Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Res Vet Sci ; 176: 105341, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963992

RESUMEN

Recently, an increased number of reports have described pathogens of animal origin that cause a variety of infections and a rise in their transmission to humans. Streptococcus gallolyticus, a member of the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is one of these pathogens and infects a wide range of hosts from mammals to poultry and has a broad functionality ranging from pathogenicity to food fermentation. As S. gallolyticus causes complications including bacteremia, infective endocarditis, and colorectal malignancy in humans, it is important to investigate its occurrence in various hosts, including geese, to prevent potential zoonotic transmissions. This study aimed to investigate the presence of S. gallolyticus in the droppings of clinically healthy and diarrheic geese, which were raised intensively and semi-intensively, by the in vitro culture method, characterize the isolates recovered by PCR and sequence-based molecular methods and determine their antibiotic susceptibility by the disk diffusion and gradient test methods. For this purpose, 150 samples of fresh goose droppings were used. Culture positivity for S. gallolyticus was determined as 8% (12/150). PCR analysis identified 54.55% (n = 6) of the isolates as S. gallolyticus subsp. gallolyticus and 45.45% (n = 5) as S. gallolyticus subsp. pasteurianus. Following the 16S rRNA sequence and ERIC-PCR analyses, S. gallolyticus subspecies exhibited identical cluster and band profiles that could be easily distinguished from each other and were clonally identified. High rates of susceptibility to florfenicol, penicillin, rifampicin, and vancomycin were detected among the isolates, regardless of the subspecies diversity. Both subspecies showed high levels of resistance to bacitracin, clindamycin, doxycycline, tetracycline, trimethoprim-sulfamethoxazole, and erythromycin and multiple MDR profiles, indicating their potential to become superbugs. This first report from Türkiye demonstrates the occurrence of the S. gallolyticus subspecies in geese. In view of the recent increase of geese production and the consumption of goose meat in Türkiye, the occurrence of S. gallolyticus in geese should not be ignored to prevent zoonotic transmission.


Asunto(s)
Reservorios de Enfermedades , Gansos , Enfermedades de las Aves de Corral , Infecciones Estreptocócicas , Streptococcus gallolyticus , Animales , Gansos/microbiología , Streptococcus gallolyticus/genética , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/transmisión , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/transmisión , Reservorios de Enfermedades/microbiología , Reservorios de Enfermedades/veterinaria , Neoplasias del Colon/microbiología , Neoplasias del Colon/veterinaria , Humanos , Heces/microbiología , Antibacterianos/farmacología
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731857

RESUMEN

Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae.


Asunto(s)
Erysipelothrix , Gansos , Profagos , Animales , Gansos/microbiología , Polonia , Erysipelothrix/genética , Profagos/genética , Antibacterianos/farmacología , Infecciones por Erysipelothrix/microbiología , Infecciones por Erysipelothrix/genética , Enfermedades de las Aves de Corral/microbiología , Secuenciación Completa del Genoma , Genoma Bacteriano , Elementos Transponibles de ADN/genética , Farmacorresistencia Bacteriana/genética , Conjugación Genética , Plásmidos/genética
3.
Poult Sci ; 103(4): 103517, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350391

RESUMEN

Riemerella anatipestifer (R. anatipestifer) can cause serositis in multiple poultry species, resulting in significant losses. Although R. anatipestifer-caused infections in ducks have been well established, the literature about this disease in geese is rare. Here, we isolated and identified 56 strains of R. anatipestifer from the eastern regions of Hebei Province, China, and further determined their serotypes, antibiotic resistance, and pathogenicity. A total of 75 strains of causative bacteria were isolated from 70 sick geese with serositis. After Gram staining microscopy, PCR, and 16S rDNA sequence analysis, 56 isolates were identified as members of R. anatipestifer and 19 as Escherichia coli (E. coli). The results of serotyping showed that there were 4 serotypes prevalent in the isolate, including serotype 1 (37/56), serotype 2 (9/56), serotype 11 (8/56), and serotype 13 (2/56). The results of antibiotic susceptibility testing revealed that all 56 R. anatipestifer isolates showed varying degrees of multidrug resistance (MDR). A total of 10 antibiotic resistance genes (ARG) were determined in these isolates. Four isolates of different serotypes were selected for pathogenicity examination, and all were able to reproduce serositis-like symptoms in 15-day-old goslings, with neurological symptoms and a 100% mortality rate. Hemorrhagic congestion of the brain tissue, steatosis of the hepatocytes, and disorganization of some cardiac myofibers were observed in R. anatipestifer-infected geese. All these findings will contribute to our insights into the prevalence characteristics, antibiotic resistance profile, and pathogenicity of R. anatipestifer infection in geese in eastern Hebei Province and provide scientific guidance for the treatment and control of this disease.


Asunto(s)
Infecciones por Flavobacteriaceae , Enfermedades de las Aves de Corral , Riemerella , Serositis , Animales , Gansos/microbiología , Virulencia , Escherichia coli , Serositis/veterinaria , Pollos , Riemerella/genética , Patos/microbiología , Farmacorresistencia Microbiana , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología
4.
PeerJ ; 11: e16682, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130921

RESUMEN

Gut-associated microbial communities are known to play a vital role in the health and fitness of their hosts. Though studies investigating the factors associated with among-individual variation in microbiome structure in wild animal species are increasing, knowledge of this variation at the individual level is scarce, despite the clear link between microbiome and nutritional status uncovered in humans and model organisms. Here, we combine detailed observational data on life history and foraging preference with 16S rRNA profiling of the faecal microbiome to investigate the relationship between diet, microbiome stability and rates of body mass gain in a migratory capital-breeding bird, the light-bellied Brent goose (Branta bernicla hrota). Our findings suggest that generalist feeders have microbiomes that are intermediate in diversity and composition between two foraging specialisms, and also show higher within-individual plasticity. We also suggest a link between foraging phenotype and the rates of mass gain during the spring staging of a capital breeder. This study offers rare insight into individual-level temporal dynamics of the gut microbiome of a wild host. Further work is needed to uncover the functional link between individual dietary choices, gut microbiome structure and stability, and the implications this has for the reproductive success of this capital breeder.


Asunto(s)
Microbioma Gastrointestinal , Gansos , Animales , Bacterias , Dieta/veterinaria , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Gansos/microbiología , Tamaño Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA