Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 123: 155188, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056146

RESUMEN

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a global health problem with no effective treatment. Isoquercitrin (IQ) alters hepatic lipid metabolism and inhibits adipocyte differentiation. The underlying regulatory mechanisms of IQ in regulating insulin resistance (IR) and lipid metabolism remain unclear. PURPOSE: This study was aimed at investigating the effects of IQ on NASH and deciphering whether the underlying mechanisms are via modulation of galectin-3 mediated IR and lipid metabolism. METHODS: IR-HepG2 cell lines were used to demonstrate the ability of IQ to modulate galectin-3-mediated glucose disposal and lipid metabolism. A 20-week high-fat diet (HFD)-induced NASH model was established in C57BL/6J mice, and the protective effect of IQ on lipid disposal in the liver was verified. Further, the mRNA and protein levels of glucose and lipid metabolism were investigated, and lysophosphatidylcholine (LPC) and acylcarnitine (AC) profiling were performed to characterize the changes in endogenous substances associated with mitochondrial function and lipid metabolism in serum and cells. Furthermore, the pharmacokinetic features of IQ were explored in a rat model of NASH. RESULTS: IQ restored liver function and ameliorated inflammation and lipid accumulationin NASH model mice. Notably, significant regulation of the proteins included fatty acid-generating and transporting, cholesterol metabolism enzymes, nuclear transcription factors, mitochondrial metabolism, and IR-related enzymes was noted to be responsible for the therapeutic mechanisms of IQ against experimental NASH. Serum lipid metabolism-related metabolomic assay confirmed that LPC and AC biosynthesis mostly accounted for the therapeutic effect of IQ in mice with NASH and that IQ maintained the homeostasis of LPC and AC levels. CONCLUSION: This is the first study showing that IQ protects against of NASH by modulating galectin-3-mediated IR and lipid metabolism. The mechanisms responsible for liver protection and improved lipid metabolic disorder by IQ may be related to the suppression of IR and regulation of mitochondrial function and lipid metabolism. Galectin-3 down-regulation represents a potentially novel approach for the treatment and prevention of NASH.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Quercetina/análogos & derivados , Ratones , Animales , Ratas , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/farmacología , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Hígado , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Lípidos
2.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835132

RESUMEN

Galectins constitute a family of galactose-binding lectins overly expressed in the tumor microenvironment as well as in innate and adaptive immune cells, in inflammatory diseases. Lactose ((ß-D-galactopyranosyl)-(1→4)-ß-D-glucopyranose, Lac) and N-Acetyllactosamine (2-acetamido-2-deoxy-4-O-ß-D-galactopyranosyl-D-glucopyranose, LacNAc) have been widely exploited as ligands for a wide range of galectins, sometimes with modest selectivity. Even though several chemical modifications at single positions of the sugar rings have been applied to these ligands, very few examples combined the simultaneous modifications at key positions known to increase both affinity and selectivity. We report herein combined modifications at the anomeric position, C-2, and O-3' of each of the two sugars, resulting in a 3'-O-sulfated LacNAc analog having a Kd of 14.7 µM against human Gal-3 as measured by isothermal titration calorimetry (ITC). This represents a six-fold increase in affinity when compared to methyl ß-D-lactoside having a Kd of 91 µM. The three best compounds contained sulfate groups at the O-3' position of the galactoside moieties, which were perfectly in line with the observed highly cationic character of the human Gal-3 binding site shown by the co-crystal of one of the best candidates of the LacNAc series.


Asunto(s)
Galectina 3 , Lactosa , Humanos , Galectina 3/química , Galectina 3/farmacología , Galectinas/química , Lactosa/química , Ligandos
3.
J Pineal Res ; 74(3): e12855, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36692032

RESUMEN

Autophagy deficiency in macrophages exacerbates inflammation in atherosclerosis (AS), and recently, galectin-3 (Gal-3) has been implicated as a critical promoter of inflammation in AS. Further, melatonin (Mel) exerts an autophagy-promoting effect in many chronic inflammatory diseases. In this study, we aimed to investigate whether Mel inhibits AS progression by downregulating Gal-3 to enhance autophagy and inhibit inflammation. Thus, we performed in vivo and in vitro experiments using high-fat diet (HFD)-fed ApoE-/-  mice and THP-1 macrophages, respectively. Smart-seq of AS plaque macrophages revealed that the differentially expressed genes (DEGs) downregulated by Mel were enriched in immune-related processes, and changes in inflammation status were confirmed based on lower levels of proinflammatory factors in Mel-treated HFD-fed ApoE-/-  mice and THP-1 macrophages. Further, via transcriptome-based multiscale network pharmacology platform (TMNP), the upstream target genes of the smart-seq DEGs were identified, and Gal-3 showed a high score. Gal-3 was downregulated both in vivo and in vitro by Mel treatment. Besides, the enrichment of the target genes predicted via the TMNP method indicated that autophagy considerably affected the DEGs. Mel treatment as well as Gal-3 knockdown downregulated most inflammatory response-related proteins could attribute to enhancing autophagy. Mechanistically, Mel treatment inhibited Gal-3 leading to lowering the activity of the nuclear transcription factor-kappa B (NF-κB) pathway, and promoting the nuclear localization of transcription factor EB (TFEB). However, increased secretion of Gal-3 activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway and impaired autophagy via binding to CD98. Thus, Mel promoted autophagy and restrained inflammation by downregulating Gal-3, implying that it holds promise as a treatment for AS.


Asunto(s)
Aterosclerosis , Melatonina , Animales , Ratones , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/farmacología , Melatonina/farmacología , Regulación hacia Abajo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Inflamación/metabolismo , FN-kappa B/metabolismo , Autofagia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
4.
Sci China Life Sci ; 66(5): 1067-1078, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36449214

RESUMEN

Rapid over-activation of ß-adrenergic receptors (ß-AR) following acute stress initiates cardiac inflammation and injury by activating interleukin-18 (IL-18), however, the process of inflammation cascades has not been fully illustrated. The present study aimed to determine the mechanisms of cardiac inflammatory amplification following acute sympathetic activation. With bioinformatics analysis, galectin-3 was identified as a potential key downstream effector of ß-AR and IL-18 activation. The serum level of galectin-3 was positively correlated with norepinephrine or IL-18 in patients with chest pain. In the heart of mice treated with ß-AR agonist isoproterenol (ISO, 5 mg kg-1), galectin-3 expression was upregulated markedly later than IL-18 activation, and Nlrp3-/- and Il18-/- mice did not show ISO-induced galectin-3 upregulation. It was further revealed that cardiomyocyte-derived IL-18 induced galectin-3 expression in macrophages following ISO treatment. Moreover, galectin-3 deficiency suppressed ISO-induced cardiac inflammation and fibrosis without blocking ISO-induced IL-18 increase. Treatment with a galectin-3 inhibitor, but not a ß-blocker, one day after ISO treatment effectively attenuated cardiac inflammation and injury. In conclusion, galectin-3 is upregulated to exaggerate cardiac inflammation and injury following acute ß-AR activation, a galectin-3 inhibitor effectively blocks cardiac injury one day after ß-AR insult.


Asunto(s)
Galectina 3 , Interleucina-18 , Animales , Ratones , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/farmacología , Adrenérgicos/metabolismo , Adrenérgicos/farmacología , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Arritmias Cardíacas , Fibrosis , Inflamación/metabolismo
5.
Photochem Photobiol Sci ; 22(1): 21-32, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36036336

RESUMEN

Several inflammatory molecules have been suggested as biomarkers of age-related macular degeneration (AMD). Galectin-3 (Gal-3), which has been shown to have a protective role in corneal injury by promoting epithelial cells adhesion and migration to the extracellular matrix, is also highly expressed in the retinal pigment epithelium (RPE) of patients with AMD. This study evaluated the role of Gal-3 in an in vitro model of UVA-induced RPE damage, as a proof-of-concept. ARPE-19 cells (human RPE cell line), were incubated with Gal-3 at 0.5-2.5 µg/mL concentrations prior to UVA irradiation for 15, 30, and 45 min, which resulted in accumulated doses of 2.5, 5, and 7.5 J/cm2, respectively. After 24 h incubation, MTT and LDH assays, immunofluorescence, and ELISA were performed. UVA irradiation for 15, 30, and 45 min proved to reduce viability in 83%, 46%, and 11%, respectively. Based on the latter results, we chose the intermediate dose (5-J/cm2) for further analysis. Pretreatment with Gal-3 at concentrations > 1.5 µg/mL showed to increase the viability of UVA-irradiated cells (~ 75%) compared to untreated cells (64%). Increased levels of cleaved caspase 3, a marker of cell death, were detected in the ARPE cells after UVA irradiation with or without addition of exogenous Gal-3. The inhibitory effect of Gal-3 on UVA-induced cell damage was characterized by decreased ROS levels and increased p38 activation, as detected by fluorescence analysis. In conclusion, our study suggests a photoprotective effect of Gal-3 on RPE by reducing oxidative stress and increasing p38 activation.


Asunto(s)
Galectina 3 , Estrés Oxidativo , Humanos , Galectina 3/metabolismo , Galectina 3/farmacología , Muerte Celular , Epitelio Pigmentado de la Retina/metabolismo , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismo , Pigmentos Retinianos/farmacología , Especies Reactivas de Oxígeno/metabolismo
6.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35886983

RESUMEN

Melanoma is a highly metastatic and rapidly progressing cancer, a leading cause of mortality among skin cancers. The melanoma microenvironment, formed from the activity of malignant cells on the extracellular matrix and the recruitment of immune cells, plays an active role in the development of drug resistance and tumor recurrence, which are clinical challenges in cancer treatment. These tumoral metabolic processes are affected by proteins, including Galectin-3 (Gal-3), which is extensively involved in cancer development. Previously, we characterized a partially methylated mannogalactan (MG-Pe) with antimelanoma activities. In vivo models of melanoma were used to observe MG-Pe effects in survival, spontaneous, and experimental metastases and in tissue oxidative stress. Analytical assays for the molecular interaction of MG-Pe and Gal-3 were performed using a quartz crystal microbalance, atomic force microscopy, and contact angle tensiometer. MG-Pe exhibits an additive effect when administered together with the chemotherapeutic agent dacarbazine, leading to increased survival of treated mice, metastases reduction, and the modulation of oxidative stress. MG-Pe binds to galectin-3. Furthermore, MG-Pe antitumor effects were substantially reduced in Gal-3/KO mice. Our results showed that the novel Gal-3 ligand, MG-Pe, has both antitumor and antimetastatic effects, alone or in combination with chemotherapy.


Asunto(s)
Antineoplásicos , Galectina 3 , Melanoma , Neoplasias Cutáneas , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Dacarbazina/metabolismo , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Galectina 3/metabolismo , Galectina 3/farmacología , Galectina 3/uso terapéutico , Ligandos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Ratones , Recurrencia Local de Neoplasia , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología
7.
Eur Heart J ; 43(37): 3556-3574, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-35165707

RESUMEN

AIMS: Galectin-3, a ß-galactoside-binding lectin, is abnormally increased in cardiovascular disease. Plasma Galectin-3 receives a Class II recommendation for heart failure management and has been extensively studied for multiple cellular functions. The direct effects of Galectin-3 on platelet activation remain unclear. This study explores the direct effects of Galectin-3 on platelet activation and thrombosis. METHODS AND RESULTS: A strong positive correlation between plasma Galectin-3 concentration and platelet aggregation or whole blood thrombus formation was observed in patients with coronary artery disease (CAD). Multiple platelet function studies demonstrated that Galectin-3 directly potentiated platelet activation and in vivo thrombosis. Mechanistic studies using the Dectin-1 inhibitor, laminarin, and Dectin-1-/- mice revealed that Galectin-3 bound to and activated Dectin-1, a receptor not previously reported in platelets, to phosphorylate spleen tyrosine kinase and thus increased Ca2+ influx, protein kinase C activation, and reactive oxygen species production to regulate platelet hyperreactivity. TD139, a Galectin-3 inhibitor in a Phase II clinical trial, concentration dependently suppressed Galectin-3-potentiated platelet activation and inhibited occlusive thrombosis without exacerbating haemorrhage in ApoE-/- mice, which spontaneously developed increased plasma Galectin-3 levels. TD139 also suppressed microvascular thrombosis to protect the heart from myocardial ischaemia-reperfusion injury in ApoE-/- mice. CONCLUSION: Galectin-3 is a novel positive regulator of platelet hyperreactivity and thrombus formation in CAD. As TD139 has potent antithrombotic effects without bleeding risk, Galectin-3 inhibitors may have therapeutic advantages as potential antiplatelet drugs for patients with high plasma Galectin-3 levels.


Asunto(s)
Agregación Plaquetaria , Trombosis , Animales , Apolipoproteínas E/metabolismo , Plaquetas , Calcio/metabolismo , Fibrinolíticos/farmacología , Galectina 3/metabolismo , Galectina 3/farmacología , Lectinas Tipo C , Ratones , Ratones Noqueados para ApoE , Activación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Proteína Quinasa C , Especies Reactivas de Oxígeno/metabolismo , Quinasa Syk/metabolismo , Quinasa Syk/farmacología , Trombosis/metabolismo
8.
Clin Immunol ; 236: 108939, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35121106

RESUMEN

Galectin-3, an attractive molecule of innate immunity, has been reported to be involved in the neuroinflammatory diseases. However, the role of Galectin-3 in autoimmune uveitis is still unclear. The purpose of this study was to investigate the effect and mechanism of Galectin-3 on microglial activation and inflammation of experimental autoimmune uveitis (EAU). We immunized female C57BL/6 J mice with IRBP651-670 to induce EAU and the specific inhibitor was intravitreally injected in EAU mice. Disease severity was evaluated by clinical and histopathological scores. Immunofluorescence, western blot, qRT-PCR analysis and immunoprecipitation were used to detect the functional phenotypes and mechanisms on microglia after Galectin-3 inhibition. Our results showed that the expression of Galectin-3 was conspicuously increased in microglia of EAU retinas. The specific inhibitor of Galectin-3, TD139 was found to ameliorate the clinical and histological manifestations of EAU mice. In addition, TD139 reduced the expression of proinflammatory factors in vivo and vitro, which are related to the severity of uveitis. In mechanism, TD139 down-regulated the expression of TLR4 and MyD88, and then inhibited the activation of NF-κB p65 in microglia. In conclusion, Galectin-3 may play important roles in a variety of immune related diseases including autoimmune uveitis. Additionally, the inhibition of Galectin-3 may attenuate the microglial activation and inflammatory response through TLR4/MyD88/NF-κB pathway, highlighting a potential therapeutic target of Galectin-3 for autoimmune uveitis.


Asunto(s)
Enfermedades Autoinmunes , Uveítis , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/farmacología , Inflamación , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Uveítis/tratamiento farmacológico
9.
Inflammation ; 45(3): 1133-1145, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35031944

RESUMEN

The pathogenesis of atopic dermatitis (AD) and psoriasis (Ps) overlaps, particularly the activation of the immune response and tissue damage. Here, we evaluated galectin (Gal)-1 and Gal-3 levels, which are beta-galactoside-binding proteins with immunomodulatory functions and examined their effects on human keratinocytes stimulated with either interleukin (IL)-4 or IL-17A. Skin biopsies from AD, Ps, and control patients were evaluated using histological and immunohistochemical analyses. Six studies containing publicly available transcriptome data were individually analyzed using the GEO2R tool to detect Gal-1 and Gal-3 mRNA levels. In vitro, IL-4- or IL-17A-stimulated keratinocytes were treated with or without Gal-1 or Gal-3 to evaluate cytokine release and migration. Our findings showed different patterns of expression for Gal-1 and Gal-3 in AD and Ps skins. Densitometric analysis in skin samples showed a marked increase in the protein Gal-1 levels in Ps epidermis and in both AD and Ps dermis compared to controls. Protein and mRNA Gal-3 levels were downregulated in AD and Ps lesional skin compared with the control samples. In vitro, both galectins addition abrogated the release of IL-8 and RANTES in IL-17-stimulated keratinocytes after 24 h, whereas IL-6 release was downregulated by Gal-3 and Gal-1 in IL-4- and IL-17-stimulated cells, respectively. Administration of both galectins also increased the rate of keratinocyte migration under IL-4 or IL-17 stimulation conditions compared with untreated cells. Altogether, the immunoregulatory and migration effects of Gal-1 and Gal-3 on keratinocytes under inflammatory microenvironment make them interesting targets for future therapies in cutaneous diseases.


Asunto(s)
Dermatitis Atópica , Psoriasis , Proteínas Sanguíneas , Células Cultivadas , Galectina 1/metabolismo , Galectina 1/farmacología , Galectina 3/metabolismo , Galectina 3/farmacología , Galectinas , Humanos , Inmunidad , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Interleucina-4/farmacología , Queratinocitos/metabolismo , Psoriasis/metabolismo , ARN Mensajero/metabolismo
10.
Inflammation ; 45(3): 1039-1058, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34817763

RESUMEN

Although it is known that caffeic acid phenethyl ester (CAPE) and its derivatives could ameliorate acute myocardial injury, their effects on chronic myocardial ischemia (CMI) were not reported. This study aimed to investigate the potential effect of caffeic acid p-nitro phenethyl ester (CAPE-pNO2, a derivative of CAPE) on CMI and underlying mechanisms. SD rats were subjected to high-fat-cholesterol-diet (HFCD) and vitamin D3, and the H9c2 cells were treated with LPS to establish CMI model, followed by the respective treatment with saline, CAPE, or CAPE-pNO2. In vivo, CAPE-pNO2 could reduce serum lipid levels and improve impaired cardiac function and morphological changes. Data of related assays indicated that CAPE-pNO2 downregulated the expression of transforming growth factor-ß1 (TGF-ß1) and galectin-3 (Gal-3). Besides, CAPE-pNO2 decreased collagen deposition, the number of apoptotic cardiomyocytes, and some related downstream proteins of Gal-3 in the CMI rats. Interestingly, the effects of CAPE-pNO2 on TGF-ß1, Gal-3, and other proteins expressed in the lung were consistent with that in the heart. In vitro, CAPE-pNO2 could attenuate the fibrosis, apoptosis, and inflammation by activating TGF-ß1/Gal-3 pathway in LPS-induced H9c2 cell. However, CAPE-pNO2-mediated cardioprotection can be eliminated when treated with modified citrus pectin (MCP, an inhibitor of Gal-3). And in comparison, CAPE-pNO2 presented stronger effects than CAPE. This study indicates that CAPE-pNO2 may ameliorate CMI by suppressing fibrosis, inflammation, and apoptosis via the TGF-ß1/Gal-3 pathway in vivo and in vitro.


Asunto(s)
Isquemia Miocárdica , Factor de Crecimiento Transformador beta1 , Animales , Ácidos Cafeicos , Fibrosis , Galectina 3/metabolismo , Galectina 3/farmacología , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Isquemia Miocárdica/tratamiento farmacológico , Alcohol Feniletílico/análogos & derivados , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
11.
Dev Comp Immunol ; 128: 104333, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34914929

RESUMEN

Galectins belong to the ß-galactoside binding protein family, which have conserved carbohydrate-recognition domains (CRDs) and participate in innate and acquired immunity in animals. In this study, two galectin genes were cloned from Onychostoma macrolepis, OmGal-3 (galectin-3) and OmGal-9 (galectin-9). The open reading frames (ORFs) of OmGal-3 and OmGal-9 contain 732 and 978 base pairs, encoding 243 and 325 amino acids, respectively. OmGal-3 contains a C-terminal CRD, but OmGal-9 contains an N-terminal CRD and a C-terminal CRD. Two galectins were expressed at varying levels in all tissues examined, with the liver showing the highest expression. The relative gene expression levels of OmGal-3 and OmGal-9 following Aeromonas hydrophila infection were significantly up-regulated in the liver and spleen, and OmGal-9 had a greater increase than OmGal-3. The recombinant OmGal-3 and OmGal-9 proteins (rOmGal-3 and rOmGal-9) were authenticated and verified by SDS-PAGE and western blotting. ROmGal-3 and rOmGal-9 agglutinated all tested bacteria, including 3 g-positive bacteria (Aeromonas hydrophila, Escherichia coli, and Vibrio parahaemolyticus) and 3 g-negative bacteria (Streptococcus agalactiae, Staphylococcus aureus, and Bacillus cereus) in vivo without Ca2+. ROmGal-3 showed strong binding both to gram-positive and gram-negative bacteria and OmGal-9 had a stronger binding activity against gram-positive bacteria. Furthermore, rOmGal-3 and rOmGal-9 exhibited dose-dependent binding capability to two classic pathogens associated molecular pattern (LPS and PGN) and two sugars (d-lactose and d-galactose), and rOmGal-3 has better binding activity at lower concentrations in LPS and PGN than rOmGal-3. The integrated analyses indicate that the two galectins probably play an important role in innate immune defense by binding to bacterial cells via the CRD domain against pathogen infection.


Asunto(s)
Antibacterianos , Cyprinidae , Proteínas de Peces , Galectina 3 , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Cyprinidae/genética , Cyprinidae/fisiología , Proteínas de Peces/genética , Proteínas de Peces/farmacología , Galectina 3/genética , Galectina 3/farmacología , Regulación de la Expresión Génica , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Inmunidad Innata/genética , Filogenia , Alineación de Secuencia
12.
J Immunother Cancer ; 8(2)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33293356

RESUMEN

BACKGROUND: Prostate cancer (PCa) is a major health problem worldwide. Taxol derivatives-based chemotherapies or immunotherapies are usually proposed depending on the symptomatic status of the patient. In the case of immunotherapy, tumors develop robust immune escape mechanisms that abolish any protective response, and to date why prostate cancer is one of the most resistant diseases remains unresolved. METHODS: By using a combination of clinical data to study the transcriptome of metastasis samples from patients with castration-refractory prostate cancer, and state of the art cellular and molecular biology assays in samples from tumor-bearing mice that have been submitted to surgical resection of the tumor before receiving a vaccination, we answered several essential questions in the field of immunotherapy for prostate cancer. We also used two different methods to inhibit the expression of galectin-3 (Gal-3) in tumor cells: a stable RNA interference method to control the expression of this galectin efficiently only in tumor cells, and low and non-cytotoxic doses of docetaxel to easily transfer our findings to clinical settings. RESULTS: Herein, we show for the first time that Gal-3 expressed by prostate tumor cells is the main immune checkpoint responsible for the failure of vaccine-based immunotherapy. Our results show that low and non-cytotoxic doses of docetaxel lead to the inhibition of Gal-3 expression in PCa cells as well as in clinical samples of patients with metastatic and castration-resistant PCa promoting a Th1 response. We thus optimized a prostate cancer animal model that undergoes surgical resection of the tumor to mimic prostatectomy usually performed in patients. Importantly, using Gal-3-knocked down-PCa cells or low and non-cytotoxic doses of taxane before vaccination, we were able to highly control tumor recurrence through a direct impact on the proliferation and infiltration of CD8+ cytotoxic T. CONCLUSIONS: Thus, Gal-3 expression by PCa cells is a crucial inhibitor for the success of immunotherapy, and low doses of docetaxel with non-cytotoxic effect on leukocyte survival could be used before immunotherapy for all patients with PCa to reduce the expression of this critical negative immune checkpoint, pre-conditioning the tumor-microenvironment to activate an antitumor immune response and promote tumor-free outcome.


Asunto(s)
Galectina 3/antagonistas & inhibidores , Inmunoterapia/métodos , Neoplasias de la Próstata/tratamiento farmacológico , Vacunación/métodos , Animales , Galectina 3/farmacología , Galectina 3/uso terapéutico , Humanos , Masculino , Ratones , Neoplasias de la Próstata/patología , Resultado del Tratamiento
13.
Biomolecules ; 10(7)2020 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664510

RESUMEN

The TAM (Tyro3, Axl, MerTK) subfamily of receptor tyrosine kinases (RTKs) and their ligands, Gas6 and protein S (ProS1), are implicated in tumorigenesis and chemoresistance in various cancers. The ß-galactoside binding protein galectin-3 (Gal-3), which is also implicated in oncogenesis, has previously been shown to be a ligand for MerTK. However, the selectivity of Gal-3 for the other TAM receptors, and its TAM-mediated signalling and functional properties in cancer cells, remain to be explored. The present study was aimed at determining these, including through direct comparison of Gal-3 with the two canonical TAM ligands. Exogenous Gal-3 rapidly stimulated Tyro3 receptor phosphorylation to the same extent as the Tyro3 ligand ProS1, but not Axl, in the cultured human cancer cell lines SCC-25 (express both Tyro3 and Axl) and MGH-U3 (express Tyro3 only). Gal-3 also activated intracellular Erk and Akt kinases in both cell lines and furthermore protected cells from acute apoptosis induced by staurosporine but not from serum-starvation induced apoptosis. In addition, Gal-3 significantly stimulated cancer cell migration rate in the presence of the Axl blocker BGB324. Therefore, these results have shown Gal-3 to be a novel agonist for Tyro3 RTK, activating a Tyro3-Erk signalling axis, as well as Akt signalling, in cancer cells that promotes cell survival, cell cycle progression and cell migration. These data therefore reveal a novel mechanism of Tyro3 RTK activation through the action of Gal-3 that contrasts with those of the known TAM ligands Gas6 and ProS1.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Benzocicloheptenos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Galectina 3/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/genética , Fosforilación/efectos de los fármacos , Proteína S/genética , Proteína S/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Estaurosporina/farmacología , Triazoles/farmacología , Tirosina Quinasa del Receptor Axl
14.
Cardiology ; 145(7): 446-455, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32516780

RESUMEN

BACKGROUND: Atrial fibrosis plays a critical role in the occurrence and maintenance of atrial fibrillation. The role of TGF-ß1 in mediating atrial fibrosis is well documented. The ß-galactoside-binding lectin galectin-3 (Gal-3) is mainly produced by macrophages in biological events such as inflammation and angiogenesis. Previous studies have shown that Gal-3 is associated with atrial fibrosis, but the relationship between TGF-ß1 and Gal-3 in atrial fibrosis remains unclear. OBJECTIVE: To determine whether Gal-3 induces atrial fibrosis and atrial fibrillation by activating the TGF-ß1/Smad pathway and whether the expression of Gal-3 is mediated by TGF-ß1, which can enable assessing the relationship between Gal-3 and TGF-ß1 in atrial fibrosis. METHODS: In this study, 30 patients' right atrial appendages were collected and divided into 3 groups: congenital heart disease sinus rhythm group (n = 10, as a control group), rheumatic heart disease sinus rhythm group (n = 10), and rheumatic heart disease atrial fibrillation group (n = 10). Rat atrial fibroblasts were cultured in vitro, and recombinant Gal-3 and recombinant TGF-ß1 proteins were added to the cell culture. The expression of Gal-3, TGF-ß1, Smad2, and collagen I was detected by Western blotting and quantitative real-time PCR. Atrial tissues were stained with Masson's trichrome stain to evaluate the extent of atrial fibrosis. The expression of Gal-3 and TGF-ß1 was detected by immunohistochemical staining and immunofluorescence staining. Gal-3 and TGF-ß1 interaction was demonstrated by immunoprecipitation. RESULTS: The expression levels of Gal-3, TGF-ß1, Smad2, and collagen I were elevated in the rheumatic heart disease atrial fibrillation group compared with the congenital heart disease sinus rhythm group and the rheumatic heart disease sinus rhythm group. In cultured atrial fibroblasts, there is a synergistic interaction between Gal-3 and TGF-ß1. Gal-3 stimulated the TGF-ß1/Smad pathway, and overexpression of TGF-ß1 induced Gal-3 expression. CONCLUSIONS: Gal-3 and TGF-ß1 interact with each other and stimulate the downstream TGF-ß1/Smad pathway. This finding suggests that Gal-3 could be an important factor in TGF-ß1-induced fibrosis in atrial fibrillation.


Asunto(s)
Fibrilación Atrial/patología , Galectina 3/farmacología , Atrios Cardíacos/patología , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Adulto , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/veterinaria , Western Blotting , Colágeno Tipo I/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis , Galectina 3/sangre , Galectina 3/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Miocardio/metabolismo , Miocardio/patología , Ratas , Ratas Sprague-Dawley , Cardiopatía Reumática/complicaciones , Transducción de Señal/efectos de los fármacos
15.
J Biochem Mol Toxicol ; 34(5): e22463, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32003113

RESUMEN

Galectin-3 (Gal-3) has been implicated in various biological functions, yet little is known about its role in regulating the dynamics of pulmonary vascular endothelial cells. Gal-3 was shown to be increased in hypoxic model rats by sequencing analysis. We exposed pulmonary vessel endothelial cells (PVECs) to hypoxia or Gal-3 stimulation, following which cell apoptosis and autophagy were measured with the relevant methods. The results demonstrated that hypoxia elevated nuclear factor-κB (NF-κB) activity and Gal-3 expression. Gla-3 decreased the expression of Bcl-2, Alix, Beclin-1, Atg5, and LC3A/B. The messenger RNA and protein levels of transient receptor potential channel 1/4 (TRPC1/4) and calpain were reduced after Gal-3 treatment. Gal-3 also activated protein kinase B/glycogen synthase kinase-3 ß/mammalian target of rapamycin signaling pathways in PVECs. These results suggest that a hypoxia-mediated increase in Gal-3 promotes apoptosis and inhibits autophagy by inhibiting the TRPC1/4 pathway and activating the protein kinase B/glycogen synthase kinase-3 ß/mammalian target of rapamycin signaling pathway in PVECs. Furthermore, these results may provide us with a new direction to explore the pathogenesis of pulmonary artery hypertension.


Asunto(s)
Hipoxia de la Célula/efectos de los fármacos , Células Endoteliales/metabolismo , Galectina 3/metabolismo , Galectina 3/farmacología , Arteria Pulmonar/citología , Canales Catiónicos TRPC/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Galectina 3/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Masculino , Modelos Animales , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
16.
Mol Neurobiol ; 57(2): 976-987, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31654317

RESUMEN

Oligodendrocytes (OLG) are the cells resident in the CNS responsible for myelination. OLG undergo a succession of morphological and molecular changes along several maturational stages. Galectin-3 (Gal-3) is a 25- to 35-KDa protein belonging to the family of carbohydrate-binding galectins, which bind to glycoconjugates containing ß-galactosides. Gal-3 lacks a specific receptor and its binding is thus rather unspecific, as it depends on the cellular environment and the repertoire of glycomolecules at the time when Gal-3 is present. Our previous work revealed that recombinant Gal-3 (rGal-3)-treated OLG showed accelerated differentiation, evidenced by an increase in the number of mature cells to the detriment of immature ones and accelerated actin cytoskeleton dynamics. These changes were a consequence of rGal-3 influence on Akt, Erk 1/2, and ß-catenin signaling pathways. Considering this previous evidence, the aim of this study was to identify the temporal window of rGal-3 action on the OLG lineage to induce OLG maturation by using specific single pulses of rGal-3 over the different maturational stages of OLG, and to unravel its main direct targets promoting OLG differentiation by mass spectrometry analysis. Our results reveal a key temporal window spanning between OPC and pre-OLG states in which rGal-3 action promotes OLG differentiation, and identify several targets for rGal-3 binding including proteins related to the cytoskeleton, signaling pathways, metabolism and intracellular trafficking, among others. These results highlight the relevance of Gal-3 in signaling pathways regulating oligodendroglial differentiation and support a potential therapeutic role for rGal-3 in demyelinating diseases such as multiple sclerosis.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Galectina 3/farmacología , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Animales , Citoesqueleto/metabolismo , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/metabolismo , Transducción de Señal/efectos de los fármacos
17.
J Immunol ; 203(10): 2712-2723, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31597705

RESUMEN

The inflammasomes play critical roles in numerous pathological conditions largely through IL-1ß and/or IL-18. However, additional effectors have been implied from multiple studies. In this study, through two independent mass spectrometry-based secretome screening approaches, we identified galectin-3 as an effector protein of the NLRP3 inflammasome. Although the activation of AIM2 or NLRC4 inflammasome also led to galectin-3 secretion, only the NLRP3 inflammasome controlled the serum galectin-3 level under physiological condition. Mechanistically, active gasdermin D drove the nonexosomal secretion of galectin-3 through the plasma membrane pores. In vivo, high-fat diet-fed Nlrp3-/- mice exhibited decreased circulating galectin-3 compared with wild-type animals. Of note, the improved insulin sensitivity in such Nlrp3-/- mice was aggravated by infusion of recombinant galectin-3. Moreover, galectin-3 was essential for insulin resistance induction in mice harboring the hyperactive Nlrp3A350V allele. Thus, the inflammasome-galectin-3 axis has been demonstrated as a promising target to intervene inflammasome and/or galectin-3 related diseases.


Asunto(s)
Galectina 3/sangre , Galectina 3/metabolismo , Galectina 3/farmacología , Resistencia a la Insulina , Insulinas/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Animales , Proteínas Sanguíneas , Membrana Celular/metabolismo , Galectina 3/genética , Galectinas , Células HEK293 , Humanos , Inflamasomas/metabolismo , Insulinas/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Recombinantes/farmacología , Células THP-1 , Transfección
18.
Sci Signal ; 12(590)2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311846

RESUMEN

Paracrine interactions between epithelial cells and stromal fibroblasts occur during tissue repair, development, and cancer. Crucial to these processes is the production of matrix metalloproteinases (MMPs) that modify the microenvironment. Here, we demonstrated that the carbohydrate-binding protein galectin-3 stimulated microenvironment remodeling in the cornea by promoting the paracrine action of secreted interleukin-1ß (IL-1ß). Through live cell imaging in vitro, we observed rapid activation of the MMP9 promoter in clusters of cultured human epithelial cells after direct heterotypic contact with single primary human fibroblasts. Soluble recombinant galectin-3 and endogenous galectin-3 of epithelial origin both stimulated MMP9 activity through the induction of IL-1ß secretion by fibroblasts. In vivo, mechanical disruption of the basement membrane in wounded corneas prompted an increase in the abundance of IL-1ß in the stroma and increased the amount of gelatinase activity in the epithelium. Moreover, corneas of galectin-3-deficient mice failed to stimulate IL-1ß after wounding. This mechanism of paracrine control has broad importance for our understanding of how the proteolytic microenvironment is modified in epithelial-stromal interactions.


Asunto(s)
Córnea/efectos de los fármacos , Córnea/metabolismo , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Galectina 3/farmacología , Comunicación Paracrina/efectos de los fármacos , Proteínas Recombinantes/farmacología , Animales , Células Cultivadas , Microambiente Celular/efectos de los fármacos , Microambiente Celular/genética , Córnea/fisiopatología , Células Epiteliales/citología , Fibroblastos/citología , Galectina 3/genética , Galectina 3/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-1beta/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Comunicación Paracrina/genética , Regiones Promotoras Genéticas/genética , Proteolisis , Cicatrización de Heridas/efectos de los fármacos
19.
Environ Toxicol ; 34(7): 825-835, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30963716

RESUMEN

Galectin-3, a biomarker linking oxidative stress and inflammation, participates in different mechanisms related to atherothrombosis, such as inflammation, proliferation, or macrophage chemotaxis. Accumulating evidence indicates that galectin-3 may also promote atherogenesis through inducing endothelial dysfunction. Lectin-like oxidized low-density lipoprotein (oxLDL) receptor-1 (LOX-1), a receptor for oxLDL uptake, contributes to oxLDL-induced endothelial dysfunction. Whether galectin-3 induces endothelial dysfunction through modulation of LOX-1-mediated signaling remains unclear. In the present study, we explored the mechanisms underlying galectin-3 enhanced cytotoxicity of oxLDL in human umbilical vein endothelial cells (HUVECs) and the role of LOX-1. Incubation of HUVECs with galectin-3 increased the expression of LOX-1 in RNA and protein levels. In addition, the expression of LOX-1 induced by oxLDL was promoted by galectin-3. However, pretreatment of LOX-1 antibody reduced LOX-1 mRNA expression level in cells with oxLDL plus galectin-3 incubation. Compared to cells treated with oxLDL alone, reactive oxygen species (ROS) generation via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and subsequent activation of p38 mitogen-activated protein kinases followed by nuclear factor kappa B (NF-κB) activation and related inflammatory responses including adhesion molecule expression, adhesiveness of monocytic cells, and IL-8 release were also aggravated in cells treated with galectin-3 combined with oxLDL. Compared to cells treated with galectin-3 plus oxLDL group. We found that LOX-1 antibody mitigated NADPH oxidase activity, p-38 up-regulation, NF-κB activation, and proinflammatory responses in cells treated with galectin-3 combined with oxLDL. We conclude that galectin-3 enhances endothelial LOX-1 expression and propose a new mechanism by which galectin-3 may promote endothelial dysfunction by inducing inflammation via LOX-1/ROS/p38/NF-κB-mediated signaling pathway.


Asunto(s)
Aterosclerosis/inducido químicamente , Endotelio Vascular/efectos de los fármacos , Galectina 3/farmacología , Lipoproteínas LDL/toxicidad , Receptores Depuradores de Clase E/fisiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Cultivadas , Sinergismo Farmacológico , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Células THP-1 , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Proc Natl Acad Sci U S A ; 116(18): 8966-8974, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30962381

RESUMEN

Allergies are a result of allergen proteins cross-linking allergen-specific IgE (sIgE) on the surface of mast cells and basophils. The diversity and complexity of allergen epitopes, and high-affinity of the sIgE-allergen interaction have impaired the development of allergen-specific inhibitors of allergic responses. This study presents a design of food allergen-specific sIgE inhibitors named covalent heterobivalent inhibitors (cHBIs) that selectively form covalent bonds to only sIgEs, thereby permanently inhibiting them. Using screening reagents termed nanoallergens, we identified two immunodominant epitopes in peanuts that were common in a population of 16 allergic patients. Two cHBIs designed to inhibit only these two epitopes completely abrogated the allergic response in 14 of the 16 patients in an in vitro assay and inhibited basophil activation in an allergic patient ex vivo analysis. The efficacy of the cHBI design has valuable clinical implications for many allergen-specific responses and more broadly for any antibody-based disease.


Asunto(s)
Arachis/inmunología , Inmunoglobulina E/inmunología , Hipersensibilidad al Cacahuete/inmunología , Alérgenos/inmunología , Basófilos/inmunología , Degranulación de la Célula , Epítopos/química , Epítopos/inmunología , Galectina 3/farmacología , Humanos , Hipersensibilidad , Mastocitos/inmunología , Nanopartículas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...