Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.665
Filtrar
1.
ACS Biomater Sci Eng ; 10(5): 3306-3315, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38634810

RESUMEN

Tissue engineering primarily aimed to alleviate the insufficiency of organ donations worldwide. Nonetheless, the survival of the engineered tissue is often compromised due to the complexity of the natural organ architectures, especially the vascular system inside the organ, which allows food-waste transfer. Thus, vascularization within the engineered tissue is of paramount importance. A critical aspect of this endeavor is the ability to replicate the intricacies of the extracellular matrix and promote the formation of functional vascular networks within engineered constructs. In this study, human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured in different types of gelatin methacrylate (GelMA). In brief, pro-angiogenic signaling growth factors (GFs), vascular endothelial growth factor (VEGF165) and basic fibroblast growth factor (bFGF), were conjugated onto GelMA via an EDC/NHS coupling reaction. The GelMA hydrogels conjugated with VEGF165 (GelMA@VEGF165) and bFGF (GelMA@bFGF) showed marginal changes in the chemical and physical characteristics of the GelMA hydrogels. Moreover, the conjugation of these growth factors demonstrated improved cell viability and cell proliferation within the hydrogel construct. Additionally, vascular-like network formation was observed predominantly on GelMA@GrowthFactor (GelMA@GF) hydrogels, particularly on GelMA@bFGF. This study suggests that growth factor-conjugated GelMA hydrogels would be a promising biomaterial for 3D vascular tissue engineering.


Asunto(s)
Técnicas de Cocultivo , Factor 2 de Crecimiento de Fibroblastos , Gelatina , Células Endoteliales de la Vena Umbilical Humana , Hidrogeles , Metacrilatos , Ingeniería de Tejidos , Factor A de Crecimiento Endotelial Vascular , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Gelatina/química , Gelatina/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Metacrilatos/química , Metacrilatos/farmacología , Ingeniería de Tejidos/métodos , Neovascularización Fisiológica/efectos de los fármacos , Tejido Adiposo/citología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo
2.
Int J Biol Macromol ; 267(Pt 2): 131520, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615859

RESUMEN

The adverse microenvironment, including neuroinflammation, hinders the recovery of spinal cord injury (SCI). Regulating microglial polarization to alleviate neuroinflammation at the injury site is an effective strategy for SCI recovery. MG53 protein exerts obvious repair ability on multiple tissues damage, but with short half-life. In this study, we composited an innovative MG53/GMs/HA-Dex neural scaffold using gelatin microspheres (GMs), hyaluronic acid (HA), and dextran (Dex) loaded with MG53 protein. This novel neural scaffold could respond to MMP-2/9 protein and stably release MG53 protein with good physicochemical properties and biocompatibility. In addition, it significantly improved the motor function of SCI mice, suppressed M1 polarization of microglia and neuroinflammation, and promoted neurogenesis and axon regeneration. Further mechanistic experiments demonstrated that MG53/GMs/HA-Dex hydrogel inhibited the JAK2/STAT3 signaling pathway. Thus, this MG53/GMs/HA-Dex neural scaffold promotes the functional recovery of SCI mice by alleviating neuroinflammation, which provides a new intervention strategy for the neural regeneration and functional repair of SCI.


Asunto(s)
Gelatina , Ácido Hialurónico , Janus Quinasa 2 , Enfermedades Neuroinflamatorias , Recuperación de la Función , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Animales , Ratones , Recuperación de la Función/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Gelatina/química , Gelatina/farmacología , Janus Quinasa 2/metabolismo , Dextranos/química , Andamios del Tejido/química , Microesferas , Factor de Transcripción STAT3/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Modelos Animales de Enfermedad , Neurogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/metabolismo , Hidrogeles/química , Hidrogeles/farmacología
3.
J Vet Sci ; 25(2): e30, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38568831

RESUMEN

BACKGROUND: Biofilms, such as those from Staphylococcus epidermidis, are generally insensitive to traditional antimicrobial agents, making it difficult to inhibit their formation. Although quercetin has excellent antibiofilm effects, its clinical applications are limited by the lack of sustained and targeted release at the site of S. epidermidis infection. OBJECTIVES: Polyethylene glycol-quercetin nanoparticles (PQ-NPs)-loaded gelatin-N,O-carboxymethyl chitosan (N,O-CMCS) composite nanogels were prepared and assessed for the on-demand release potential for reducing S. epidermidis biofilm formation. METHODS: The formation mechanism, physicochemical characterization, and antibiofilm activity of PQ-nanogels against S. epidermidis were studied. RESULTS: Physicochemical characterization confirmed that PQ-nanogels had been prepared by the electrostatic interactions between gelatin and N,O-CMCS with sodium tripolyphosphate. The PQ-nanogels exhibited obvious pH and gelatinase-responsive to achieve on-demand release in the micro-environment (pH 5.5 and gelatinase) of S. epidermidis. In addition, PQ-nanogels had excellent antibiofilm activity, and the potential antibiofilm mechanism may enhance its antibiofilm activity by reducing its relative biofilm formation, surface hydrophobicity, exopolysaccharides production, and eDNA production. CONCLUSIONS: This study will guide the development of the dual responsiveness (pH and gelatinase) of nanogels to achieve on-demand release for reducing S. epidermidis biofilm formation.


Asunto(s)
Quitosano , Nanopartículas , Animales , Staphylococcus epidermidis/genética , Nanogeles , Gelatina/farmacología , Quercetina/farmacología , Biopelículas , Quitosano/farmacología , Quitosano/química , Gelatinasas/farmacología , Antibacterianos/farmacología
4.
J Mech Behav Biomed Mater ; 153: 106500, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484429

RESUMEN

One strategy to correct alveolar bone defects is use of bioactive bone substitutes to maintain the structure of defect site and facilitate cells and vessels' ingrowth. This study aimed to fabricate and characterize the freeze-dried bone regeneration scaffolds composed of polymeric Type I collagen, nano Beta-tricalcium phosphate (ß-TCP), and gelatin. The stable structures of scaffolds were obtained by thermal crosslinking and EDC/NHS ((1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)/(N-hydroxysuccinimide)) chemical crosslinking processes. Subsequently, the physicochemical and biological properties of the scaffolds were characterized and assessed. The results indicated the bioactive composite scaffolds containing 10% and 20% (w/v) nano ß-TCP exhibited suitable porosity (84.45 ± 25.43 nm, and 94.51 ± 14.69 nm respectively), a rapid swelling property (reaching the maximum swelling rate at 1 h), excellent degradation resistance (residual mass percentage of scaffolds higher than 80% on day 90 in PBS and Type I collagenase solution respectively), and sustained calcium release capabilities. Moreover, they displayed outstanding biological properties, including superior cell viability, cell adhesion, and cell proliferation. Additionally, the scaffolds containing 10% and 20% (w/v) nano ß-TCP could promote the osteogenic differentiation of MC3T3-E1. Therefore, the bioactive composite scaffolds containing 10% and 20% (w/v) nano ß-TCP could be further studied for being used to treat alveolar bone defects in vivo.


Asunto(s)
Gelatina , Osteogénesis , Gelatina/farmacología , Andamios del Tejido/química , Regeneración Ósea , Colágeno/química , Fosfatos de Calcio/farmacología , Fosfatos de Calcio/química , Polímeros , Ingeniería de Tejidos/métodos
5.
Sci Rep ; 14(1): 7505, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553565

RESUMEN

Addressing the increasing drug resistance in pathogenic microbes, a significant threat to public health, calls for the development of innovative antibacterial agents with versatile capabilities. To enhance the antimicrobial activity of non-toxic biomaterials in this regard, this study focuses on novel, cost-effective chitosan (CS)-based hydrogels, crosslinked using gelatin (GEL), formaldehyde, and metallic salts (Ag+, Cu2+, and Zn2+). These hydrogels are formed by mixing CS and GEL with formaldehyde, creating iminium ion crosslinks with metallic salts without hazardous crosslinkers. Characterization techniques like FTIR, XRD, FESEM, EDX, and rheological tests were employed. FTIR analysis showed metal ions binding to amino and hydroxyl groups on CS, enhancing hydrogelation. FESEM revealed that freeze-dried hydrogels possess a crosslinked, porous structure influenced by various metal ions. Antibacterial testing against gram-negative and gram-positive bacteria demonstrated significant bacterial growth inhibition. CS-based hydrogels containing metal ions showed reduced MIC and MBC values against Staphylococcus aureus (0.5, 8, 16 µg/mL) and Escherichia coli (1, 16, 8 µg/mL) for CS-g-GEL-Ag+, CS-g-GEL-Cu2+, and CS-g-GEL-Zn2+. MTT assay results confirmed high biocompatibility (84.27%, 85.24%, 84.96% viability at 10 µg/mL) for CS-based hydrogels towards HFF-1 cells over 48 h. Therefore, due to their non-toxic nature, these CS hydrogels are promising for antibacterial applications.


Asunto(s)
Quitosano , Quitosano/farmacología , Quitosano/química , Gelatina/farmacología , Gelatina/química , Porosidad , Sales (Química) , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Metales , Formaldehído , Hidrogeles/farmacología , Hidrogeles/química , Iones
6.
ACS Biomater Sci Eng ; 10(4): 2337-2350, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38531043

RESUMEN

The fabrication of clinically relevant synthetic bone grafts relies on combining multiple biodegradable biomaterials to create a structure that supports the regeneration of defects while delivering osteogenic biomolecules that enhance regeneration. MicroRNA-200c (miR-200c) functions as a potent osteoinductive biomolecule to enhance osteogenic differentiation and bone formation; however, synthetic tissue-engineered bone grafts that sustain the delivery of miR-200c for bone regeneration have not yet been evaluated. In this study, we created novel, multimaterial, synthetic bone grafts from gelatin-coated 3D-printed polycaprolactone (PCL) scaffolds. We attempted to optimize the release of pDNA encoding miR-200c by varying gelatin types, concentrations, and polymer crosslinking materials to improve its functions for bone regeneration. We revealed that by modulating gelatin type, coating material concentration, and polymer crosslinking, we effectively altered the release rates of pDNA encoding miR-200c, which promoted osteogenic differentiation in vitro and bone regeneration in a critical-sized calvarial bone defect animal model. We also demonstrated that crosslinking the gelatin coatings on the PCL scaffolds with low-concentration glutaraldehyde was biocompatible and increased cell attachment. These results strongly indicate the potential use of gelatin-based systems for pDNA encoding microRNA delivery in gene therapy and further demonstrate the effectiveness of miR-200c for enhancing bone regeneration from synthetic bone grafts.


Asunto(s)
MicroARNs , Osteogénesis , Animales , Osteogénesis/genética , Gelatina/farmacología , Gelatina/química , Andamios del Tejido/química , Regeneración Ósea/genética , MicroARNs/genética , Polímeros , Impresión Tridimensional
7.
Eur J Pharmacol ; 971: 176517, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38537805

RESUMEN

Melanoma, the most invasive form of skin cancer, shows a rising incidence trend in industrial countries. Since the main reason for the failure of current therapeutic approaches against melanoma is metastasis, there is a great interest in introducing effective natural agents to combat melanoma cell migration and invasion. Auraptene (AUR) is the most abundant coumarin derivative in nature with valuable pharmaceutical effects. In this study, we aimed to investigate whether AUR could induce inhibitory effects on the migration and invasion of melanoma cells. B16F10 melanoma cells were treated with different concentrations of AUR and the viability of cells was evaluated by alamarBlue assay. Then, cells were treated with 20 µM AUR, and wound healing, invasion, and adhesion assays were carried out. In addition, the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 was assessed by gelatin zymography and the expression of genes related to epithelial-mesenchymal transition (EMT) was investigated by qPCR. Finally, the interactions between AUR and MMPs were stimulated by molecular docking. Findings revealed that AUR significantly reduced the migration and invasion of B16F10 cells while improved their adhesion. Furthermore, results of gelatin zymography indicated that AUR suppressed the activity of MMP-2 and MMP-9, and qPCR revealed negative regulatory effect of AUR on the expression of mesenchymal markers including fibronectin and N-cadherin. In addition, molecular docking verified the interactions between AUR and the active sites of wild-type and mutant MMP-2 and MMP-9. Accordingly, AUR could be considered as a potential natural agent with inhibitory effects on the migration and invasion of melanoma cells for future preclinical studies.


Asunto(s)
Melanoma , Humanos , Línea Celular Tumoral , Movimiento Celular , Cumarinas/farmacología , Transición Epitelial-Mesenquimal , Gelatina/farmacología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Melanoma/patología , Simulación del Acoplamiento Molecular , Invasividad Neoplásica/prevención & control
8.
Int J Biol Macromol ; 265(Pt 1): 130868, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492687

RESUMEN

The low oxygen environment of the periodontal pocket favors pathogenic anaerobes' growth, biofilm formation, and quick recurrence after periodontal treatment. In contrast, oxygen is detrimental to anaerobes, such as Porphyromonas gingivalis (P. gingivalis), since they lack a complete anti-oxidation mechanism to detoxify the oxygen challenge. Therefore, consistently feeding pathogenic anaerobes with abundant oxygen would be an effective strategy to combat them. Here, we reported injectable oxygen-generating hydrogels as oxygen mediators to alleviate the local anaerobic environment and eliminate periodontal pathogens. Gelatin methacrylate (GelMA) hydrogels loaded with calcium peroxide (CPO) possessed excellent injectability and exhibited burst releases of oxygen within 24 h with a 40 % oxygen tension peak. CPO-GelMA hydrogels with CPO concentrations of 5, 10, and 15 % reduced 60, 99, and 89.9 % viable P. gingivalis, respectively. Five percentage CPO-GelMA hydrogel downregulated gingipain and fimA gene expression in P. gingivalis without resistance development. Moreover, the CPO-GelMA hydrogels remarkably prevented biofilm formation and eradicated both monospecies and multispecies bacterial biofilms. In conclusion, CPO-GelMA hydrogels exert remarkable antimicrobial and antibiofilm effects on subgingival biofilms, providing a promising strategy for periodontal treatment.


Asunto(s)
Gelatina , Hidrogeles , Peróxidos , Hidrogeles/farmacología , Gelatina/farmacología , Metacrilatos/farmacología , Oxígeno , Biopelículas
9.
Biomater Adv ; 159: 213834, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518390

RESUMEN

The management of bleeding is an important aspect of endoscopic surgery to avoid excessive blood loss and minimize pain. In clinical settings, sprayable hemostatic particles are used for their easy delivery, adaptability to irregular shapes, and rapid hydration. However, conventional hemostatic particles present challenges associated with tissue adhesion. In a previous study, we reported tissue adhesive microparticles (C10-sa-MPs) derived from Alaska pollock gelatin modified with decyl groups (C10-sa-ApGltn) using secondary amines as linkages. The C10-sa-MPs adhere to soft tissues through a hydration mechanism. However, their application as a hemostatic agent was limited by their long hydration times, attributed to their high hydrophobicity. In this study, we present a new type microparticle, C10-am-MPs, synthesized by incorporating decanoyl group modifications into ApGltn (C10-am-ApGltn), using amide bonds as linkages. C10-am-MPs exhibited enhanced hydration characteristics compared to C10-sa-MPs, attributed to superior water absorption facilitated by amide bonds rather than secondary amines. Furthermore, C10-am-MPs demonstrated comparable tissue adhesion properties and underwater adhesion stability to C10-sa-MPs. Notably, C10-am-MPs exhibited accelerated blood coagulation in vitro compared to C10-sa-MPs. The application of C10-am-MPs in an in vivo rat liver hemorrhage model resulted in a hemostatic effect comparable to a commercially available hemostatic particle. These findings highlight the potential utility of C10-am-MPs as an effective hemostatic agent for endoscopic procedures and surgical interventions.


Asunto(s)
Gadiformes , Hemostáticos , Adhesivos Tisulares , Ratas , Animales , Adhesivos Tisulares/farmacología , Adhesivos Tisulares/uso terapéutico , Adhesivos Tisulares/química , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Gelatina/farmacología , Gelatina/química , Alaska , Adherencias Tisulares , Amidas , Aminas
10.
Connect Tissue Res ; 65(2): 170-185, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38526028

RESUMEN

PURPOSE: Besides comprising scaffolding, extracellular matrix components modulate many biological processes including inflammation and cell differentiation. We previously found precoating cell plates with extracellular matrix collagen I, or its denatured product gelatin, causes aggregation of macrophage-like human lymphoma U937 cells, which are induced to differentiation by phorbol myristate treatment. In the present study, we investigated the influence of gelatin or collagen I precoating on the bacteria phagocytosis in PMA-stimulated U937 cells. MATERIALS AND METHODS: Colony forming units of phagocytosed bacteria, Giemsa-staining of cells with phagocytosed bacteria, confocal microscopic and flow cytometric analysis of cells with phagocytosed FITC-labeled bacteria and non-bioactive latex beats were conducted. RESULTS: Gelatin precoating enhances the phagocytosis of both Gram-negative and positive bacteria, as shown by the increased colony forming units of bacteria phagocytosed by cells, and increased intracellular bacteria observed after Giemsa-staining. But collagen I has no marked influence. Confocal microscopy reveals that both live and dead FITC-bacteria were phagocytosed more in the cells with gelatin-coating but not collagen-coating. Of note, both gelatin and collagen I coating had no influence on the phagocytosis of non-bioactive latex beads. Since gelatin-coating increases autophagy but collagen I has no such impact, we are curious about the role of autophagy. Inhibiting autophagy reduced the phagocytosis of bacteria, in cells with gelatin-coating, while stimulating autophagy enhanced phagocytosis. CONCLUSION: This study finds the bacteria-phagocytosis stimulatory effect of gelatin in PMA-treated U937 cells and reveals the positive regulatory role of autophagy, predicting the potential use of gelatin products in anti-bacterial therapy.


Asunto(s)
Colágeno Tipo I , Gelatina , Humanos , Gelatina/farmacología , Células U937 , Fluoresceína-5-Isotiocianato , Fagocitosis , Colágeno , Bacterias
11.
Biomater Adv ; 159: 213805, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38457904

RESUMEN

Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98 % viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, showing that mineralization can effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.


Asunto(s)
Gelatina , Microgeles , Gelatina/farmacología , Gelatina/química , Materiales Biocompatibles , Metacrilatos/química
12.
J Neurosci Methods ; 405: 110102, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432304

RESUMEN

Cell reprogramming holds enormous potential to revolutionize our understanding of neurological and neurodevelopmental disorders, as well as enhance drug discovery and regenerative medicine. We have developed a direct cell reprogramming technology that allows us to generate lineage-specific neural cells. To extend our technology, we have investigated the incorporation of directly reprogrammed human lateral ganglionic eminence precursor cells (hiLGEPs) in a 3-dimensional (3D) matrix. Hydrogels are one of the most promising bio-scaffolds for 3D cell culture, providing cells with a supportive environment to adhere, proliferate, and differentiate. In particular, gelatin methacryloyl (GelMA) hydrogels have been used for a variety of 3D biomedical applications due to their biocompatibility, enzymatic cleavage, cell adhesion and tunable physical characteristics. This study therefore investigated the effect of GelMA hydrogel encapsulation on the survival and differentiation of hiLGEPs, both in vitro and following ex vivo transplantation into a quinolinic acid (QA) lesion rat organotypic slice culture model. We demonstrate, for the first time, that the encapsulation of hiLGEPs in GelMA hydrogel significantly enhances the survival and generation of DARPP32+ striatal neurons both in vitro and following ex vivo transplant. Furthermore, GelMA-encapsulated hiLGEPs were predominantly located away from the reactive astrocyte network that forms following QA lesioning, suggesting GelMA provides a protective barrier for cells in regions of inflammatory activation. Overall, these results indicate that GelMA hydrogel has the potential to act as a 3D bio-scaffold to augment the viability and differentiation of hiLGEPs for research and translation of pharmaceutical development and regenerative medicine.


Asunto(s)
Eminencia Ganglionar , Hidrogeles , Humanos , Ratas , Animales , Gelatina/farmacología , Metacrilatos , Andamios del Tejido
13.
ACS Biomater Sci Eng ; 10(4): 2251-2269, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38450619

RESUMEN

Diabetic wound healing remains a worldwide challenge for both clinicians and researchers. The high expression of matrix metalloproteinase 9 (MMP9) and a high inflammatory response are indicative of poor diabetic wound healing. H8, a curcumin analogue, is able to treat diabetes and is anti-inflammatory, and our pretest showed that it has the potential to treat diabetic wound healing. However, H8 is highly expressed in organs such as the liver and kidney, resulting in its unfocused use in diabetic wound targeting. (These data were not published, see Table S1 in the Supporting Information.) Accordingly, it is important to pursue effective carrier vehicles to facilitate the therapeutic uses of H8. The use of H8 delivered by macrophage membrane-derived nanovesicles provides a potential strategy for repairing diabetic wounds with improved drug efficacy and fast healing. In this study, we fabricated an injectable gelatin microsphere (GM) with sustained MMP9-responsive H8 macrophage membrane-derived nanovesicles (H8NVs) with a targeted release to promote angiogenesis that also reduces oxidative stress damage and inflammation, promoting diabetic wound healing. Gelatin microspheres loaded with H8NV (GMH8NV) stimulated by MMP9 can significantly facilitate the migration of NIH-3T3 cells and facilitate the development of tubular structures by HUVEC in vitro. In addition, our results demonstrated that GMH8NV stimulated by MMP9 protected cells from oxidative damage and polarized macrophages to the M2 phenotype, leading to an inflammation inhibition. By stimulating angiogenesis and collagen deposition, inhibiting inflammation, and reducing MMP9 expression, GMH8NV accelerated wound healing. This study showed that GMH8NVs were targeted to release H8NV after MMP9 stimulation, suggesting promising potential in achieving satisfactory healing in diabetic treatment.


Asunto(s)
Diabetes Mellitus Experimental , Gelatina , Ratones , Animales , Gelatina/farmacología , Gelatina/química , Microesferas , Metaloproteinasa 9 de la Matriz/farmacología , Metaloproteinasa 9 de la Matriz/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Cicatrización de Heridas , Inflamación , Macrófagos
14.
Int J Biol Macromol ; 266(Pt 2): 131231, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554918

RESUMEN

The enormous potential of multifunctional bilayer wound dressings in various medical interventions for wound healing has led to decades of exploration into this field of medicine. However, it is usually difficult to synthesize a single hydrogel with all the required capabilities simultaneously. This paper proposes a bilayer model with an outer layer intended for hydrogel wound treatment. By adding gelatin methacrylate (GelMA) and tannic acid (TA) to the hydrogel composition and using polyvinyl alcohol-carboxymethyl chitosan (PVA-CMCs) foam layer as supports, a photocrosslinkable hydrogel with an optimal formulation was created. The hydrogels were then examined using a range of analytical procedures, including mechanical testing, rheology, chemical characterization, and in vitro and in vivo tests. The resulting bilayer wound dressing has many desirable properties, namely uniform adhesion and quick crosslinking by UV light. When used against Gram-positive and Gram-negative bacterial strains, bilayer wound dressings demonstrated broad antibacterial efficacy. In bilayer wound dressings with GelMA and TA, better wound healing was observed. Those without these elements showed less effectiveness in healing wounds. Additionally, encouraging collagen production and reducing wound infection has a major therapeutic impact on wounds. The results of this study could have a significant impact on the development of better-performing wound dressings.


Asunto(s)
Vendajes , Quitosano , Gelatina , Hidrogeles , Metacrilatos , Alcohol Polivinílico , Cicatrización de Heridas , Alcohol Polivinílico/química , Gelatina/química , Gelatina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Animales , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Metacrilatos/química , Metacrilatos/farmacología , Piel/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Taninos/química , Taninos/farmacología , Reactivos de Enlaces Cruzados/química , Regeneración/efectos de los fármacos , Ratones , Ratas
15.
Int J Biol Macromol ; 263(Pt 2): 129887, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383251

RESUMEN

Infected wound management is a great challenge to healthcare, especially in emergencies such as accidents or battlefields. Hydrogels as wound dressings can replace or supplement traditional wound treatment strategies, such as bandages or sutures. It is significant to develop novel hydrogel-based wound dressings with simple operation, inexpensive, easy debridement, effective antibacterial, biocompatibility, etc. Here, we designed a novel gelatin-based hydrogel wound dressing Gel-TA-Fe3+. The hydrogels used tannic-modified gelatin as the main body and Fe3+ as the crosslinking agent to achieve a controllable rapid sol-gel transition. The hydrogels exhibited tough mechanical properties, excellent antibacterial ability, biocompatibility and an acceptable temperature response to near-infrared light (NIR). Moreover, the hydrogels could promote the healing process of MRSA-infected skin wound in rats. This multifunctional hydrogel was thought to have potential for emergency treatment of bacterial infected wound.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infección de Heridas , Animales , Ratas , Gelatina/farmacología , Cicatrización de Heridas , Suplementos Dietéticos , Antibacterianos/farmacología , Hidrogeles/farmacología , Infección de Heridas/tratamiento farmacológico
16.
Biomaterials ; 307: 122508, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38394713

RESUMEN

Postoperative pancreatic leakage due to pancreatitis in patients is a life-threatening surgical complication. The majority of commercial barriers are unable to meet the demands for pancreatic leakage due to poor adhesiveness, toxicity, and inability to degrade. In this study, we fabricated mitomycin-c and thrombin-loaded multifunctional dual-layer nanofibrous membrane with a combination of alginate, PCL, and gelatin to resolve the leakage due to suture line disruption, promote hemostasis, wound healing, and prevent postoperative tissue adhesion. Electrospinning was used to fabricate the dual-layer system. The study results demonstrated that high gelatin and alginate content in the inner layer decreased the fiber diameter and water contact angle, and crosslinking allowed the membrane to be more hydrophilic, making it highly biodegradable, and adhering firmly to the tissue surfaces. The results of in vitro biocompatibility and hemostatic assay revealed that the dual-layer had a higher cell proliferation and showed effective hemostatic properties. Moreover, the in vivo studies and in silico molecular simulation indicated that the dual layer was covered at the wound site, prevented suture disruption and leakage, inhibited hemorrhage, and reduced postoperative tissue adhesion. Finally, the study results proved that dual-layer multifunctional nanofibrous membrane has a promising therapeutic potential in preventing postoperative pancreatic leakage.


Asunto(s)
Hemostáticos , Nanofibras , Humanos , Gelatina/farmacología , Adherencias Tisulares/prevención & control , Poliésteres/farmacología , Alginatos
17.
ACS Appl Mater Interfaces ; 16(8): 9925-9943, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38362893

RESUMEN

Implantation of a phenotypically stable cartilage graft could represent a viable approach for repairing osteoarthritic (OA) cartilage lesions. In the present study, we investigated the effects of modulating the bone morphogenetic protein (BMP), transforming growth factor beta (TGFß), and interleukin-1 (IL-1) signaling cascades in human bone marrow stromal cell (hBMSC)-encapsulated silk fibroin gelatin (SF-G) bioink. The selected small molecules LDN193189, TGFß3, and IL1 receptor antagonist (IL1Ra) are covalently conjugated to SF-G biomaterial to ensure sustained release, increased bioavailability, and printability, confirmed by ATR-FTIR, release kinetics, and rheological analyses. The 3D bioprinted constructs with chondrogenically differentiated hBMSCs were incubated in an OA-inducing medium for 14 days and assessed through a detailed qPCR, immunofluorescence, and biochemical analyses. Despite substantial heterogeneity in the observations among the donors, the IL1Ra molecule illustrated the maximum efficiency in enhancing the expression of articular cartilage components, reducing the expression of hypertrophic markers (re-validated by the GeneMANIA tool), as well as reducing the production of inflammatory molecules by the hBMSCs. Therefore, this study demonstrated a novel strategy to develop a chemically decorated, printable and biomimetic SF-G bioink to produce hyaline cartilage grafts resistant to acquiring OA traits that can be used for the treatment of degenerated cartilage lesions.


Asunto(s)
Bioimpresión , Cartílago Articular , Fibroínas , Humanos , Fibroínas/química , Cartílago Articular/metabolismo , Materiales Biocompatibles/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular , Gelatina/farmacología , Gelatina/química , Andamios del Tejido/química , Ingeniería de Tejidos , Impresión Tridimensional
18.
Biofabrication ; 16(2)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38373340

RESUMEN

Versatile and efficient regulation of the mechanical properties of the extracellular matrix is crucial not only for understanding the dynamic changes in biological systems, but also for obtaining precise and effective cellular responses in drug testing. In this study, we developed a well plate-based hydrogel photo-crosslinking system to effectively control the mechanical properties of hydrogels and perform high-throughput assays. We improved cell biocompatibility by using gelatin methacryloyl (GelMA) with a visible light photo-crosslinking method. Multiple cell-laden GelMA hydrogels were simultaneously and uniformly created using multi-arrayed 520 nm light-emitting diodes in a well plate format. The elastic modulus of the hydrogels can be widely adjusted (0.5-30 kPa) using a photo-crosslinking system capable of independently controlling the light intensity or exposure time for multiple samples. We demonstrate the feasibility of our system by observing enhanced bone differentiation of human mesenchymal stem cells (hMSCs) cultured on stiffer hydrogels. Additionally, we observed that the osteogenic fate of hMSCs, affected by the different mechanical properties of the gel, was regulated by parathyroid hormone (PTH). Notably, in response to PTH, hMSCs in a high-stiffness microenvironment upregulate osteogenic differentiation while exhibiting increased proliferation in a low-stiffness microenvironment. Overall, the developed system enables the generation of multiple cell-laden three-dimensional cell culture models with diverse mechanical properties and holds significant potential for expansion into drug testing.


Asunto(s)
Hidrogeles , Hormona Paratiroidea , Humanos , Hidrogeles/farmacología , Osteogénesis , Gelatina/farmacología , Metacrilatos , Ingeniería de Tejidos/métodos
19.
ACS Appl Mater Interfaces ; 16(8): 9908-9924, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38381140

RESUMEN

The control of angiogenesis has the potential to be used for regulation of several pathological and physiological processes, which can be instrumental on the development of anticancer and wound healing therapeutical approaches. In this study, mesenchymal stem/stromal cells (MSCs) were seeded on magnetic-responsive gelatin, with or without heparin functionalization, and exposed to a static 0.08 T magnetic field (MF), for controlling their anti-inflammatory and angiogenic activity, with the aim of accelerating tissue healing. For the first time, it was examined how the amount of heparin and magnetic nanoparticles (MNPs) distributed on gelatin scaffolds affected the mechanical properties of the hydrogels and the morphology, proliferation, and secretome profiling of MSCs. The findings demonstrated that the addition of MNPs and heparin affects the hydrogel swelling capacity and renders distinct MSC proliferation rates. Additionally, MF acts as a topographical cue to guide MSCs alignment and increases the level of expression of specific genes and proteins that promote angiogenesis. The results also suggested that the presence of higher amounts of heparin (10 µg/cm3) interferes with the secretion and limits the capacity of angiogenic factors to diffuse through the hydrogel and into the culture medium. Ultimately, this study shows that acellular heparinized hydrogels efficiently retain the angiogenic growth factors released by magnetically stimulated MSCs thus rendering superior wound contraction (55.8% ± 0.4%) and cell migration rate (49.4% ± 0.4%), in comparison to nonheparinized hydrogels (35.2% ± 0.7% and 37.8% ± 0.7%, respectively). Therefore, these heparinized magnetic hydrogels can be used to facilitate angiogenesis in various forms of tissue damage including bone defects, skin wounds, and cardiovascular diseases, leading to enhanced tissue regeneration.


Asunto(s)
Gelatina , Hidrogeles , Hidrogeles/farmacología , Gelatina/farmacología , Cicatrización de Heridas , Péptidos y Proteínas de Señalización Intercelular , Heparina/farmacología
20.
Part Fibre Toxicol ; 21(1): 5, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321545

RESUMEN

BACKGROUND: Currently, society and industry generate huge amounts of plastics worldwide. The ubiquity of microplastics is obvious, but its impact on the animal and human organism remains not fully understood. The digestive tract is one of the first barriers between pathogens and xenobiotics and a living organism. Its proper functioning is extremely important in order to maintain homeostasis. The aim of this study was to determine the effect of microplastic on enteric nervous system and histological structure of swine duodenum. The experiment was carried out on 15 sexually immature gilts, approximately 8 weeks old. The animals were randomly divided into 3 study groups (n = 5/group). The control group received empty gelatin capsules once a day for 28 days, the first research group received daily gelatin capsules with polyethylene terephthalate (PET) particles as a mixture of particles of various sizes (maximum particle size 300 µm) at a dose of 0.1 g/animal/day. The second study group received a dose ten times higher-1 g/animal/day. RESULTS: A dose of 1 g/day/animal causes more changes in the enteric nervous system and in the histological structure of duodenum. Statistically significant differences in the expression of cocaine and amphetamine regulated transcript, galanin, neuronal nitric oxide synthase, substance P, vesicular acetylcholine transporter and vasoactive intestinal peptide between control and high dose group was noted. The histopathological changes were more frequently observed in the pigs receiving higher dose of PET. CONCLUSION: Based on this study it may be assumed, that oral intake of microplastic might have potential negative influence on digestive tract, but it is dose-dependent.


Asunto(s)
Microplásticos , Plásticos , Humanos , Porcinos , Animales , Femenino , Tereftalatos Polietilenos/metabolismo , Tereftalatos Polietilenos/farmacología , Gelatina/metabolismo , Gelatina/farmacología , Duodeno/metabolismo , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...