Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
J Nanobiotechnology ; 22(1): 277, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783332

RESUMEN

Spinal Cord Injury (SCI) is a condition characterized by complete or incomplete motor and sensory impairment, as well as dysfunction of the autonomic nervous system, caused by factors such as trauma, tumors, or inflammation. Current treatment methods primarily include traditional approaches like spinal canal decompression and internal fixation surgery, steroid pulse therapy, as well as newer techniques such as stem cell transplantation and brain-spinal cord interfaces. However, the above methods have limited efficacy in promoting axonal and neuronal regeneration. The challenge in medical research today lies in promoting spinal cord neuron regeneration and regulating the disrupted microenvironment of the spinal cord. Studies have shown that gas molecular therapy is increasingly used in medical research, with gasotransmitters such as hydrogen sulfide, nitric oxide, carbon monoxide, oxygen, and hydrogen exhibiting neuroprotective effects in central nervous system diseases. The gas molecular protect against neuronal death and reshape the microenvironment of spinal cord injuries by regulating oxidative, inflammatory and apoptotic processes. At present, gas therapy mainly relies on inhalation for systemic administration, which cannot effectively enrich and release gas in the spinal cord injury area, making it difficult to achieve the expected effects. With the rapid development of nanotechnology, the use of nanocarriers to achieve targeted enrichment and precise control release of gas at Sites of injury has become one of the emerging research directions in SCI. It has shown promising therapeutic effects in preclinical studies and is expected to bring new hope and opportunities for the treatment of SCI. In this review, we will briefly outline the therapeutic effects and research progress of gasotransmitters and nanogas in the treatment of SCI.


Asunto(s)
Gasotransmisores , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/terapia , Humanos , Animales , Gasotransmisores/uso terapéutico , Gasotransmisores/metabolismo , Óxido Nítrico/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Monóxido de Carbono/metabolismo , Monóxido de Carbono/uso terapéutico , Oxígeno/metabolismo , Médula Espinal , Hidrógeno/uso terapéutico , Hidrógeno/farmacología
2.
Ecotoxicol Environ Saf ; 276: 116307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593497

RESUMEN

In recent decades, there has been increasing interest in elucidating the role of sulfur-containing compounds in plant metabolism, particularly emphasizing their function as signaling molecules. Among these, thiocyanate (SCN-), a compound imbued with sulfur and nitrogen, has emerged as a significant environmental contaminant frequently detected in irrigation water. This compound is known for its potential to adversely impact plant growth and agricultural yield. Although adopting exogenous SCN- as a nitrogen source in plant cells has been the subject of thorough investigation, the fate of sulfur resulting from the assimilation of exogenous SCN- has not been fully explored. There is burgeoning curiosity in probing the fate of SCN- within plant systems, especially considering the possible generation of the gaseous signaling molecule, hydrogen sulfide (H2S) during the metabolism of SCN-. Notably, the endogenous synthesis of H2S occurs predominantly within chloroplasts, the cytosol, and mitochondria. In contrast, the production of H2S following the assimilation of exogenous SCN- is explicitly confined to chloroplasts and mitochondria. This phenomenon indicates complex interplay and communication among various subcellular organelles, influencing signal transduction and other vital physiological processes. This review, augmented by a small-scale experimental study, endeavors to provide insights into the functional characteristics of H2S signaling in plants subjected to SCN--stress. Furthermore, a comparative analysis of the occurrence and trajectory of endogenous H2S and H2S derived from SCN--assimilation within plant organisms was performed, providing a focused lens for a comprehensive examination of the multifaceted roles of H2S in rice plants. By delving into these dimensions, our objective is to enhance the understanding of the regulatory mechanisms employed by the gasotransmitter H2S in plant adaptations and responses to SCN--stress, yielding invaluable insights into strategies for plant resilience and adaptive capabilities.


Asunto(s)
Sulfuro de Hidrógeno , Plantas , Transducción de Señal , Tiocianatos , Sulfuro de Hidrógeno/metabolismo , Tiocianatos/metabolismo , Plantas/metabolismo , Gasotransmisores/metabolismo , Cloroplastos/metabolismo , Inactivación Metabólica
3.
ACS Sens ; 9(4): 1682-1705, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38593007

RESUMEN

Gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are a class of gaseous, endogenous signaling molecules that interact with one another in the regulation of critical cardiovascular, immune, and neurological processes. The development of analytical sensing mechanisms for gasotransmitters, especially multianalyte mechanisms, holds vast importance and constitutes a growing area of study. This review provides an overview of electrochemical sensing mechanisms with an emphasis on opportunities in multianalyte sensing. Electrochemical methods demonstrate good sensitivity, adequate selectivity, and the most well-developed potential for the multianalyte detection of gasotransmitters. Future research will likely address challenges with sensor stability and biocompatibility (i.e., sensor lifetime and cytotoxicity), sensor miniaturization, and multianalyte detection in biological settings.


Asunto(s)
Monóxido de Carbono , Técnicas Electroquímicas , Gasotransmisores , Sulfuro de Hidrógeno , Óxido Nítrico , Gasotransmisores/análisis , Técnicas Electroquímicas/métodos , Monóxido de Carbono/análisis , Óxido Nítrico/análisis , Sulfuro de Hidrógeno/análisis , Humanos , Técnicas Biosensibles/métodos , Animales
4.
Animal Model Exp Med ; 7(2): 189-193, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38529771

RESUMEN

The current restrictive criteria for gasotransmitters exclude oxygen (O2) as a gasotransmitter in vertebrates. In this manuscript, I propose a revision of gasotransmitter criteria to include O2 per se as a signaling molecule and 'essential gasotransmitter' for vertebrates. This revision would enable us to search for protein-based O2-binding sensors (gasoreceptors) in all cells in the brain or other tissues rather than specialized tissues such as the carotid body or gills. If microorganisms have protein-based O2-binding sensors or gasoreceptors such as DosP or FixL or FNR with diverse signaling domains, then eukaryotic cells must also have O2-binding sensors or gasoreceptors. Just as there are protein-based receptor(s) for nitric oxide (GUCY1A, GUCY1B, CLOCK, NR1D2) in cells of diverse tissues, it is reasonable to consider that there are protein-based receptors for O2 in cells of diverse tissues as well. In mammals, O2 must be acting as a gasotransmitter or gaseous signaling molecule via protein-based gasoreceptors such as androglobin that very likely mediate acute sensing of O2. Accepting O2 as an essential gasotransmitter will enable us to search for gasoreceptors not only for O2 but also for other nonessential gasotransmitters such as hydrogen sulfide, ammonia, methane, and ethylene. It will also allow us to investigate the role of environment-derived metal ions in acute gas (or solute) sensing within and between organisms. Finally, accepting O2 per se as a signaling molecule acting via gasoreceptors will open up the field of gasocrinology.


Asunto(s)
Gasotransmisores , Oxígeno , Animales , Oxígeno/metabolismo , Gasotransmisores/metabolismo , Transducción de Señal , Humanos , Óxido Nítrico/metabolismo
5.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542480

RESUMEN

Atmospheric stressors include a variety of pollutant gases such as CO2, nitrous oxide (NOx), and sulfurous compounds which could have a natural origin or be generated by uncontrolled human activity. Nevertheless, other atmospheric elements including high and low temperatures, ozone (O3), UV-B radiation, or acid rain among others can affect, at different levels, a large number of plant species, particularly those of agronomic interest. Paradoxically, both nitric oxide (NO) and hydrogen sulfide (H2S), until recently were considered toxic since they are part of the polluting gases; however, at present, these molecules are part of the mechanism of response to multiple stresses since they exert signaling functions which usually have an associated stimulation of the enzymatic and non-enzymatic antioxidant systems. At present, these gasotransmitters are considered essential components of the defense against a wide range of environmental stresses including atmospheric ones. This review aims to provide an updated vision of the endogenous metabolism of NO and H2S in plant cells and to deepen how the exogenous application of these compounds can contribute to crop resilience, particularly, against atmospheric stressors stimulating antioxidant systems.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Resiliencia Psicológica , Humanos , Óxido Nítrico/metabolismo , Antioxidantes/metabolismo , Gasotransmisores/metabolismo , Sulfuro de Hidrógeno/metabolismo , Gases
6.
Biochimie ; 221: 81-90, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38325747

RESUMEN

Many living beings use exogenous and/or endogenous gases to attain evolutionary benefits. We make a comprehensive assessment of one of the major gaseous reservoirs in the human body, i.e., the bowel, providing extensive data that may serve as reference for future studies. We assess the intestinal gases in healthy humans, including their volume, composition, source and local distribution in proximal as well as distal gut. We analyse each one of the most abundant intestinal gases including nitrogen, oxygen, nitric oxide, carbon dioxide, methane, hydrogen, hydrogen sulfide, sulfur dioxide and cyanide. For every gas, we describe diffusive patterns, active trans-barrier transport dynamics, chemical properties, intra-/extra-intestinal metabolic effects mediated by intracellular, extracellular, paracrine and distant actions. Further, we highlight the local and systemic roles of gasotransmitters, i.e., signalling gaseous molecules that can freely diffuse through the intestinal cellular membranes. Yet, we provide testable hypotheses concerning the still unknown effects of some intestinal gases on the myenteric and submucosal neurons.


Asunto(s)
Gases , Humanos , Gases/metabolismo , Gasotransmisores/metabolismo , Intestinos , Mucosa Intestinal/metabolismo , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Hidrógeno/metabolismo
7.
J Basic Clin Physiol Pharmacol ; 35(1-2): 61-70, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38263911

RESUMEN

OBJECTIVES: How gaseous signalling molecules affect ion transport processes contributing to the physiological functions of the gastrointestinal tract under hypoxic conditions still needs to be clarified. The objective of the present study was to characterize the impact of gaseous signalling molecules on parameters of colonic ion transport during a hypoxia/reoxygenation cycle and the remaining secretory capacity of the epithelium after such a cycle. METHODS: Short-circuit current (Isc) and tissue conductance (Gt) recordings in Ussing chamber experiments were performed on rat colon samples using CORM-2 (putative CO donor; 35 and 350 µM), sodium nitroprusside (NO donor; 100 µM), NaHS (fast H2S donor; 10 - 1,000 µM), GYY 4137 (slow H2S donor; 50 µM) and Angeli's salt (HNO donor; 100 µM) as donors for gasotransmitters. Inhibition of endogenous synthesis of H2S was operated by inhibitors of cystathionin-γ-lyase, i.e. dl-propargylglycine (1 mM) or ß-cyano-l-alanine (5 mM), and the inhibitor of cystathionine-ß-synthase, amino-oxyacetate (5 mM). RESULTS: The fast gasotransmitter donors NaHS, sodium nitroprusside and Angeli's salt, administered 5 min before the onset of hypoxia, induced an increase in Isc. The response to the subsequently applied hypoxia was characterized by a decrease in Isc, which tended to be reduced only in the presence of the lowest concentration of NaHS (10 µM) tested. Reoxygenation resulted in a slow increase in Isc, which was unaffected by all donors or inhibitors tested. The stable acetylcholine derivative carbachol (50 µM) was administered at the end of each hypoxia/reoxygenation cycle to test the secretory capacity of the epithelium. Pretreatment of the tissue with the putative CO donor CORM-2 suppressed the secretory response induced by carbachol. The same was observed when cystathionin-γ-lyase and cystathionin-γ-synthase were inhibited simultaneously. Under both conditions, Gt drastically increased suggesting an impaired tissue integrity. CONCLUSIONS: The present results demonstrate that none of the exogenous gasotransmitter releasing drugs significantly ameliorated the changes in epithelial ion transport during the hypoxia/reoxygenation cycle ex vivo. In contrast, the putative CO donor CORM-2 exerted a toxic effect on the epithelium. The endogenous production of H2S, however, seems to have a protective effect on the mucosal integrity and the epithelial transport functions, which - when inhibited - leads to a loss of the secretory ability of the mucosa. This observation together with the trend for improvement observed with a low concentration of the H2S donor NaHS suggests a moderate protective role of low concentrations of H2S under hypoxic conditions.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Liasas , Nitritos , Compuestos Organometálicos , Sulfuros , Ratas , Animales , Gasotransmisores/farmacología , Sulfuro de Hidrógeno/farmacología , Nitroprusiato , Carbacol , Hipoxia , Transporte Iónico
8.
Anal Chem ; 96(3): 1259-1267, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206997

RESUMEN

The increasing understanding of the intricate relationship between two crucial gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) in biological actions has generated significant interest. However, comprehensive monitoring of the dynamic fluctuations of endogenous NO and H2S remains a challenge. In this study, we have designed an innovative aggregation-induced reporter SAB-NH-SC with enhanced responsiveness to H2S for visualizing the fluctuations of intracellular NO and H2S. This probe leverages the hydrophilic properties of the pyridinium salt derivative, which can rapidly self-assemble into positively charged nanoparticles under physiological conditions, avoiding the introduction of organic solvents or tedious preparations. Notably, the reporter can repeatedly cycle S-nitrosation and SNO-transnitrosation reactions when successively treated with NO and H2S. Consequently, fluorescence alternation at 751 (H2S) and 639 nm (NO) facilitates the dynamic visualization of the alternating presence of H2S and NO within cells. This dynamic and reversible probe holds immense potential for unraveling the intricate interactions between NO and H2S in a complex network of biological applications.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Nanopartículas , Óxido Nítrico
9.
Antioxid Redox Signal ; 40(4-6): 272-291, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-36974358

RESUMEN

Significance: Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are, to date, the identified members of the gasotransmitter family, which consists of gaseous signaling molecules that play central roles in the regulation of a wide variety of physiological and pathophysiological processes, including inflammatory edema. Recent Advances: Recent studies show the potential anti-inflammatory and antiedematogenic effects of NO-, CO-, and H2S-donors in vivo. In general, it has been observed that the therapeutical effects of NO-donors are more relevant when administered at low doses at the onset of the inflammatory process. Regarding CO-donors, their antiedematogenic effects are mainly associated with inhibition of proinflammatory mediators (such as inducible NO synthase [iNOS]-derived NO), and the observed protective effects of H2S-donors seem to be mediated by reducing some proinflammatory enzyme activities. Critical Issues: The most recent investigations focus on the interactions among the gasotransmitters under different pathophysiological conditions. However, the biochemical/pharmacological nature of these interactions is neither general nor fully understood, although specifically dependent on the site where the inflammatory edema occurs. Future Directions: Considering the nature of the involved mechanisms, a deeper knowledge of the interactions among the gasotransmitters is mandatory. In addition, the development of new pharmacological tools, either donors or synthesis inhibitors of the three gasotransmitters, will certainly aid the basic investigations and open new strategies for the therapeutic treatment of inflammatory edema. Antioxid. Redox Signal. 40, 272-291.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/uso terapéutico , Sulfuro de Hidrógeno/farmacología , Óxido Nítrico , Transducción de Señal , Monóxido de Carbono
10.
Mol Cell Biochem ; 479(3): 539-552, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37106243

RESUMEN

The role of carbon monoxide (CO) has evolved albeit controversial disputes on its toxicity. This biological gasotransmitter participates in the endogenous regulation of neurotransmitters and neuropeptides released in the nervous system. Exogenous CO gas inhalation at a lower concentration has been the subject of investigations, which have revealed its biological homeostatic mechanisms and protective effects against many pathological conditions. This therapeutic procedure of CO is, however, limited due to its immediate release, which favours haemoglobin at a high affinity with the subsequent generation of toxic carboxyhaemoglobin in tissues. In order to address this problem, carbon monoxide releasing molecule-2 (CORM-2) or also known as tricarbonyldichlororuthenium II dimer is developed to liberate a controlled amount of CO in the biological systems. In this review, we examine several potential mechanisms exerted by this therapeutic compound to produce the anti-nociceptive effect that has been demonstrated in previous studies. This review could shed light on the role of CORM-2 to reduce pain, especially in cases of chronic and neuropathic pain.


Asunto(s)
Gasotransmisores , Compuestos Organometálicos , Monóxido de Carbono/farmacología , Monóxido de Carbono/fisiología , Compuestos Organometálicos/química
11.
J Control Release ; 365: 132-160, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972768

RESUMEN

Gasotransmitters are a group of short-lived gaseous signaling molecules displaying diverse biological functions depending upon their localized concentration. Nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO) are three important examples of endogenously produced gasotransmitters that play a crucial role in human neurophysiology and pathogenesis. Alterations in their optimal physiological concentrations can lead to various severe pathophysiological consequences, including neurological disorders. Exogenous administration of gasotransmitters has emerged as a prominent therapeutic approach for treating such neurological diseases. However, their gaseous nature and short half-life limit their therapeutic delivery. Therefore, developing synthetic gasotransmitter-releasing strategies having control over the release and duration of these gaseous molecules has become imperative. However, the complex chemistry of synthesis and the challenges of specific quantified delivery of these gases, make their therapeutic application a challenging task. This review article provides a focused overview of emerging strategies for delivering gasotransmitters in a controlled and sustained manner to re-establish neurophysiological homeostasis.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Humanos , Gases , Óxido Nítrico , Monóxido de Carbono
12.
Macromol Biosci ; 24(1): e2300138, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37326828

RESUMEN

Gasotransmitters, gaseous signaling molecules including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S), maintain myriad physiological processes. Low levels of gasotransmitters are often associated with specific problems or diseases, so NO, CO, and H2 S hold potential in treating bacterial infections, chronic wounds, myocardial infarction, ischemia, and various other diseases. However, their clinical applications as therapeutic agents are limited due to their gaseous nature, short half-life, and broad physiological roles. One route toward the greater application of gasotransmitters in medicine is through localized delivery. Hydrogels are attractive biomedical materials for the controlled release of embedded therapeutics as they are typically biocompatible, possess high water content, have tunable mechanical properties, and are injectable in certain cases. Hydrogel-based gasotransmitter delivery systems began with NO, and hydrogels for CO and H2 S have appeared more recently. In this review, the biological importance of gasotransmitters is highlighted, and the fabrication of hydrogel materials is discussed, distinguishing between methods used to physically encapsulate small molecule gasotransmitter donor compounds or chemically tether them to a hydrogel scaffold. The release behavior and potential therapeutic applications of gasotransmitter-releasing hydrogels are also detailed. Finally, the authors envision the future of this field and describe challenges moving forward.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Gasotransmisores/fisiología , Gasotransmisores/uso terapéutico , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Óxido Nítrico , Monóxido de Carbono/farmacología , Monóxido de Carbono/uso terapéutico , Hidrogeles/farmacología , Hidrogeles/uso terapéutico
13.
Mini Rev Med Chem ; 24(3): 300-329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37102481

RESUMEN

Three gaseous molecules are widely accepted as important gasotransmitters in mammalian cells, namely NO, CO and H2S. Due to the pharmacological effects observed in preclinical studies, these three gasotransmitters represent promising drug candidates for clinical translation. Fluorescent probes of the gasotransmitters are also in high demand; however, the mechanisms of actions or the roles played by gasotransmitters under both physiological and pathological conditions remain to be answered. In order to bring these challenges to the attention of both chemists and biologists working in this field, we herein summarize the chemical strategies used for the design of both probes and prodrugs of these three gasotransmitters.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Profármacos , Animales , Colorantes Fluorescentes , Profármacos/farmacología , Monóxido de Carbono , Óxido Nítrico , Transducción de Señal , Mamíferos
14.
Antioxid Redox Signal ; 40(1-3): 86-109, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548532

RESUMEN

Significance: As a new important gas signaling molecule like nitric oxide (NO) and carbon dioxide (CO), hydrogen sulfide (H2S), which can be produced by endogenous H2S-producing enzymes through l-cysteine metabolism in mammalian cells, has attracted wide attention for long. H2S has been proved to play an important regulatory role in numerous physiological and pathophysiological processes. However, the deep mechanisms of those different functions of H2S still remain uncertain. A better understanding of the mechanisms can help us develop novel therapeutic strategies. Recent Advances: H2S can play a regulating role through various mechanisms, such as regulating epigenetic modification, protein expression levels, protein activity, protein localization, redox microenvironment, and interaction with other gas signaling molecules such as NO and CO. In addition to discussing the molecular mechanisms of H2S from the above perspectives, this article will review the regulation of H2S on common signaling pathways in the cells, including the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK), Janus kinase (JAK)/signal transducer, and activator of transcription (STAT) signaling pathway. Critical Issues: Although there are many studies on the mechanism of H2S, little is known about its direct target molecules. This article will also review the existing reports about them. Furthermore, the interaction between direct target molecules of H2S and the downstream signaling pathways involved also needs to be clarified. Future Directions: An in-depth discussion of the mechanism of H2S and the direct target molecules will help us achieving a deeper understanding of the physiological and pathophysiological processes regulated by H2S, and lay a foundation for developing new clinical therapeutic drugs in the future. Innovation: This review focuses on the regulation of H2S on signaling pathways and the direct target molecules of H2S. We also provide details on the underlying mechanisms of H2S functions from the following aspects: epigenetic modification, regulation of protein expression levels, protein activity, protein localization, redox microenvironment, and interaction with other gas signaling molecules such as NO and CO. Further study of the mechanisms underlying H2S will help us better understand the physiological and pathophysiological processes it regulates, and help develop new clinical therapeutic drugs in the future. Antioxid. Redox Signal. 40, 86-109.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Animales , Sulfuro de Hidrógeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Gasotransmisores/metabolismo , Óxido Nítrico/metabolismo , Mamíferos/metabolismo
15.
Antioxid Redox Signal ; 40(1-3): 145-167, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548538

RESUMEN

Significance: Gasotransmitters, including nitric oxide (NO), hydrogen sulfide (H2S) and sulfur dioxide (SO2), participate in various cellular processes via corresponding oxidative posttranslational modifications (oxiPTMs) of specific cysteines. Recent Advances: Accumulating evidence has clarified the mechanisms underlying the formation of oxiPTMs derived from gasotransmitters and their biological functions in multiple signal pathways. Because of the specific existence and functional importance, determining the sites of oxiPTMs in cysteine is crucial in biology. Recent advances in the development of selective probes, together with upgraded mass spectrometry (MS)-based proteomics, have enabled the quantitative analysis of cysteinome. To date, several cysteine residues have been identified as gasotransmitter targets. Critical Issues: To clearly understand the underlying mechanisms for gasotransmitter-mediated biological processes, it is important to identify modified targets. In this review, we summarize the chemical formation and biological effects of gasotransmitter-dependent oxiPTMs and highlight the state-of-the-art detection methods. Future Directions: Future studies in this field should aim to develop the next generation of probes for in situ labeling to improve spatial resolution and determine the dynamic change of oxiPTMs, which can lay the foundation for research on the molecular mechanisms and clinical translation of gasotransmitters. Antioxid. Redox Signal. 40, 145-167.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Gasotransmisores/metabolismo , Cisteína/metabolismo , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Estrés Oxidativo
16.
Antioxid Redox Signal ; 40(4-6): 250-271, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37597204

RESUMEN

Significance: Cancer is a complex and heterotypic structure with a spatial organization that contributes to challenges in therapeutics. Enzymes associated with producing the gasotransmitter hydrogen sulfide (H2S) are differentially expressed in tumors. Indeed, critical and paradoxical roles have been attributed to H2S in cancer-promoting characteristics by targeting both cancer cells and their milieu. This review focuses on the evidence and knowledge gaps of H2S on the tumor redox microenvironment and the pharmacological effects of H2S donors on cancer biology. Recent Advances: Endogenous and pharmacological concentrations of H2S evoke different effects on the same cell type: physiological H2S concentrations have been associated with tumor development and progression. In contrast, pharmacological concentrations have been associated with anticancer effects. Critical Issues: The exact threshold between the promotion and inhibition of tumorigenesis by H2S is largely unknown. The main issues covered in this review include H2S-modulated signaling pathways that are critical for cancer cells, the potential effects of H2S on cellular components of the tumor microenvironment, temporal modulation of H2S in promoting or inhibiting tumor progression (similar to observed for inflammation), and pharmacological agents that modulate H2S and which could play a role in antineoplastic therapy. Future Directions: Given the complexity and heterogeneity of tumor composition, mechanistic studies on context-dependent pharmacological effects of H2S donors for cancer therapy are necessary. These studies must determine the critical signaling pathways and the cellular components involved to allow advances in the rational use of H2S donors as antineoplastic agents. Antioxid. Redox Signal. 40, 250-271.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Neoplasias , Humanos , Sulfuro de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Gasotransmisores/metabolismo , Transducción de Señal , Carcinogénesis , Microambiente Tumoral
17.
Antioxid Redox Signal ; 40(1-3): 168-185, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37917094

RESUMEN

Significance: Gasotransmitters are small gas molecules that are endogenously generated and have well-defined physiological functions. The most well-defined gasotransmitters currently are nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), while other potent gasotransmitters include ammonia, methane, cyanide, hydrogen gas, and sulfur dioxide. Gasotransmitters play a role in various respiratory diseases such as asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, lung infection, bronchiectasis, cystic fibrosis, primary ciliary dyskinesia, and COVID-19. Recent Advances: Gasotransmitters can act as biomarkers that facilitate disease diagnosis, indicate disease severity, predict disease exacerbation, and evaluate disease outcomes. They also have cell-protective properties, and many studies have been conducted to explore their pharmacological applications. Innovative drug donors and drug delivery methods have been invented to amplify their therapeutic effects. Critical Issues: In this article, we briefly reviewed the physiological and pathophysiological functions of some gasotransmitters in the respiratory system, the progress in detecting exhaled gasotransmitters, as well as innovative drugs derived from these molecules. Future Directions: The current challenge for gasotransmitter research includes further exploring their physiological and pathological functions, clarifying their complicated interactions, exploring suitable drug donors and delivery devices, and characterizing new members of gasotransmitters. Antioxid. Redox Signal. 40, 168-185.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Enfermedades Respiratorias , Humanos , Sulfuro de Hidrógeno/uso terapéutico , Sulfuro de Hidrógeno/farmacología , Óxido Nítrico , Monóxido de Carbono , Enfermedades Respiratorias/diagnóstico , Enfermedades Respiratorias/tratamiento farmacológico
18.
Biosens Bioelectron ; 247: 115939, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145594

RESUMEN

Nitric Oxide (NO), a significant gasotransmitter in biological systems, plays a crucial role in neurological diseases and cancer. Currently, there is a lack of effective methods for rapidly and sensitively identifying NO and elucidating its relationship with neurological diseases. Novel diamino-cyclic-metalloiridium phosphorescence probes, Ir-CDA and Ir-BDA, have been designed to visualize the gasotransmitter NO in Alzheimer's disease (AD) and glioblastoma (GBM). Ir-CDA and Ir-BDA utilize iridium (III) as the central ion and incorporate a diamino group as a ligand. The interaction between the diamino structure and NO leads to the formation of a three-nitrogen five-membered ring structure, which opens up phosphorescence. The two probes can selectively bind to NO and offer low detection limits. Additionally, Ir-BDA/Ir-CDA can image NO in brain cancer cell models, neuroinflammatory models, and AD cell models. Furthermore, the NO content in fresh brain sections from AD mice was considerably higher than that in wild-type (WT) mice. Consequently, it is plausible that NO is generated in significant quantities around cells hosting larger Aß deposits, gradually diffusing throughout the entire brain region. Furthermore, we posit that this phenomenon is a key factor contributing to the higher brain NO content in AD mice compared to that in WT mice. This discovery offers novel insights into the diagnosis and treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , Gasotransmisores , Glioblastoma , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Óxido Nítrico , Glioblastoma/diagnóstico por imagen , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
19.
Angew Chem Int Ed Engl ; 63(6): e202317487, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38100749

RESUMEN

Hydrogen sulfide (H2 S) is an endogenous gasotransmitter that plays important roles in redox signaling. H2 S overproduction has been linked to a variety of disease states and therefore, H2 S-depleting agents, such as scavengers, are needed to understand the significance of H2 S-based therapy. It is known that elevated H2 S can induce oxidative stress with elevated reactive oxygen species (ROS) formation, such as in H2 S acute intoxication. We explored the possibility of developing catalytic scavengers to simultaneously remove H2 S and ROS. Herein, we studied a series of selenium-based molecules as catalytic H2 S/H2 O2 scavengers. Inspired by the high reactivity of selenoxide compounds towards H2 S, 14 diselenide/monoselenide compounds were tested. Several promising candidates such as S6 were identified. Their activities in buffers, as well as in plasma- and cell lysate-containing solutions were evaluated. We also studied the reaction mechanism of this scavenging process. Finally, the combination of the diselenide catalyst and photosensitizers was used to achieve light-induced H2 S removal. These Se-based scavengers can be useful tools for understanding H2 S/ROS regulations.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Selenio , Especies Reactivas de Oxígeno , Estrés Oxidativo , Peróxido de Hidrógeno/farmacología
20.
Angew Chem Int Ed Engl ; 62(52): e202314563, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37964723

RESUMEN

The development of dual gasotransmitter donors can not only provide robust tools to investigate their subtle interplay under pathophysiological conditions but also optimize therapeutic efficacy. While conventional strategies are heavily dependent on multicomponent donors, we herein report an ultrasound-responsive water-soluble copolymer (PSHF) capable of releasing carbon monoxide (CO) and hydrogen sulfide (H2 S) based on single-component sulfur-substituted 3-hydroxyflavone (SHF) derivatives. Interestingly, sulfur substitution can not only greatly improve the ultrasound sensitivity but also enable the co-release of CO/H2 S under mild ultrasound irradiation. The co-release of CO/H2 S gasotransmitters exerts a bactericidal effect against Staphylococcus aureus and demonstrates anti-inflammatory activity in lipopolysaccharide-challenged macrophages. Moreover, the excellent tissue penetration of ultrasound irradiation enables the local release of CO/H2 S in the joints of septic arthritis rats, exhibiting superior therapeutic efficacy without the need for any antibiotics.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Ratas , Animales , Monóxido de Carbono , Macrófagos , Azufre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...