas Arqueales/química , Galactosafosfatos/química , Subunidades de Proteína/química , Pyrobaculum/química , UTP-Hexosa-1-Fosfato Uridililtransferasa/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosafosfatos/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Calor , Humanos , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Pyrobaculum/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo
9.
J Inherit Metab Dis ; 43(3): 529-539, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31774565

RESUMEN

Classic Galactosaemia is a genetic disorder, characterised by galactose intolerance in newborns. It occurs due to recessive mutations in the galactose-1-phosphate uridylyltransferase (GALT) gene. One of the main alterations caused by GALT deficiency is the accumulation of galactose 1-phosphate (Gal-1P) in cells. Studies have suggested that Gal-1P exerts cellular toxicity, possibly by inhibiting cellular metabolism. However, the exact significance of Gal-1P in disease pathogenesis remains unclear. In this study, we tested the hypothesis that Gal-1P inhibits cellular glucose utilisation by competing with substrates in the glycolytic pathway. We also investigated the metabolism of both galactose and glucose in GALT-expressing HEK293T and 143B cells to identify critical reactions steps contributing to the metabolic toxicity of galactose. Notably, we found that galactose-treated HEK293T and 143B cells, which express endogenous GALT, accumulate markedly high intracellular Gal-1P concentrations. Despite very high intracellular Gal-1P concentrations, no inhibition of cellular glucose uptake and no significant changes in the intracellular concentrations of glycolytic metabolites were observed. This indicates that Gal-1P does not exert an inhibitory effect on glycolysis in cells and rules out one potential hypothesis for cellular Gal-1P toxicity. We also investigated the mechanism responsible for the observed Gal-1P accumulation. Our results suggest that Gal-1P accumulation is a result of both low GALT activity and the absence of product inhibition by Gal-1P on galactokinase (GALK1), the enzyme responsible for phosphorylating galactose to Gal-1P. These findings provide a better understanding of the disease mechanisms underlying Classic Galactoaemia.


Asunto(s)
Galactosa/metabolismo , Galactosemias/metabolismo , Galactosafosfatos/metabolismo , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo , Células HEK293 , Humanos , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética
10.
J Inherit Metab Dis ; 43(3): 507-517, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31845337

RESUMEN

Classical galactosemia (CG) patients frequently develop long-term complications despite early dietary treatment. The highly variable clinical outcome is poorly understood and a lack of prognostic biomarkers hampers individual prognostication and treatment. The aim of this study was to investigate the association between residual galactose oxidation capacity and clinical and biochemical outcomes in CG patients with varying geno- and phenotypes. The noninvasive 1-13 C galactose breath test was used to assess whole body galactose oxidation capacity. Participants received a 7 mg/kg oral dose of 1-13 C labelled galactose. The galactose oxidation capacity was determined by calculating the cumulative percentage dose of the administered galactose (CUMPCD) recovered as 13 CO2 in exhaled air. Forty-one CG patients (5-47 years) and four adult controls were included. The median galactose oxidation capacity after 120 minutes (CUMPCDT120) of 34 classical patients (0.29; 0.08-7.51) was significantly lower when compared to two homozygous p.Ser135Leu patients (9.44; 8.66-10.22), one heterozygous p.Ser135Leu patient 18.59, four NBS detected variant patients (13.79; 12.73-14.87) and four controls (9.29; 8.94-10.02). There was a clear correlation between Gal-1-P levels and CUMPCDT120 (P < .0005). In the classical patients, the differences in CUMPCDT120 were small and did not distinguish between patients with poor and normal clinical outcomes. The galactose breath test distinguished classical patients from homo- and heterozygous p.Ser135Leu and NBS detected variant patients, but was not able to predict clinical outcomes in classical patients. Future studies are warranted to enable individualised prognostication and treatment, especially in NBS variants with galactose oxidation capacities in the control range.


Asunto(s)
Galactosa/metabolismo , Galactosemias/metabolismo , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo , Adolescente , Adulto , Pruebas Respiratorias , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Galactosemias/genética , Galactosafosfatos , Genotipo , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Fenotipo , Hermanos , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , Adulto Joven
11.
J Inherit Metab Dis ; 43(3): 518-528, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31845342

RESUMEN

Classic galactosemia (CG) is a potentially lethal inborn error of metabolism, if untreated, that results from profound deficiency of galactose-1-phosphate uridylyltransferase (GALT), the middle enzyme of the Leloir pathway of galactose metabolism. While newborn screening and rapid dietary restriction of galactose prevent or resolve the potentially lethal acute symptoms of CG, by mid-childhood, most treated patients experience significant complications. The mechanisms underlying these long-term deficits remain unclear. Here we introduce a new GALT-null rat model of CG and demonstrate that these rats display cataracts, cognitive, motor, and growth phenotypes reminiscent of patients outcomes. We further apply the GALT-null rats to test how well blood biomarkers, typically followed in patients, reflect metabolic perturbations in other, more relevant tissues. Our results document that the relative levels of galactose metabolites seen in GALT deficiency differ widely by tissue and age, and that red blood cell Gal-1P, the marker most commonly followed in patients, shows no significant association with Gal-1P in other tissues. The work reported here establishes our outbred GALT-null rats as an effective model for at least four complications characteristic of CG, and sets the stage for future studies addressing mechanism and testing the efficacy of novel candidate interventions.


Asunto(s)
Modelos Animales de Enfermedad , Galactosa/metabolismo , Galactosemias/metabolismo , Galactosafosfatos/metabolismo , Animales , Animales Recién Nacidos , Femenino , Galactosemias/genética , Masculino , Fenotipo , Ratas , Ratas Sprague-Dawley , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética
12.
Mol Ther ; 28(1): 304-312, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31604675

RESUMEN

Classic galactosemia (CG) is a potentially lethal inborn error of galactose metabolism that results from deleterious mutations in the human galactose-1 phosphate uridylyltransferase (GALT) gene. Previously, we constructed a GalT-/- (GalT-deficient) mouse model that exhibits galactose sensitivity in the newborn mutant pups, reduced fertility in adult females, impaired motor functions, and growth restriction in both sexes. In this study, we tested whether restoration of hepatic GALT activity alone could decrease galactose-1 phosphate (gal-1P) and plasma galactose in the mouse model. The administration of different doses of mouse GalT (mGalT) mRNA resulted in a dose-dependent increase in mGalT protein expression and enzyme activity in the liver of GalT-deficient mice. Single intravenous (i.v.) dose of human GALT (hGALT) mRNA decreased gal-1P in mutant mouse liver and red blood cells (RBCs) within 24 h with low levels maintained for over a week. Repeated i.v. injections increased hepatic GalT expression, nearly normalized gal-1P levels in liver, and decreased gal-1P levels in RBCs and peripheral tissues throughout all doses. Moreover, repeated dosing reduced plasma galactose by 60% or more throughout all four doses. Additionally, a single intraperitoneal dose of hGALT mRNA overcame the galactose sensitivity and promoted the growth in a GalT-/- newborn pup.


Asunto(s)
Modelos Animales de Enfermedad , Galactosa/sangre , Galactosemias/terapia , ARN Mensajero/administración & dosificación , UTP-Hexosa-1-Fosfato Uridililtransferasa/administración & dosificación , Animales , Animales Recién Nacidos , Células Cultivadas , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Femenino , Fibroblastos/metabolismo , Galactosemias/patología , Galactosafosfatos/metabolismo , Humanos , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Transducción de Señal/efectos de los fármacos , Transfección , Resultado del Tratamiento , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética
13.
Mol Genet Metab ; 125(3): 258-265, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30172461

RESUMEN

Impaired activity of galactose-1-phosphate uridyltransferase (GALT) causes classic galactosemia (OMIM 230400), characterized by the accumulation of galactose-1-phosphate (GAL1P) in patients' red blood cells (RBCs). Our recent study demonstrated a correlation between RBC GAL1P and long-term outcomes in galactosemia patients. Here, we analyze biochemical and molecular results in 77 classic galactosemia patients to evaluate the association between GALT genotypes and GAL1P concentration in RBCs. Experimental data from model organisms were also included to assess the correlation between GAL1P and predicted residual activity of each genotype. Although all individuals in this study showed markedly reduced RBC GALT activity, we observed significant differences in RBC GAL1P concentrations among galactosemia genotypes. While levels of GAL1P on treatment did not correlate with RBC GALT activities (p = 0.166), there was a negative nonlinear correlation between mean GAL1P concentrations and predicted residual enzyme activity of genotype (p = 0.004). These studies suggest that GAL1P levels in RBCs on treatment likely reflect the overall functional impairment of GALT in patients with galactosemia.


Asunto(s)
Eritrocitos/metabolismo , Galactosemias/genética , Galactosafosfatos/sangre , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , Adolescente , Adulto , Niño , Preescolar , Eritrocitos/patología , Femenino , Galactosemias/sangre , Galactosemias/patología , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Adulto Joven
14.
Orphanet J Rare Dis ; 13(1): 146, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143026

RESUMEN

BACKGROUND: Clinical outcome of patients with a classical presentation of galactosemia (classical patients) varies substantially, even between patients with the same genotype. With current biomarkers, it is not possible to predict clinical outcome early in life. The aim of this study was to develop a method to provide more insight into galactose metabolism, which allows quantitative assessment of residual galactose metabolism in galactosemia patients. We therefore developed a method for galactose metabolite profiling (GMP) in fibroblasts using [U-13C]-labeled galactose. METHODS: GMP analysis was performed in fibroblasts of three classical patients, three variant patients and three healthy controls. The following metabolites were analyzed: [U13C]-galactose, [U13C]-galactose-1-phosphate (Gal-1-P) and [13C6]- uridine diphosphate(UDP)-galactose. The ratio of [U13C]-Gal-1-P/ [13C6]-UDP-galactose was defined as the galactose index (GI). RESULTS: All patient cell lines could be distinguished from the control cell lines and there was a clear difference between variant and classical patients. Variant patients had lower levels of [U13C]-galactose and [U13C]-Gal-1-P than classical patients (though substantially higher than healthy controls) and higher levels of [13C6]-UDP-galactose than classical patients (though substantially lower than healthy controls) resulting in a different GI in all groups. CONCLUSIONS: GMP in fibroblasts is a sensitive method to determine residual galactose metabolism capacity, which can discriminate between patients with a classical presentation of galactosemia, patients with a variant presentation and healthy controls. GMP may be a useful method for early prognostication after further validation in a larger cohort of patients representing the full phenotypic spectrum of galactosemia.


Asunto(s)
Biomarcadores/metabolismo , Fibroblastos/metabolismo , Galactosa/metabolismo , Galactosemias/metabolismo , Uridina Difosfato Galactosa/metabolismo , Adolescente , Adulto , Células Cultivadas , Femenino , Galactosafosfatos/metabolismo , Humanos , Masculino , Adulto Joven
15.
Fungal Genet Biol ; 114: 42-52, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29580862

RESUMEN

In most organisms, galactose is metabolized via the Leloir pathway, which is conserved from bacteria to mammals. Utilization of galactose requires a close interplay of the metabolic enzymes, as misregulation or malfunction of individual components can lead to the accumulation of toxic intermediate compounds. For the phytopathogenic basidiomycete Ustilago maydis, galactose is toxic for wildtype strains, i.e. leads to growth repression despite the presence of favorable carbon sources as sucrose. The galactose sensitivity can be relieved by two independent modifications: (1) by disruption of Hxt1, which we identify as the major transporter for galactose, and (2) by a point mutation in the gene encoding the galactokinase Gal1, the first enzyme of the Leloir pathway. The mutation in gal1(Y67F) leads to reduced enzymatic activity of Gal1 and thus may limit the formation of putatively toxic galactose-1-phosphate. However, systematic deletions and double deletions of different genes involved in galactose metabolism point to a minor role of galactose-1-phosphate in galactose toxicity. Our results show that molecular triggers for galactose toxicity in U. maydis differ from yeast and mammals.


Asunto(s)
Galactosa/metabolismo , Ustilago/enzimología , Ustilago/genética , Secuencia de Aminoácidos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactoquinasa/genética , Galactoquinasa/metabolismo , Galactosafosfatos/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Redes y Vías Metabólicas , Mutagénesis , Eliminación de Secuencia
16.
Mol Biol Cell ; 29(8): 897-910, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29444955

RESUMEN

Metabolic dysregulation leading to sugar-phosphate accumulation is toxic in organisms ranging from bacteria to humans. By comparing two models of sugar-phosphate toxicity in Saccharomyces cerevisiae, we demonstrate that toxicity occurs, at least in part, through multiple, isomer-specific mechanisms, rather than a single general mechanism.


Asunto(s)
Fructosafosfatos/toxicidad , Galactosafosfatos/toxicidad , Genes Supresores , Saccharomyces cerevisiae/metabolismo , Medios de Cultivo/química , Fructosafosfatos/metabolismo , Galactosafosfatos/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutación , Saccharomyces cerevisiae/genética
17.
Structure ; 26(2): 295-303.e6, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29413322

RESUMEN

Human NUDT22 belongs to the diverse NUDIX family of proteins, but has, until now, remained uncharacterized. Here we show that human NUDT22 is a Mg2+-dependent UDP-glucose and UDP-galactose hydrolase, producing UMP and glucose 1-phosphate or galactose 1-phosphate. We present the structure of human NUDT22 alone and in a complex with the substrate UDP-glucose. These structures reveal a partially conserved NUDIX fold domain preceded by a unique N-terminal domain responsible for UDP moiety binding and recognition. The NUDIX domain of NUDT22 contains a modified NUDIX box identified using structural analysis and confirmed through functional analysis of mutants. Human NUDT22's distinct structure and function as a UDP-carbohydrate hydrolase establish a unique NUDIX protein subfamily.


Asunto(s)
Galactosafosfatos/metabolismo , Glucofosfatos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Humanos , Pliegue de Proteína
18.
J Inherit Metab Dis ; 41(2): 197-208, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29350350

RESUMEN

Impaired activity of galactose-1-phosphate uridyltransferase (GALT) causes galactosemia, an autosomal recessive disorder of galactose metabolism. Early initiation of a galactose-restricted diet can prevent or resolve neonatal complications. Despite therapy, patients often experience long-term complications including speech impairment, learning disabilities, and premature ovarian insufficiency in females. This study evaluates clinical outcomes in 34 galactosemia patients with markedly reduced GALT activity and compares outcomes between patients with different levels of mean galactose-1-phosphate in red blood cells (GAL1P) using logistic regression: group 1 (n = 13) GAL1P ≤1.7 mg/dL vs. group 2 (n = 21) GAL1P ≥ 2 mg/dL. Acute symptoms at birth were comparable between groups (p = 0.30) with approximately 50% of patients presenting with jaundice, liver failure, and failure-to-thrive. However, group 2 patients had significantly higher prevalence of negative long-term outcomes compared to group 1 patients (p = 0.01). Only one of 11 patients >3 yo in group 1 developed neurological and severe behavioral problems of unclear etiology. In contrast, 17 of 20 patients >3 yo in group 2 presented with one or more long-term complications associated with galactosemia. The majority of females ≥15 yo in this group also had impaired ovarian function with markedly reduced levels of anti-Müllerian hormone. These findings suggest that galactosemia patients with higher GAL1P levels are more likely to have negative long-term outcome. Therefore, evaluation of GAL1P levels on a galactose-restricted diet might be helpful in providing a prognosis for galactosemia patients with rare or novel genotypes whose clinical presentations are not well known.


Asunto(s)
Eritrocitos/metabolismo , Galactosemias/sangre , Galactosemias/complicaciones , Galactosafosfatos/sangre , UTP-Hexosa-1-Fosfato Uridililtransferasa/deficiencia , Adolescente , Desarrollo del Adolescente , Adulto , Factores de Edad , Biomarcadores/sangre , Niño , Desarrollo Infantil , Fenómenos Fisiológicos Nutricionales Infantiles , Preescolar , Progresión de la Enfermedad , Femenino , Galactosemias/diagnóstico , Galactosemias/dietoterapia , Humanos , Lactante , Masculino , Estado Nutricional , Valor Predictivo de las Pruebas , Resultado del Tratamiento , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , Regulación hacia Arriba , Adulto Joven
19.
FEBS J ; 284(22): 3931-3953, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28975708

RESUMEN

6-phospho-ß-glucosidases and 6-phospho-ß-galactosidases are enzymes that hydrolyze the ß-glycosidic bond between a terminal non-reducing glucose-6-phosphate (Glc6P) or galactose-6-phosphate (Gal6P), respectively, and other organic molecules. Gan1D, a glycoside hydrolase (GH) belonging to the GH1 family, has recently been identified in a newly characterized galactan-utilization gene cluster in the bacterium Geobacillus stearothermophilus T-1. Gan1D has been shown to exhibit bifunctional activity, possessing both 6-phospho-ß-galactosidase and 6-phospho-ß-glucosidase activities. We report herein the complete 3D crystal structure of Gan1D, together with its acid/base catalytic mutant Gan1D-E170Q. The tertiary structure of Gan1D conforms well to the (ß/α)8 TIM-barrel fold commonly observed in GH enzymes, and its quaternary structure adopts a dimeric assembly, confirmed by gel-filtration and small-angle X-ray scattering results. We present also the structures of Gan1D in complex with the putative substrate cellobiose-6-phosphate (Cell6P) and the degradation products Glc6P and Gal6P. These complexes reveal the specific enzyme-substrate and enzyme-product binding interactions of Gan1D, and the residues involved in its glycone, aglycone, and phosphate binding sites. We show that the different ligands trapped in the active sites adopt different binding modes to the protein, providing a structural basis for the dual galactosidase/glucosidase activity observed for this enzyme. Based on this information, specific mutations were performed on one of the active site residues (W433), shifting the enzyme specificity from dual activity to a significant preference toward 6-phospho-ß-glucosidase activity. These data and their comparison with structural data of related glucosidases and galactosidases are used for a more general discussion on the structure-function relationships in this sub-group of GH1 enzymes. DATABASES: Atomic coordinates of Gan1D-wild-type (WT)-P1, Gan1D-WT-C2, Gan1D-E170Q, Gan1D-WT-Gal6P, Gan1D-WT-Glc6P, and Gan1D-E170Q-Cell6P have been deposited in the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank, under accession codes 5OKB, 5OKJ/5OKH, 5OKA/5OK7, 5OKQ/5OKK, 5OKS/5OKR, and 5OKG/5OKE, respectively.


Asunto(s)
Geobacillus stearothermophilus/enzimología , Glucosidasas/química , Glucosidasas/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Galactosafosfatos/metabolismo , Modelos Moleculares , Fosfatos/metabolismo , Conformación Proteica , Homología de Secuencia , Especificidad por Sustrato
20.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1348-1357, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28844747

RESUMEN

Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity.


Asunto(s)
Proteínas Bacterianas/química , Erwinia amylovora/enzimología , Glucofosfatos/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , Uridina Difosfato Glucosa/química , Uridina Trifosfato/química , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Erwinia amylovora/química , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosamina/análogos & derivados , Galactosamina/química , Galactosamina/metabolismo , Galactosafosfatos/química , Galactosafosfatos/metabolismo , Expresión Génica , Glucosamina/análogos & derivados , Glucosamina/química , Glucosamina/metabolismo , Glucofosfatos/metabolismo , Cinética , Manosafosfatos/química , Manosafosfatos/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Pentosafosfatos/química , Pentosafosfatos/metabolismo , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/química , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Uridina Difosfato Glucosa/metabolismo , Uridina Trifosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA