Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.885
Filtrar
1.
ACS Sens ; 9(6): 2728-2776, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38828988

RESUMEN

The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.


Asunto(s)
Gases , Gases/análisis , Gases/química , Olfato , Industrias , Odorantes/análisis
2.
ACS Sens ; 9(6): 2925-2934, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38836922

RESUMEN

The biomimetic electronic nose (e-nose) technology is a novel technology used for the identification and monitoring of complex gas molecules, and it is gaining significance in this field. However, due to the complexity and multiplicity of gas mixtures, the accuracy of electronic noses in predicting gas concentrations using traditional regression algorithms is not ideal. This paper presents a solution to the difficulty by introducing a fusion network model that utilizes a transformer-based multikernel feature fusion (TMKFF) module combined with a 1DCNN_LSTM network to enhance the accuracy of regression prediction for gas mixture concentrations using a portable electronic nose. The experimental findings demonstrate that the regression prediction performance of the fusion network is significantly superior to that of single models such as convolutional neural network (CNN) and long short-term memory (LSTM). The present study demonstrates the efficacy of our fusion network model in accurately predicting the concentrations of multiple target gases, such as SO2, NO2, and CO, in a gas mixture. Specifically, our algorithm exhibits substantial benefits in enhancing the prediction performance of low-concentration SO2 gas, which is a noteworthy achievement. The determination coefficient (R2) values of 93, 98, and 99% correspondingly demonstrate that the model is very capable of explaining the variation in the concentration of the target gases. The root-mean-square errors (RMSE) are 0.0760, 0.0711, and 3.3825, respectively, while the mean absolute errors (MAE) are 0.0507, 0.0549, and 2.5874, respectively. These results indicate that the model has relatively small prediction errors. The method we have developed holds significant potential for practical applications in detecting atmospheric pollution detection and other molecular detection areas in complex environments.


Asunto(s)
Nariz Electrónica , Gases , Gases/química , Gases/análisis , Redes Neurales de la Computación , Algoritmos , Dióxido de Azufre/análisis , Inteligencia Artificial
3.
ACS Sens ; 9(6): 3085-3095, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38840550

RESUMEN

Wearable gas sensors have drawn great attention for potential applications in health monitoring, minienvironment detection, and advanced soft electronic noses. However, it still remains a great challenge to simultaneously achieve excellent flexibility, high sensitivity, robustness, and gas permeability, because of the inherent limitation of widely used traditional organic flexible substrates. Herein, an electrospinning polyacrylonitrile (PAN) nanofiber network was designed as a flexible substrate, on which an ultraflexible wearable gas sensor was prepared with in situ assembled polyaniline (PANI) and multiwalled carbon nanotubes (MWCNTs) as a sensitive layer. The unique nanofiber network and strong binding force between substrate and sensing materials endow the wearable gas sensor with excellent robustness, flexibility, and gas permeability. The wearable sensor can maintain stable NH3 sensing performance while sustaining extreme bending and stretching (50% of strain). The Young's modulus of wearable PAN/MWCNTs/PANI sensor is as low as 18.9 MPa, which is several orders of magnitude smaller than those of reported flexible sensors. The water vapor transmission rate of the sensor is 0.38 g/(cm2 24 h), which enables the wearing comfort of the sensor. Most importantly, due to the effective exposure of sensing sites as well as the heterostructure effect between MWCNTs and PANI, the sensor shows high sensitivity to NH3 at room temperature, and the theoretical limit of detection is as low as 300 ppb. This work provides a new avenue for the realization of reliable and high-performance wearable gas sensors.


Asunto(s)
Resinas Acrílicas , Amoníaco , Compuestos de Anilina , Nanofibras , Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Nanofibras/química , Nanotubos de Carbono/química , Compuestos de Anilina/química , Resinas Acrílicas/química , Amoníaco/análisis , Humanos , Gases/análisis , Gases/química
4.
ACS Sens ; 9(6): 3126-3136, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38843033

RESUMEN

Given the widespread utilization of gas sensors across various industries, the detection of diverse and complex target gases presents a significant challenge in designing sensors with multigas detection capability. Although constructing a sensor array with widely used chemiresistive gas sensors is one solution, it is difficult for a single chemiresistive gas sensor to simultaneously detect different gases, as it can only detect a single target gas. The intrinsic reason for this bottleneck is that chemiresistive gas sensors rely entirely on the resistivity as the unique parameter to evaluate the diverse gas sensing properties of sensors, such as sensitivity, selectivity, etc. Herein, a field-effect transistor (FET) with abundant electrical parameters is employed to prepare a gas sensor for the detection of a variety of gases. Semiconducting carbon nanotubes (CNTs) are selected as the channel material, which is modified by Pd nanoparticles to enhance the gas sensing properties of the sensors. By extracting various electrical parameters such as transconductance, threshold voltage, etc. from the transfer characteristic curves of FET, a correlation between multielectrical parameters and various gas detection information is established for subsequent data analysis. Through the utilization of the principal component analysis algorithm, the identification of six gases can be finally achieved by relying solely on a single carbon-based FET-type gas sensor. We hope our work can solve the bottleneck of multigas identification by a single sensor in principle and is expected to reduce the system complexity and cost caused by the design of sensor arrays, offering a valuable guidance for multigas identification technology.


Asunto(s)
Gases , Nanotubos de Carbono , Transistores Electrónicos , Nanotubos de Carbono/química , Gases/análisis , Gases/química
5.
ACS Sens ; 9(6): 3282-3289, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38864828

RESUMEN

A new type of carbonized polymer dot was prepared by the one-step hydrothermal method of triethoxylsilane (TEOS) and citric acid (CA). The sensor made from carbonized polymer dots (CPDs) showed superior gas sensing performance toward ammonia at room temperature. The Si, O-codoped CPDs exhibited superior ammonia sensing performance at room temperature, including a low practical limit of detection (pLOD) of 1 ppm (Ra/Rg: 1.10, 1 ppm), short response/recovery time (30/36 s, 1 ppm), high humidity resistance (less than 5% undulation when changing relative humidity to 80 from 30%), high stability (less than 5% initial response undulation after 120 days), reliable repeatability, and high selectivity against other interferential gases. The gas sensing mechanism was investigated through control experiments and in situ FTIR, indicating that Si, O-codoping essentially improves the electron transfer capability of CPDs and synergistically dominates the superior ammonia sensing properties of the CPDs. This work presents a facile strategy for constructing novel high-performance, single-component carbonized polymer dots for gas sensing.


Asunto(s)
Amoníaco , Polímeros , Temperatura , Amoníaco/análisis , Polímeros/química , Carbono/química , Gases/análisis , Gases/química , Silicio/química , Límite de Detección , Puntos Cuánticos/química , Oxígeno/química
6.
J Phys Chem B ; 128(25): 5973-5986, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38864851

RESUMEN

Electrospray ionization (ESI) mass spectrometry is widely used for interrogating peptides, proteins, and other biomolecular analytes. A growing number of laboratories use molecular dynamics (MD) simulations for uncovering ESI mechanisms by modeling the behavior of highly charged nanodroplets. The outcome of any MD simulation depends on certain assumptions and parameter settings, and it is desirable to optimize these factors by benchmarking computational data against experiments. Unfortunately, benchmarking of ESI simulations is difficult because experimentally generated gaseous ions do not generally retain any features that would reveal their formation pathway [e.g., the charged residue mechanism (CRM) or the ion evaporation mechanism (IEM)]. Here, we tackle this problem by examining the effects of various MD settings on the ESI behavior of the 9-residue peptide bradykinin in acidic aqueous droplets. Several parameters were found to significantly affect the kinetic competition between peptide IEM and CRM. By systematically probing the droplet behavior, we uncovered problems associated with certain settings, including peptide/solvent temperature imbalances, unexpected peptide deceleration during IEM, and a dependence of the ESI mechanism on the water model. We also noted different simulation outcomes for different force fields. On the basis of comprehensive tests, we propose a set of "best practice" parameter settings for MD simulations of ESI droplets. The strategies used here should be transferable to other types of droplet simulations, paving the way toward a more solid understanding of ESI mechanisms.


Asunto(s)
Gases , Simulación de Dinámica Molecular , Espectrometría de Masa por Ionización de Electrospray , Gases/química , Péptidos/química , Iones/química , Bradiquinina/química , Agua/química
7.
Molecules ; 29(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893534

RESUMEN

Electrocatalytic CO2 reduction to CO and formate can be coupled to gas fermentation with anaerobic microorganisms. In combination with a competing hydrogen evolution reaction in the cathode in aqueous medium, the in situ, electrocatalytic produced syngas components can be converted by an acetogenic bacterium, such as Clostridium ragsdalei, into acetate, ethanol, and 2,3-butanediol. In order to study the simultaneous conversion of CO, CO2, and formate together with H2 with C. ragsdalei, fed-batch processes were conducted with continuous gassing using a fully controlled stirred tank bioreactor. Formate was added continuously, and various initial CO partial pressures (pCO0) were applied. C. ragsdalei utilized CO as the favored substrate for growth and product formation, but below a partial pressure of 30 mbar CO in the bioreactor, a simultaneous CO2/H2 conversion was observed. Formate supplementation enabled 20-50% higher growth rates independent of the partial pressure of CO and improved the acetate and 2,3-butanediol production. Finally, the reaction conditions were identified, allowing the parallel CO, CO2, formate, and H2 consumption with C. ragsdalei at a limiting CO partial pressure below 30 mbar, pH 5.5, n = 1200 min-1, and T = 32 °C. Thus, improved carbon and electron conversion is possible to establish efficient and sustainable processes with acetogenic bacteria, as shown in the example of C. ragsdalei.


Asunto(s)
Reactores Biológicos , Butileno Glicoles , Dióxido de Carbono , Monóxido de Carbono , Clostridium , Fermentación , Formiatos , Hidrógeno , Formiatos/metabolismo , Formiatos/química , Clostridium/metabolismo , Clostridium/crecimiento & desarrollo , Monóxido de Carbono/metabolismo , Hidrógeno/metabolismo , Dióxido de Carbono/metabolismo , Butileno Glicoles/metabolismo , Butileno Glicoles/química , Gases/metabolismo , Gases/química , Etanol/metabolismo
8.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891873

RESUMEN

Gas-loaded nanocarriers (G-LN) show promise in improving heart transplantation (HTx) outcomes. Given their success in reducing cell death during normothermic hypoxia/reoxygenation (H/R) in vitro, we tested their integration into cardioplegic solutions and static cold storage (SCS) during simulated HTx. Wistar rat hearts underwent four hours of SCS with four G-LN variants: O2- or N2-cyclic-nigerosyl-nigerose-nanomonomers (CNN), and O2- or N2-cyclic-nigerosyl-nigerose-nanosponges (CNN-NS). We monitored physiological-hemodynamic parameters and molecular markers during reperfusion to assess cell damage/protection. Hearts treated with nanomonomers (N2-CNN or O2-CNN) showed improvements in left ventricular developed pressure (LVDP) and a trend towards faster recovery of the rate pressure product (RPP) compared to controls. However, nanosponges (N2-CNN-NS or O2-CNN-NS) did not show similar improvements. None of the groups exhibited an increase in diastolic left ventricular pressure (contracture index) during reperfusion. Redox markers and apoptosis/autophagy pathways indicated an increase in Beclin 1 for O2-CNN and in p22phox for N2-CNN, suggesting alterations in autophagy and the redox environment during late reperfusion, which might explain the gradual decline in heart performance. The study highlights the potential of nanomonomers to improve early cardiac performance and mitigate cold/H/R-induced stunning in HTx. These early improvements suggest a promising avenue for increasing HTx success. Nevertheless, further research and optimization are needed before clinical application.


Asunto(s)
Trasplante de Corazón , Ratas Wistar , Animales , Trasplante de Corazón/métodos , Ratas , Masculino , Nanopartículas/química , Oxígeno/metabolismo , Hipoxia/metabolismo , Hemodinámica , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Gases/química
9.
ACS Appl Mater Interfaces ; 16(24): 30755-30765, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38847111

RESUMEN

In recent years, enveloped micro-nanobubbles have garnered significant attention in research due to their commendable stability, biocompatibility, and other notable properties. Currently, the preparation methods of enveloped micro-nanobubbles have limitations such as complicated preparation process, large bubble size, wide distribution range, low yield, etc. There exists an urgent demand to devise a simple and efficient method for the preparation of enveloped micro-nanobubbles, ensuring both high concentration and a uniform particle size distribution. Magnetic lipid bubbles (MLBs) are a multifunctional type of enveloped micro-nanobubble combining magnetic nanoparticles with lipid-coated bubbles. In this study, MLBs are prepared simply and efficiently by a magneto internal heat bubble generation process based on the interfacial self-assembly of iron oxide nanoparticles induced by the thermogenic effect in an alternating magnetic field. The mean hydrodynamic diameter of the MLBs obtained was 384.9 ± 8.5 nm, with a polydispersity index (PDI) of 0.248 ± 0.021, a zeta potential of -30.5 ± 1.0 mV, and a concentration of (7.92 ± 0.46) × 109 bubbles/mL. Electron microscopy results show that the MLBs have a regular spherical stable core-shell structure. The superparamagnetic iron oxide nanoparticles (SPIONs) and phospholipid layers adsorbed around the spherical gas nuclei of the MLBs, leading the particles to demonstrate commendable superparamagnetic and magnetic properties. In addition, the effects of process parameters on the morphology of MLBs, including phospholipid concentration, phospholipid proportiona, current intensity, magnetothermal time, and SPION concentration, were investigated and discussed to achieve controlled preparation of MLBs. In vitro imaging results reveal that the higher the concentration of MLBs loaded with iron oxide nanoparticles, the better the in vitro ultrasound (US) imaging and magnetic resonance imaging (MRI) results. This study proves that the magneto internal heat bubble generation process is a simple and efficient technique for preparing MLBs with high concentration, regular structure, and commendable properties. These findings lay a robust foundation for the mass production and application of enveloped micro-nanobubbles, particularly in biomedical fields and other related domains.


Asunto(s)
Fosfolípidos , Fosfolípidos/química , Tamaño de la Partícula , Nanopartículas Magnéticas de Óxido de Hierro/química , Nanopartículas de Magnetita/química , Gases/química , Microburbujas , Campos Magnéticos
10.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891779

RESUMEN

In this review, the principles of gas-phase proton basicity measurements and theoretical calculations are recalled as a reminder of how the basicity PA/GB scale, based on Brønsted-Lowry theory, was constructed in the gas-phase (PA-proton affinity and/or GB-gas-phase basicity in the enthalpy and Gibbs energy scale, respectively). The origins of exceptionally strong gas-phase basicity of some organic nitrogen bases containing N-sp3 (amines), N-sp2 (imines, amidines, guanidines, polyguanides, phosphazenes), and N-sp (nitriles) are rationalized. In particular, the role of push-pull nitrogen bases in the development of the gas-phase basicity in the superbasicity region is emphasized. Some reasons for the difficulties in measurements for poly-functional nitrogen bases are highlighted. Various structural phenomena being in relation with gas-phase acid-base equilibria that should be considered in quantum-chemical calculations of PA/GB parameters are discussed. The preparation methods for strong organic push-pull bases containing a N-sp2 site of protonation are briefly reviewed. Finally, recent trends in research on neutral organic superbases, leaning toward catalytic and other remarkable applications, are underlined.


Asunto(s)
Gases , Gases/química , Termodinámica , Protones , Nitrógeno/química , Compuestos Orgánicos/química , Teoría Cuántica
11.
Phys Chem Chem Phys ; 26(23): 16579-16588, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38832404

RESUMEN

The transsulfuration pathway plays a key role in mammals for maintaining the balance between cysteine and homocysteine, whose concentrations are critical in several biochemical processes. Human cystathionine ß-synthase is a heme-containing, pyridoxal 5'-phosphate (PLP)-dependent enzyme found in this pathway. The heme group does not participate directly in catalysis, but has a regulatory function, whereby CO or NO binding inhibits the PLP-dependent reactions. In this study, we explore the detailed structural changes responsible for inhibition using quantum chemical calculations to validate the experimentally observed bonding patterns associated with heme CO and NO binding and molecular dynamics simulations to explore the medium-range structural changes triggered by gas binding and propagating to the PLP active site, which is more than 20 Å distant from the heme group. Our results support a previously proposed mechanical signaling model, whereby the cysteine decoordination associated with gas ligand binding leads to breaking of a hydrogen bond with an arginine residue on a neighbouring helix. In turn, this leads to a shift in position of the helix, and hence also of the PLP cofactor, ultimately disrupting a key hydrogen bond that stabilizes the PLP in its catalytically active form.


Asunto(s)
Cistationina betasintasa , Simulación de Dinámica Molecular , Fosfato de Piridoxal , Cistationina betasintasa/metabolismo , Cistationina betasintasa/química , Humanos , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Gases/química , Gases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Enlace de Hidrógeno , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Hemo/química , Hemo/metabolismo , Dominio Catalítico , Teoría Cuántica , Cisteína/química , Cisteína/metabolismo
12.
PLoS One ; 19(6): e0304333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38875253

RESUMEN

Magnetic MnFe2O4 nanoparticles were successfully prepared by the rapid combustion method at 500 °C for 2 h with 30 mL absolute ethanol, and were characterized by SEM, TEM, XRD, VSM, and XPS techniques, their average particle size and the saturation magnetization were about 25.3 nm and 79.53 A·m2/kg, respectively. The magnetic MnFe2O4 nanoparticles were employed in a fixed bed experimental system to investigate the adsorption capacity of Hg0 from air. The MnFe2O4 nanoparticles exhibited the large adsorption performance on Hg0 with the adsorption capacity of 16.27 µg/g at the adsorption temperature of 50 °C with the space velocity of 4.8×104 h-1. The VSM and EDS results illustrated that the prepared MnFe2O4 nanoparticles were stable before and after adsorption and successfully adsorbed Hg0. The TG curves demonstrated that the mercury compound formed after adsorption was HgO, and both physical and chemical adsorption processes were observed. Magnetic MnFe2O4 nanoparticles revealed excellent adsorbance of Hg0 in air, which suggested that MnFe2O4 nanoparticles be promising for the removal of Hg0.


Asunto(s)
Compuestos Férricos , Gases , Compuestos de Manganeso , Mercurio , Adsorción , Mercurio/química , Compuestos de Manganeso/química , Compuestos Férricos/química , Gases/química , Tamaño de la Partícula , Temperatura
13.
ACS Nano ; 18(24): 15590-15606, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38847586

RESUMEN

To date, long-term and continuous ultrasonic imaging for guiding the puncture biopsy remains a challenge. In order to address this issue, a multimodality imaging and therapeutic method was developed in the present study to facilitate long-term ultrasonic and fluorescence imaging-guided precision diagnosis and combined therapy of tumors. In this regard, certain types of photoactivated gas-generating nanocontrast agents (PGNAs), capable of exhibiting both ultrasonic and fluorescence imaging ability along with photothermal and sonodynamic function, were designed and fabricated. The advantages of these fabricated PGNAs were then utilized against tumors in vivo, and high therapeutic efficacy was achieved through long-term ultrasonic imaging-guided treatment. In particular, the as-prepared multifunctional PGNAs were applied successfully for the fluorescence-based determination of patient tumor samples collected through puncture biopsy in clinics, and superior performance was observed compared to the clinically used SonoVue contrast agents that are incapable of specifically distinguishing the tumor in ex vivo tissues.


Asunto(s)
Medios de Contraste , Ultrasonografía , Medios de Contraste/química , Medios de Contraste/farmacología , Humanos , Animales , Ratones , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/terapia , Imagen Óptica , Gases/química , Línea Celular Tumoral , Femenino , Ratones Desnudos
14.
Chemosphere ; 361: 142576, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852628

RESUMEN

Photocatalytic degradation stands as a promising method for eliminating gas-phase pollutants, with the efficiency largely hinging on the capture of photogenerated electrons by oxygen. In this work, we synthesized a porous CeO2 single crystal cube with abundant oxygen vacancies as photocatalyst, employing urea as a pore-forming agent and for gas-phase formaldehyde degradation. Compared with the CeO2 cubes without pores, the porous ones were superior in specific surface area, akin to conventional CeO2 nanoparticles. The photocatalytic degradation for gas-phase formaldehyde on porous CeO2 cubes was significantly accelerated, of which degradation rate is 3.3 times and 2.1 times that of CeO2 cubes without pores and CeO2 nanoparticles, respectively. Photoelectric tests and DFT calculations revealed that this enhancement stemmed from facilitated oxygen adsorption due to pronounced oxygen vacancies. Consequently, the capture of photoelectrons by oxygen was promoted and its recombination with holes was suppressed, along with an accelerated generation of curial free radicals such as ·OH. This work reveals the pivotal role of surface oxygen vacancies in promoting adsorbed oxygen, proposing a viable strategy to enhance the photocatalytic degradation efficiency for gas-phase pollutants.


Asunto(s)
Cerio , Formaldehído , Oxígeno , Formaldehído/química , Cerio/química , Oxígeno/química , Adsorción , Porosidad , Catálisis , Gases/química , Contaminantes Atmosféricos/química
15.
ACS Sens ; 9(6): 2836-2845, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753397

RESUMEN

Chemiresistive polymer-based sensors are promising platforms for monitoring various gases and volatile organic compounds. While they offer appealing attributes, such as ease of fabrication, flexibility, and cost-effectiveness, most of these sensors have a nearly identical response to cross-reactive gases, such as ammonia (NH3) and carbon dioxide (CO2). Aiming to address the shortcomings of chemiresistive polymer-based sensors in selectivity and simultaneous measurements of cross-reactive gases, a chemiresistive sensor array was developed consisting of components sensitive to carbon dioxide and ammonia as well as a control segment to provide the baseline. The designed system demonstrated a wide detection range for both ammonia (ranging from 0.05 to 1000 ppm) and carbon dioxide (ranging from 103 to 106 ppm) at both room and low temperatures (e.g., 4 °C). Our results also demonstrate the ability of this sensor array for the simultaneous detection of carbon dioxide and ammonia selectively in the presence of other gases and volatile organic compounds. Finally, the array was used to monitor CO2/NH3 in real food samples to demonstrate the potential for real-world applications.


Asunto(s)
Amoníaco , Dióxido de Carbono , Amoníaco/análisis , Dióxido de Carbono/análisis , Gases/análisis , Gases/química
16.
ACS Sens ; 9(6): 3178-3186, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38778734

RESUMEN

Large emissions of nitrogen dioxide (NO2) pose a significant threat to human health, Monitoring its content and implementing timely measures are crucial. Utilizing oxide semiconductors, such as tin dioxide (SnO2), has proven to be an effective way to detect and analyze NO2. The design and preparation of sensing materials with high sensitivity and excellent selectivity is the key to improve the detection efficiency. SnO2 nanopowders with small and uniform particle size, large specific surface area, adjustable defect content, and no impurities were prepared by a new plasma spraying method. The SnO2 nanopowders exhibit outstanding performance in detecting NO2 at a low temperature of 100 °C, the response to 5 ppm of NO2 reaches 48, and the material demonstrates rapid response and recovery times, coupled with excellent selectivity. The exceptional gas-sensitive properties can be attributed to the superior morphology and structure of SnO2. It provides more reaction sites for gas sensitive reactions, fast electron transport, a large number of charge carriers, and improved adsorption of the material to the target gas. This study provides valuable insights into nanomaterial preparation and the enhancement of gas-sensitive properties for SnO2.


Asunto(s)
Dióxido de Nitrógeno , Compuestos de Estaño , Compuestos de Estaño/química , Dióxido de Nitrógeno/química , Dióxido de Nitrógeno/análisis , Gases/química , Tamaño de la Partícula
17.
ACS Sens ; 9(6): 3262-3271, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38809959

RESUMEN

As trimethylamine (TMA) is widely used in agriculture and industry, inhalation of TMA can cause very serious negative effects on human health. However, most of the current gas sensors for detecting TMA are commonly performed at high temperatures and cannot meet market needs. Inspired by this, we prepared imine covalent organic frameworks (TB-COF) synthesized from two monomers, 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 1,3,5-benzotricarboxaldehyde (BTCA), using acetic acid as a catalyst at room temperature. Based on this, three sensors were prepared for gas sensitivity testing, namely, TA, BT, and TB-COF sensors. The three sensors were tested for 15 different gases at room temperature. From the whole gas sensitivity data, the TB-COF sensor made by compositing TA and BT has a higher sensitivity (6845.9%) to TMA at 500 ppm, which is 6.1 and 5.4 times higher than the response of TA and BT sensors, respectively. The TB-COF sensor adsorbs and desorbs TMA in a controlled 23 s cycle with a low detection limit of 28.6 ppb. This result indicates that TB-COF prepared at room temperature can be used as a gas-sensitive sensing material for real-time monitoring of TMA. The gas sensing results demonstrate the great potential of COFs for sensor development and application and provide ideas for further development of COFs-based gas sensors.


Asunto(s)
Iminas , Estructuras Metalorgánicas , Metilaminas , Metilaminas/análisis , Metilaminas/química , Iminas/química , Estructuras Metalorgánicas/química , Límite de Detección , Gases/química , Gases/análisis
18.
Anal Chem ; 96(21): 8518-8527, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38711366

RESUMEN

Accurate structural determination of proteins is critical to understanding their biological functions and the impact of structural disruption on disease progression. Gas-phase cross-linking mass spectrometry (XL-MS) via ion/ion reactions between multiply charged protein cations and singly charged cross-linker anions has previously been developed to obtain low-resolution structural information on proteins. This method significantly shortens experimental time relative to conventional solution-phase XL-MS but has several technical limitations: (1) the singly deprotonated N-hydroxysulfosuccinimide (sulfo-NHS)-based cross-linker anions are restricted to attachment at neutral amine groups of basic amino acid residues and (2) analyzing terminal cross-linked fragment ions is insufficient to unambiguously localize sites of linker attachment. Herein, we demonstrate enhanced structural information for alcohol-denatured A-state ubiquitin obtained from an alternative gas-phase XL-MS approach. Briefly, singly sodiated ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS) cross-linker anions enable covalent cross-linking at both ammonium and amine groups. Additionally, covalently modified internal fragment ions, along with terminal b-/y-type counterparts, improve the determination of linker attachment sites. Molecular dynamics simulations validate experimentally obtained gas-phase conformations of denatured ubiquitin. This method has identified four cross-linking sites across 8+ ubiquitin, including two new sites in the N-terminal region of the protein that were originally inaccessible in prior gas-phase XL approaches. The two N-terminal cross-linking sites suggest that the N-terminal half of ubiquitin is more compact in gas-phase conformations. By comparison, the two C-terminal linker sites indicate the signature transformation of this region of the protein from a native to a denatured conformation. Overall, the results suggest that the solution-phase secondary structures of the A-state ubiquitin are conserved in the gas phase. This method also provides sufficient sensitivity to differentiate between two gas-phase conformers of the same charge state with subtle structural variations.


Asunto(s)
Reactivos de Enlaces Cruzados , Ubiquitina , Ubiquitina/química , Reactivos de Enlaces Cruzados/química , Sodio/química , Gases/química , Cationes/química , Succinimidas/química , Espectrometría de Masas , Iones/química
19.
Int J Biol Macromol ; 271(Pt 1): 132335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768923

RESUMEN

Development of renewable and biodegradable plastics with good properties, such as the gas barrier, UV-shielding, solvent resistance, and antibacterial activity, remains a challenge. Herein, cellulose/ZnO based bioplastics were fabricated by dissolving cellulose carbamate in an aqueous solution of NaOH/Zn(OH)42-, followed by coagulation in aqueous Na2SO4 solution, and subsequent hot-pressing. The carbamate groups detached from cellulose, and ZnO which transformed from cosolvent to nanofiller was uniformly immobilized in the cellulose matrix during the dissolution/regeneration process. The appropriate addition of ZnO (below 10.67 wt%) not only improved the mechanical properties but also enhanced the water and oxygen barrier properties of the material. Additionally, our cellulose/ZnO based bioplastic demonstrated excellent UV-blocking capabilities, increased water contact angle, and enhanced antibacterial activity against S. aureus and E. coli, deriving from the incorporation of ZnO nanoparticles. Furthermore, the material exhibited resistance to organic solvents such as acetone, THF, and toluene. Indeed, the herein developed cellulose/ZnO based bioplastic presents a promising candidate to replace petrochemical plastics in various applications, such as plastic toys, anti-UV guardrails, window shades, and oil storage containers, offering a combination of favorable mechanical, gas barrier, UV-blocking, antibacterial, and solvent-resistant properties.


Asunto(s)
Antibacterianos , Celulosa , Escherichia coli , Staphylococcus aureus , Rayos Ultravioleta , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Celulosa/química , Celulosa/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Plásticos Biodegradables/química , Plásticos Biodegradables/farmacología , Gases/química , Solventes/química
20.
Int J Biol Macromol ; 271(Pt 1): 132576, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788883

RESUMEN

With increasing concern for the environment, the demand for carbon dioxide separation, a key contributor to global warming, has escalated. Therefore, this paper focuses on carbon dioxide separation by creating an hydroxyethyl cellulose (HEC)(C2H6O2)x*(C6H7O2(OH)3)n/silver tetra fluoroborate (AgBF4)/aluminum nitrate (Al(NO3)3) composite film, demonstrating excellent separation performance with a permeance of 1.0 GPU and a selectivity of 100. Silver ions enhance the solubility of carbon dioxide, aiding in its separation, and we determined the optimal aluminum composition to stabilize the silver ions. To analyze this, we examined the cross-sections using SEM, confirming a selective layer of 1.7 µm for carbon dioxide separation. Furthermore, TGA, FT-IR, and NMR analyses were conducted to investigate the interaction between the polymer and additives. This revealed that the increased polymer chain due to the interaction between Ag and HEC, along with stabilized Ag facilitated by the addition of Al, maximized the interaction with carbon dioxide via the empty s-orbital. Additionally, SEM-EDX, UV-vis, XRD, XPS analyses were employed to elucidate the movement of ions within the membrane. These results provide insights into the performance of membranes based on cellulose polymer and offer valuable insights for future applications in gas separation technologies.


Asunto(s)
Dióxido de Carbono , Celulosa , Celulosa/química , Celulosa/análogos & derivados , Dióxido de Carbono/química , Gases/química , Plata/química , Tecnología Química Verde/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...