Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 823
Filtrar
1.
Clin Sci (Lond) ; 138(12): 725-739, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38840496

RESUMEN

OBJECTIVES: Clinical studies have confirmed that galectin-3 (Gal-3) levels are significantly elevated in periodontitis patients. The present study aimed to explore the effects of Gal-3 inhibition on periodontal inflammation in vitro and in vivo. METHODS: Human gingival fibroblasts (HGFs) with or without Gal-3 knockdown were stimulated by lipopolysaccharide (LPS), and a ligation-induced mouse periodontitis model treated with a Gal-3 inhibitor was established. Hematoxylin-eosin (H&E) and immunohistochemistry (IHC) staining were used to evaluate Gal-3 levels in gingival tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect Gal-3, interleukin (IL)-6, IL-8, and C-C motif ligand 2 (CCL2) expression. Immunofluorescence and western blotting were used to detect NF-κB and ERK signaling pathway activation. Micro-computed tomography was used to analyse the degree of bone loss. RESULTS: Gal-3 was significantly up-regulated in inflamed gingival tissues and LPS-induced HGFs. Gal-3 knockdown markedly decreased LPS-induced IL-6, IL-8, and CCL2 expression and blocked NF-κB and ERK signaling pathway activation in HGFs. In the mouse periodontitis model, Gal-3 inhibition significantly alleviated IL-1ß and IL-6 infiltration in gingival tissue and mitigated periodontal bone loss. CONCLUSIONS: Gal-3 inhibition notably alleviated periodontal inflammation partly through blocking NF-κB and ERK signaling pathway activation.


Asunto(s)
Fibroblastos , Galectina 3 , Encía , Lipopolisacáridos , Periodontitis , Animales , Humanos , Masculino , Ratones , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Galectina 3/metabolismo , Galectina 3/antagonistas & inhibidores , Galectina 3/genética , Encía/metabolismo , Encía/patología , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Periodontitis/metabolismo , Periodontitis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
2.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892038

RESUMEN

The effects of the enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B, ARSB), which removes the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate, on the expression of PD-L1 were determined, and the underlying mechanism of PD-L1 expression was elucidated. Initial experiments in human melanoma cells (A375) showed that PD-L1 expression increased from 357 ± 31 to 796 ± 50 pg/mg protein (p < 10-11) when ARSB was silenced in A375 cells. In subcutaneous B16F10 murine melanomas, PD-L1 declined from 1227 ± 189 to 583 ± 110 pg/mg protein (p = 1.67 × 10-7), a decline of 52%, following treatment with exogenous, bioactive recombinant ARSB. This decline occurred in association with reduced tumor growth and prolongation of survival, as previously reported. The mechanism of regulation of PD-L1 expression by ARSB is attributed to ARSB-mediated alteration in chondroitin 4-sulfation, leading to changes in free galectin-3, c-Jun nuclear localization, HDAC3 expression, and effects of acetyl-H3 on the PD-L1 promoter. These findings indicate that changes in ARSB contribute to the expression of PD-L1 in melanoma and can thereby affect the immune checkpoint response. Exogenous ARSB acted on melanoma cells and normal melanocytes through the IGF2 receptor. The decline in PD-L1 expression by exogenous ARSB may contribute to the impact of ARSB on melanoma progression.


Asunto(s)
Antígeno B7-H1 , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas , Melanoma Experimental , Melanoma , N-Acetilgalactosamina-4-Sulfatasa , Animales , Humanos , Ratones , N-Acetilgalactosamina-4-Sulfatasa/metabolismo , N-Acetilgalactosamina-4-Sulfatasa/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Línea Celular Tumoral , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Melanoma Experimental/genética , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Galectina 3/metabolismo , Galectina 3/genética , Regiones Promotoras Genéticas , Proteínas Sanguíneas , Galectinas
3.
Nat Commun ; 15(1): 4724, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830855

RESUMEN

Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.


Asunto(s)
Galectina 3 , Lipopolisacáridos , Ratones Endogámicos C57BL , Neutrófilos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Galectina 3/metabolismo , Galectina 3/genética , Neutrófilos/inmunología , Neutrófilos/metabolismo , Humanos , Ratones , Infecciones por Pseudomonas/inmunología , Masculino , Femenino , Insuficiencia Respiratoria/metabolismo , Ratones Noqueados , Fagocitosis , Inmunidad Innata , Galectinas/metabolismo , Galectinas/genética
4.
Biomolecules ; 14(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38927046

RESUMEN

Acute pancreatitis (AP) is a complex inflammatory condition that can lead to systemic inflammatory responses and multiple organ dysfunction. This study investigates the role of Galectin-3 (Gal-3), a ß-galactoside-binding lectin, in modulating acquired immune responses in AP. Acute pancreatitis was induced by ligation of the bile-pancreatic duct in wild-type and Galectin-3-deficient C57BL/6 mice. We determined the phenotypic and molecular features of inflammatory cells, serum concentrations of amylase, pancreatic trypsin activity, and pancreatic and lung pathology. Galectin-3 deficiency decreased the total number of CD3+CD49- T cells and CD4+ T helper cells, downregulated the production of inflammatory cytokine and IFN-γ, and increased the accumulation of IL-10-producing Foxp3+ T regulatory cells and regulatory CD4+ T cells in the pancreata of diseased animals. The deletion of Galectin-3 ameliorates acute pancreatitis characterized by lowering serum amylase concentration and pancreatic trypsin activity, and attenuating of the histopathology of the lung. These findings shed light on the role of Galectin-3 in acquired immune response in acute pancreatitis and identify Galectin-3 as an attractive target for investigation of the immunopathogenesis of disease and for consideration as a potential therapeutic target for patients with acute inflammatory disease of the pancreas.


Asunto(s)
Galectina 3 , Ratones Endogámicos C57BL , Pancreatitis , Linfocitos T Reguladores , Animales , Pancreatitis/inmunología , Pancreatitis/patología , Pancreatitis/metabolismo , Pancreatitis/genética , Galectina 3/metabolismo , Galectina 3/genética , Ratones , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Ratones Noqueados , Enfermedad Aguda , Masculino , Amilasas/sangre
5.
Genes (Basel) ; 15(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38927753

RESUMEN

Galectins are innate immune system regulators associated with disease progression in cancer. This paper aims to investigate the correlation between mutated cancer-critical genes and galectin levels in breast cancer patients to determine whether galectins and genetic profiles can be used as biomarkers for disease and potential therapy targets. Prisma Health Cancer Institute's Biorepository provided seventy-one breast cancer samples, including all four stages spanning the major molecular subtypes and histologies. Hotspot mutation statuses of cancer-critical genes were determined using multiplex PCR in tumor samples from the same patients by Precision Genetics and the University of South Carolina Functional Genomics Core Facility. The galectin-1, -3, and -9 levels in patients' sera were analyzed using Enzyme-linked Immunosorbent Assay (ELISA). An analysis was performed using JMP software to compare mean and median serum galectin levels between samples with and without specific cancer-critical genes, including pooled t-test, Wilcoxon Rank Sum Test, ANOVA, and Steel Dwass Test (α=0.05). Our analysis indicates that KIT mutations correlate with elevated serum levels of galectin-9 in patients with breast cancer. In patients with Luminal A subtype, FLT3 mutation correlates with lower serum galectin-1 and -9 levels and TP53 mutations correlate with higher serum galectin-3 levels. Patients with invasive ductal carcinoma had significantly higher serum galectin-3 levels than patients with ductal carcinoma in situ. Patients with both TP53 and PIK3CA mutations exhibit elevated serum galectin-3 levels, while patients with one or neither mutation show no significant difference in serum galectin-3 levels. In addition, metastatic breast cancer samples were more likely to have a KIT or PIK3CA mutation compared to primary breast cancer samples. The relationship between genetic mutations and galectin levels has the potential to identify appropriate candidates for combined therapy, targeting genetic mutations and galectins. Further understanding of the effect of genetic mutations and galectin levels on cancer progression and metastasis could aid in the search for biomarkers for breast cancer diagnosis, disease progression, and prognosis.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Galectinas , Mutación , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Femenino , Galectinas/genética , Galectinas/sangre , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Galectina 1/genética , Galectina 1/sangre , Persona de Mediana Edad , Galectina 3/genética , Galectina 3/sangre , Adulto , Proteínas Sanguíneas
6.
Aging (Albany NY) ; 16(12): 10539-10545, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38935941

RESUMEN

OBJECTIVE: The primary objective of this study was to assess the diagnostic potential of galectin-3 (Gal-3), fractalkine (FKN), interleukin (IL)-6, microRNA(miR)-21, and cardiac troponin I (cTnI) in patients with ischemic cardiomyopathy (ICM). METHOD: A total of 78 ICM patients (Case group) and 80 healthy volunteers (Control group) admitted to our hospital for treatment or physical examination from Aug. 2018 to Feb. 2020 were included in the current study. The serum concentration of Gal-3, FKN, IL-6, miR-21, and plasma expression of cTnI of both groups were determined. The severity of ICM was classified using New York Heart Association (NYHA) scale. RESULTS: When compared with the control group, the case group had a significantly high blood concentration of Gal-3, FKN, IL-6, miR-21, and cTnI (P < 0.001). NYHA class II patients had lower blood levels of Gal-3, FKN, IL-6, miR-21, and cTnI than that in patients of NYHA class III and IV without statistical significance (P > 0.05). However, statistical significance could be achieved when comparing the above-analyzed markers in patients classified between class III and IV. Correlation analysis also revealed that serum levels of Gal-3, FKN, IL-6, miR-21, and cTnI were positively correlated with NYHA classification (R = 0.564, 0.621, 0.792, 0.981, P < 0.05). CONCLUSION: Our study revealed that up-regulated serum Gal-3, FKN, IL-6, miR-21, and cTnI levels were closely related to the progression of ICM. This association implies that these biomarkers have diagnostic potential, offering a promising avenue for early detection and monitoring of ICM progression.


Asunto(s)
Biomarcadores , Quimiocina CX3CL1 , Galectina 3 , Interleucina-6 , MicroARNs , Isquemia Miocárdica , Troponina I , Humanos , Femenino , Masculino , Troponina I/sangre , Interleucina-6/sangre , MicroARNs/sangre , Quimiocina CX3CL1/sangre , Quimiocina CX3CL1/genética , Persona de Mediana Edad , Galectina 3/sangre , Galectina 3/genética , Biomarcadores/sangre , Anciano , Isquemia Miocárdica/sangre , Isquemia Miocárdica/diagnóstico , Cardiomiopatías/sangre , Cardiomiopatías/diagnóstico , Estudios de Casos y Controles , Galectinas/sangre , Proteínas Sanguíneas/análisis
7.
Protein Expr Purif ; 221: 106516, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38801985

RESUMEN

Galectins are a large and diverse protein family defined by the presence of a carbohydrate recognition domain (CRD) that binds ß-galactosides. They play important roles in early development, tissue regeneration, immune homeostasis, pathogen recognition, and cancer. In many cases, studies that examine galectin biology and the effect of manipulating galectins are aided by, or require the ability to express and purify, specific members of the galectin family. In many cases, E. coli is employed as a heterologous expression system, and galectin expression is induced with isopropyl ß-galactoside (IPTG). Here, we show that galectin-3 recognizes IPTG with micromolar affinity and that as IPTG induces expression, newly synthesized galectin can bind and sequester cytosolic IPTG, potentially repressing further expression. To circumvent this putative inhibitory feedback loop, we utilized an autoinduction protocol that lacks IPTG, leading to significantly increased yields of galectin-3. Much of this work was done within the context of a course-based undergraduate research experience, indicating the ease and reproducibility of the resulting expression and purification protocols.


Asunto(s)
Escherichia coli , Galectina 3 , Isopropil Tiogalactósido , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/biosíntesis , Galectina 3/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Isopropil Tiogalactósido/farmacología , Expresión Génica , Galectinas/genética , Galectinas/metabolismo , Galectinas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo
8.
Lung Cancer ; 192: 107830, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38805901

RESUMEN

OBJECTIVES: We aimed to reveal the clinicopathological differences between epidermal growth factor receptor (EGFR)-mutated and wild-type (WT) lung adenocarcinoma (LUAD) focusing on the predominant subtype. METHODS: This study included 352 with EGFR mutation and 370 with WT patients in consecutive stage I LUAD classified by the predominant subtype, and their clinicopathological characteristics and prognosis were analyzed. Using the Cancer Genome Atlas Program (TCGA) cohort, we analyzed differences in gene expression between EGFR mutation and WT groups. Furthermore, we performed immunohistochemical evaluations for 46 with EGFR mutation and 47 with WT patients in consecutive stage I papillary predominant adenocarcinoma (PPA). RESULTS: Compared to the PPA with WT [n = 115], those with EGFR mutation [n = 99] exhibited smaller invasive size (p = 0.03) and less frequent vessel invasion (p < 0.01). However, PPA with EGFR mutation showed significantly worse 5-ys recurrence-free survival (RFS) rates compared to those with WT (70.6 % versus 83.3 %, p = 0.03). Contrarily, no significant differences were observed in other predominant subtypes. In the TCGA cohort, PPA with EGFR mutation tended to show higher expression of galectin-3, which is associated with tumor metastasis and resistance to anoikis, compared to those with WT (p = 0.06). Immunohistochemical evaluation revealed that galectin-3 expression was significantly higher in PPA with EGFR mutation than in those with WT (p < 0.01). CONCLUSIONS: The prognosis of PPA with EGFR mutation proved to be less favorable compared to that with WT, and galectin-3 is highly expressed in EGFR-mutated PPA.


Asunto(s)
Adenocarcinoma del Pulmón , Receptores ErbB , Neoplasias Pulmonares , Mutación , Humanos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Masculino , Femenino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/metabolismo , Anciano , Persona de Mediana Edad , Pronóstico , Estadificación de Neoplasias , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Anciano de 80 o más Años , Adulto , Adenocarcinoma Papilar/genética , Adenocarcinoma Papilar/patología , Adenocarcinoma Papilar/metabolismo , Adenocarcinoma Papilar/mortalidad
9.
PLoS One ; 19(5): e0303235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728287

RESUMEN

Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.


Asunto(s)
Autofagia , Galectina 3 , Aprendizaje Automático , Neuronas , Animales , Ratas , Galectina 3/metabolismo , Galectina 3/genética , Ácido Glutámico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neuronas/metabolismo , Mapas de Interacción de Proteínas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/genética
10.
Nat Commun ; 15(1): 3682, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693121

RESUMEN

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Asunto(s)
Dieta Alta en Grasa , Galectina 3 , Secreción de Insulina , Células Secretoras de Insulina , Animales , Humanos , Masculino , Ratones , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa/efectos adversos , Galectina 3/metabolismo , Galectina 3/genética , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Toxicol Lett ; 397: 55-66, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754639

RESUMEN

Toll-like receptor 2 (TLR2) and galectin-3 (Gal-3) are involved in the pathological process of asthma, but the underlying mechanism is not fully understood. We hypothesized that TLR2 pathway may regulate expression of Gal-3 in allergic airway inflammation. Wild-type (WT) and TLR2-/- mice were sensitized on day 0 and challenged with ovalbumin (OVA) on days 14-21 to establish a model of allergic airway inflammation, and were treated with a specific ERK inhibitor U0126. Histological changes in the lungs were analyzed by hematoxylin-eosin (HE) and Periodic Acid-Schiff (PAS) staining; cytokines and anti-OVA immunoglobulin E (IgE) were tested by ELISA; and related protein expression in lung tissues was measured by western blot. We found that the expression levels of TLR2 and Gal-3 markedly increased concomitantly with airway inflammation after OVA induction, while TLR2 deficiency significantly alleviated airway inflammation and reduced Gal-3 expression. Moreover, the expression levels of phosphorylated mitogen-activated protein kinases (p-MAPKs) were significantly elevated in OVA-challenged WT mice, while TLR2 deficiency only significantly decreased phosphorylated extracellular signal-regulated kinase (p-ERK) levels. Furthermore, we found that U0126 treatment significantly alleviated allergic airway inflammation and decreased Gal-3 levels in OVA-challenged WT mice, but had no further effect in OVA-challenged TLR2-/- mice. These above results suggested that TLR2 is an upstream signal molecule of ERK. We further demonstrated that TLR2 regulates Gal-3 expression through the ERK pathway in LTA-stimulated macrophages in vitro. Our findings showed that the TLR2-ERK signaling pathway regulates Gal-3 expression in a murine model of allergic airway inflammation.


Asunto(s)
Asma , Galectina 3 , Sistema de Señalización de MAP Quinasas , Ovalbúmina , Animales , Femenino , Ratones , Asma/inmunología , Butadienos/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Inmunoglobulina E/sangre , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Nitrilos/farmacología , Ovalbúmina/toxicidad , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo
12.
Viruses ; 16(5)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38793619

RESUMEN

BACKGROUND AND AIMS: The outcomes of HBV infections are related to complex immune imbalances; however, the precise mechanisms by which HBV induces immune dysfunction are not well understood. METHODS: HBV transgenic (HBs-Tg) mice were used to investigate intrahepatic NK cells in two distinct subsets: conventional NK (cNK) and liver-resident NK (LrNK) cells during a chronic HBV infection. RESULTS: The cNK cells, but not the LrNK cells, were primarily responsible for the increase in the number of bulk NK cells in the livers of ageing HBs-Tg mice. The hepatic cNK cells showed a stronger ability to produce IL-10, coupled with a higher expression of CD69, TIGIT and PD-L1, and lower NKG2D expression in ageing HBs-Tg mice. A lower mitochondrial mass and membrane potential, and less polarized localization were observed in the hepatic cNK cells compared with the splenic cNK cells in the HBs-Tg mice. The enhanced galectin-3 (Gal-3) secreted from HBsAg+ hepatocytes accounted for the IL-10 production of hepatic cNK cells via ITGB1 signaling. For humans, LGALS3 and ITGB1 expression is positively correlated with IL-10 expression, and negatively correlated with the poor clinical progression of HCC. CONCLUSIONS: Gal-3-ITGB1 signaling shapes hepatic cNK cells but not LrNK cells during a chronic HBV infection, which may correlate with HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Galectina 3 , Virus de la Hepatitis B , Interleucina-10 , Células Asesinas Naturales , Neoplasias Hepáticas , Hígado , Ratones Transgénicos , Transducción de Señal , Animales , Ratones , Células Asesinas Naturales/inmunología , Humanos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Interleucina-10/genética , Interleucina-10/metabolismo , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Hígado/patología , Hígado/inmunología , Hígado/virología , Hígado/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Progresión de la Enfermedad , Masculino , Femenino , Hepatocitos/virología , Hepatocitos/metabolismo , Hepatocitos/inmunología , Ratones Endogámicos C57BL , Galectinas/genética , Galectinas/metabolismo
13.
Parasit Vectors ; 17(1): 232, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769548

RESUMEN

BACKGROUND: Schistosoma japonicum eggs lodge in the liver and induce a fibrotic granulomatous immune response in the liver of host. Galectin 3 (Gal-3) is a protein implicated in fibrosis in multiple organs. However, the pathology and molecular mechanisms promoting hepatic granuloma formation remain poorly understood. METHODS: To investigate the effect of blocking galectin-receptor interactions by α-lactose on liver immunopathology in mice with S. japonicum infection, C57BL/6 mice were infected with S. japonicum and alpha (α)-lactose was intraperitoneally injected to block the interactions of galectins and their receptors. RESULTS: Compared with S. japonicum-infected mice, there were significantly decreased Gal-3 mRNA and protein expression levels, decreased intensity of Gal-3 fluorescence in the liver, decreased serum ALT and AST levels, decreased egg numbers of S. japonicum in the liver section, attenuated hepatic and spleen pathology, and alleviated liver fibrosis accompanied with decreased protein expression levels of fibrosis markers [α-smooth muscle actin (α-SMA), collagen I, and collagen IV] in the liver of S. japonicum-infected mice blocked galectin-receptor interactions with hematoxylin-eosin staining, Masson's trichrome staining, immunohistochemistry, or Western blot analysis. Compared with S. japonicum-infected mice, blocking galectin-receptor interactions led to increased eosinophil infiltration and higher eosinophil cationic protein (ECP) expression in the liver, accompanied by increased mRNA levels of eosinophil granule proteins [ECP and eosinophil peroxidase (EPO)], IL-5, CCL11, and CCR3 in the liver and decreased mRNA levels of Gal-3 and M2 macrophage cytokines (TGF-ß, IL-10, and IL-4) in the liver and spleen by using quantitative real-time reverse transcription-polymerase chain reaction. In addition, there were increased Beclin1 protein expression and protein expression ratio of LC3B-II/LC3B-I and decreased p62 protein expression and protein expression ratios of phospho-mTOR/mTOR and phospho-AKT/AKT by Western blot; increased double-labeled F4/80+/LC3B+ cells by immunofluorescence staining; increased M1 macrophage polarization in the liver of S. japonicum-infected mice blocked galectin-receptor interactions by flow cytometric analysis and immunofluorescence staining. CONCLUSIONS: Our data found that blockage of galectin-receptor interactions downregulated Gal-3, which in turn led to reduced liver functional damage, elevated liver eosinophil recruitment, promoted macrophage autophagy through the Akt/mTOR signaling pathway, and alleviated liver pathology and fibrosis. Therefore, Gal-3 plays a pivotal role during S. japonicum infection and could be a target of pharmacologic potential for liver fibrosis induced by S. japonicum infection.


Asunto(s)
Galectina 3 , Cirrosis Hepática , Ratones Endogámicos C57BL , Schistosoma japonicum , Esquistosomiasis Japónica , Animales , Esquistosomiasis Japónica/parasitología , Esquistosomiasis Japónica/complicaciones , Cirrosis Hepática/parasitología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Galectina 3/metabolismo , Galectina 3/genética , Hígado/parasitología , Hígado/patología , Hígado/metabolismo , Femenino , Lactosa/farmacología , Lactosa/análogos & derivados , Galectinas/metabolismo , Galectinas/genética
14.
J Biol Chem ; 300(6): 107300, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641066

RESUMEN

Integrin-mediated activation of the profibrotic mediator transforming growth factor-ß1 (TGF-ß1), plays a critical role in idiopathic pulmonary fibrosis (IPF) pathogenesis. Galectin-3 is believed to contribute to the pathological wound healing seen in IPF, although its mechanism of action is not precisely defined. We hypothesized that galectin-3 potentiates TGF-ß1 activation and/or signaling in the lung to promote fibrogenesis. We show that galectin-3 induces TGF-ß1 activation in human lung fibroblasts (HLFs) and specifically that extracellular galectin-3 promotes oleoyl-L-α-lysophosphatidic acid sodium salt-induced integrin-mediated TGF-ß1 activation. Surface plasmon resonance analysis confirmed that galectin-3 binds to αv integrins, αvß1, αvß5, and αvß6, and to the TGFßRII subunit in a glycosylation-dependent manner. This binding is heterogeneous and not a 1:1 binding stoichiometry. Binding interactions were blocked by small molecule inhibitors of galectin-3, which target the carbohydrate recognition domain. Galectin-3 binding to ß1 integrin was validated in vitro by coimmunoprecipitation in HLFs. Proximity ligation assays indicated that galectin-3 and ß1 integrin colocalize closely (≤40 nm) on the cell surface and that colocalization is increased by TGF-ß1 treatment and blocked by galectin-3 inhibitors. In the absence of TGF-ß1 stimulation, colocalization was detectable only in HLFs from IPF patients, suggesting the proteins are inherently more closely associated in the disease state. Galectin-3 inhibitor treatment of precision cut lung slices from IPF patients' reduced Col1a1, TIMP1, and hyaluronan secretion to a similar degree as TGF-ß type I receptor inhibitor. These data suggest that galectin-3 promotes TGF-ß1 signaling and may induce fibrogenesis by interacting directly with components of the TGF-ß1 signaling cascade.


Asunto(s)
Fibroblastos , Galectina 3 , Fibrosis Pulmonar Idiopática , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Galectina 3/metabolismo , Galectina 3/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Pulmón/patología , Transducción de Señal , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Galectinas/metabolismo , Colágeno Tipo I/metabolismo , Células Cultivadas , Proteínas Sanguíneas
15.
Exp Neurol ; 377: 114785, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670250

RESUMEN

Spinal cord injury (SCI) results from various mechanisms that damage the nervous tissue and the blood-brain barrier, leading to sensory and motor function loss below the injury site. Unfortunately, current therapeutic approaches for SCI have limited efficacy in improving patients outcomes. Galectin-3, a protein whose expression increases after SCI, influences the neuroinflammatory response by favoring pro-inflammatory M1 macrophages and microglia, while inhibiting pro-regenerative M2 macrophages and microglia, which are crucial for inflammation resolution and tissue regeneration. Previous studies with Galectin-3 knock-out mice demonstrated enhanced motor recovery after SCI. The M1/M2 balance is strongly influenced by the predominant lymphocytic profiles (Th1, Th2, T Reg, Th17) and cytokines and chemokines released at the lesion site. The present study aimed to investigate how the absence of galectin-3 impacts the adaptive immune system cell population dynamics in various lymphoid spaces following a low thoracic spinal cord compression injury (T9-T10) using a 30 g vascular clip for one minute. It also aimed to assess its influence on the functional outcome in wild-type (WT)and Galectin-3 knock-out (GALNEG) mice. Histological analysis with hematoxylin-eosin and Luxol Fast Blue staining revealed that WT and GALNEG animals exhibit similar spinal cord morphology. The absence of galectin-3 does not affect the common neuroanatomy shared between the groups prompting us to analyze outcomes between both groups. Following our crush model, both groups lost motor and sensory functions below the lesion level. During a 42-day period, GALNEG mice demonstrated superior locomotor recovery in the Basso Mouse Scale (BMS) gait analysis and enhanced motor coordination performance in the ladder rung walk test (LRW) compared to WT mice. GALNEG mice also exhibited better sensory recovery, and their electrophysiological parameters suggested a higher number of functional axons with faster nerve conduction. Seven days after injury, flow cytometry of thymus, spleen, and blood revealed an increased number of T Reg and Th2 cells, accompanied by a decrease in Th1 and Th17 cells in GALNEG mice. Immunohistochemistry conducted on the same day exhibited an increased number of Th2 and T Reg cells around the GALNEG's spinal cord lesion site. At 42-day dpi immunohistochemistry analyses displayed reduced astrogliosis and greater axon preservation in GALNEG's spinal cord seem as a reduction of GFAP immunostaining and an increase in NFH immunostaining, respectively. In conclusion, GALNEG mice exhibited better functional recovery attributed to the milder pro-inflammatory influence, compensated by a higher quantity of T Reg and Th2 cells. These findings suggest that galectin-3 plays a crucial role in the immune response after spinal cord injury and could be a potential target for clinical therapeutic interventions.


Asunto(s)
Galectina 3 , Ratones Endogámicos C57BL , Ratones Noqueados , Recuperación de la Función , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Recuperación de la Función/fisiología , Galectina 3/metabolismo , Galectina 3/genética , Ratones , Linfocitos/metabolismo , Femenino , Masculino
16.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612416

RESUMEN

Acute kidney injury (AKI) is a public health burden with increasing morbidity and mortality rates and health care costs. Acute tubular necrosis (ATN) is the most common cause of AKI. Cisplatin (CIS) is a platinum-based chemotherapeutic agent used in the treatment of a wide variety of malignancies such as lung, breast, ovary, testis, bladder, cervix, and head and neck cancers. Autophagy plays an important role in AKI. Galectin-3 (Gal-3) is significantly increased in renal tubules in AKI; however, its role in autophagy is not well understood. Male C57B6/J and B6.Cg-Lgals3 /J Gal-3 knockout (KO) mice were used to induce AKI using a CIS mouse model of ATN. Renal Gal-3 and autophagy proteins' expression were measured using standard histologic, immunofluorescent, and enzyme-linked immunosorbent assay techniques. The data were presented as the mean ± S.E. Statistically significant differences (p < 0.05) were calculated between experimental groups and corresponding control groups by one-way analysis of variance. There was a significant increase in renal concentrations of Gal-3 in the Gal-3 wild-type CIS-treated mice when compared with sham control mice. There were significantly higher concentrations of renal LC3B, ATG13, Ulk-1, Beclin, ATG5, ATG12, ATG9A, and p-AMPK in the CIS-treated Gal-3 KO mice than in the Gal-3 wild-type CIS-treated mice. Further, there were significantly higher concentrations of mTOR, p- NF-κB, beta-catenin, and p62 in the kidneys of the Gal-3 wild-type CIS-treated mice than in the Gal-3 KO CIS-treated mice. Our findings affirm the connection between Gal-3 and autophagy, revealing its central role as a connector with prosurvival signaling proteins. Gal-3 plays a pivotal role in orchestrating cellular responses by interacting with prosurvival signal pathways and engaging with autophagy proteins. Notably, our observations highlight that the absence of Gal-3 can enhance autophagy in CIS-induced ATN.


Asunto(s)
Lesión Renal Aguda , Necrosis de la Corteza Renal , Animales , Masculino , Ratones , Autofagia , Cisplatino/efectos adversos , Cisplatino/farmacología , Galectina 3/genética , Riñón , Necrosis
17.
PLoS One ; 19(4): e0300809, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662778

RESUMEN

The nuclear farnesoid X receptor (FXR), a master regulator of bile acid and metabolic homeostasis, is a key target for treatment of nonalcoholic steatohepatitis (NASH). This study compared efficacy of FXR agonists obeticholic acid (OCA) and INT-787 by liver histopathology, plasma biomarkers of liver damage, and hepatic gene expression profiles in the Amylin liver NASH (AMLN) diet-induced and biopsy-confirmed Lepob/ob mouse model of NASH. Lepob/ob mice were fed the AMLN diet for 12 weeks before liver biopsy and subsequent treatment with vehicle, OCA, or INT-787 for 8 weeks. Hepatic steatosis, inflammation, and fibrosis (liver lipids, galectin-3, and collagen 1a1 [Col1a1], respectively), as well as plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, were assessed. Hepatic gene expression was assessed in Lepob/ob mice that were fed the AMLN diet for 14 weeks then treated with vehicle, OCA, or INT-787 for 2 weeks. INT-787, which is equipotent to OCA but more hydrophilic, significantly reduced liver lipids, galectin-3, and Col1a1 compared with vehicle, and to a greater extent than OCA. INT-787 significantly reduced plasma ALT and AST levels, whereas OCA did not. INT-787 modulated a substantially greater number of genes associated with FXR signaling, lipid metabolism, and stellate cell activation relative to OCA in hepatic tissue. These findings demonstrate greater efficacy of INT-787 treatment compared with OCA in improving liver histopathology, decreasing liver enzyme levels, and enhancing gene regulation, suggesting superior clinical potential of INT-787 for the treatment of NASH and other chronic liver diseases.


Asunto(s)
Ácido Quenodesoxicólico , Ácido Quenodesoxicólico/análogos & derivados , Modelos Animales de Enfermedad , Hígado , Enfermedad del Hígado Graso no Alcohólico , Receptores Citoplasmáticos y Nucleares , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Ácido Quenodesoxicólico/farmacología , Ácido Quenodesoxicólico/uso terapéutico , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Galectina 3/metabolismo , Galectina 3/genética
18.
Int Immunopharmacol ; 132: 111965, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583242

RESUMEN

Phosgene is a type of poisonous gas that can cause acute lung injury (ALI) upon accidental exposure. Casualties still occur due to phosgene-induced acute lung injury (P-ALI) from accidents resulting from improper operations. The pathological mechanisms of P-ALI are still understudied. Thus, we performed scRNA-seq on cells isolated from all subpopulations of the BALF in P-ALI and found that Gal3 expression was significantly higher in the gas group than in the control group. Further analysis revealed a ligand-receptor correspondence between alveolar macrophages (AMs) and alveolar epithelial cells (AEC), with Gal3 playing a key role in this interaction. To confirm and elaborate on this discovery, we selected four time points during the previous week: sham (day 0), day 1, day 3, and day 7 in the P-ALI mouse model and found that Gal3 expression was significantly elevated in P-ALI, most abundantly expressed in AM cells. This was further confirmed with the use of a Gal3 inhibitor. The inhibition of Gal3 and elimination of AMs in mice both attenuated epithelial cell pyroptosis, as confirmed in in vitro experiments, and revealed the Gal3/caspase-8/GSDMD signaling pathway. These findings suggest that Galectin-3 inhibition can ameliorate AEC pyroptosis by inhibiting the Gal3/caspase-8/GSDMD signaling pathway, thus reducing alveolar damage in mice with P-ALI. This finding provides novel insights for improving treatment efficacy for P-ALI.


Asunto(s)
Lesión Pulmonar Aguda , Células Epiteliales Alveolares , Galectina 3 , Ratones Endogámicos C57BL , Fosgeno , Piroptosis , Animales , Humanos , Masculino , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Sustancias para la Guerra Química/toxicidad , Modelos Animales de Enfermedad , Galectina 3/metabolismo , Galectina 3/genética , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Fosgeno/toxicidad , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
19.
Cancer Lett ; 591: 216879, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636895

RESUMEN

Galectin-3 (Gal-3) is a multifunctional protein that plays a pivotal role in the initiation and progression of various central nervous system diseases, including cancer. Although the involvement of Gal-3 in tumour progression, resistance to treatment and immunosuppression has long been studied in different cancer types, mainly outside the central nervous system, its elevated expression in myeloid and glial cells underscores its profound impact on the brain's immune response. In this context, microglia and infiltrating macrophages, the predominant non-cancerous cells within the tumour microenvironment, play critical roles in establishing an immunosuppressive milieu in diverse brain tumours. Through the utilisation of primary cell cultures and immortalised microglial cell lines, we have elucidated the central role of Gal-3 in promoting cancer cell migration, invasion, and an immunosuppressive microglial phenotypic activation. Furthermore, employing two distinct in vivo models encompassing primary (glioblastoma) and secondary brain tumours (breast cancer brain metastasis), our histological and transcriptomic analysis show that Gal-3 depletion triggers a robust pro-inflammatory response within the tumour microenvironment, notably based on interferon-related pathways. Interestingly, this response is prominently observed in tumour-associated microglia and macrophages (TAMs), resulting in the suppression of cancer cells growth.


Asunto(s)
Neoplasias Encefálicas , Movimiento Celular , Proliferación Celular , Galectina 3 , Glioblastoma , Microglía , Microambiente Tumoral , Microglía/metabolismo , Microglía/patología , Galectina 3/metabolismo , Galectina 3/genética , Humanos , Animales , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Línea Celular Tumoral , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Invasividad Neoplásica , Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Galectinas/genética , Transducción de Señal , Ratones , Regulación Neoplásica de la Expresión Génica
20.
BMC Musculoskelet Disord ; 25(1): 249, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561725

RESUMEN

BACKGROUND: This study investigated the role of Galectin-3 in the degeneration of intervertebral disc cartilage. METHODS: The patients who underwent lumbar spine surgery due to degenerative disc disease were recruited and divided into Modic I, Modic II, and Modic III; groups. HE staining was used to detect the pathological changes in endplates. The changes of Galectin-3, MMP3, Aggrecan, CCL3, and Col II were detected by immunohistochemistry, RT-PCR, and Western blot. MTT and flow cytometry were used to detect cartilage endplate cell proliferation, cell cycle, and apoptosis. RESULTS: With the progression of degeneration (from Modic I to III), the chondrocytes and density of the cartilage endplate of the intervertebral disc decreased, and the collagen arrangement of the cartilage endplate of the intervertebral disc was broken and calcified. Meanwhile, the expressions of Aggrecan, Col II, Galectin-3, Aggrecan, and CCL3 gradually decreased. After treatment with Galectin-3 inhibitor GB1107, the proliferation of rat cartilage end plate cells was significantly reduced (P < 0.05). GB1107 (25 µmol/L) also significantly promoted the apoptosis of cartilage endplate cells (P < 0.05). Moreover, the percentage of cartilage endplate cells in the G1 phase was significantly higher, while that in the G2 and S phases was significantly lower (P < 0.05). Additionally, the mRNA and protein expression levels of MMP3, CCL3, and Aggrecan in rat cartilage end plate cells were lower than those in the control group. CONCLUSIONS: Galectin-3 decreases with the progression of the cartilage endplate degeneration of the intervertebral disc. Galectin-3 may affect intervertebral disc degeneration by regulating the degradation of the extracellular matrix.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Animales , Humanos , Ratas , Agrecanos/genética , Agrecanos/metabolismo , Cartílago/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/patología , Metaloproteinasa 3 de la Matriz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...