RESUMEN
Bypassing cellular senescence is a prerequisite step in the tumorigenic transformation. It has long been known that loss of a key tumour suppressor gene, such as p53 or pRB, is necessary but not sufficient for spontaneous cellular immortalisation. Therefore, there must be additional mutations and/or epigenetic alterations required for immortalisation to occur. Early work on these processes included somatic-cell genetic studies to estimate the number of senescence genes and nowadays are completed by in vivo models and with the requirements to bypass senescence induced by oncogenic transformation in stem cells. These principal studies laid the foundation for the field of senescence/immortalisation but were labour intensive and the results were somewhat limited. Using retroviral-based functional genetic screening, we and others identified universal genes regulating senescence/immortalisation (either by gain or loss of function) and found that some of these genes are widely altered in human tumours. We also explored the molecular mechanisms throughout these genes that regulate senescence and established the causality of the genetic alteration in tumorigenesis. The identification of genes and pathways regulating senescence/immortalisation could provide novel molecular targets for the treatment and/or prevention of cancer.