Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.502
Filtrar
1.
PLoS One ; 19(5): e0301172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696408

RESUMEN

Horizontal gene transfer (HGT) is a powerful evolutionary force that considerably shapes the structure of prokaryotic genomes and is associated with genomic islands (GIs). A GI is a DNA segment composed of transferred genes that can be found within a prokaryotic genome, obtained through HGT. Much research has focused on detecting GIs in genomes, but here we pursue a new course, which is identifying possible preferred locations of GIs in the prokaryotic genome. Here, we identify the locations of the GIs within prokaryotic genomes to examine patterns in those locations. Prokaryotic GIs were analyzed according to the genome structure that they are located in, whether it be a circular or a linear genome. The analytical investigations employed are: (1) studying the GI locations in relation to the origin of replication (oriC); (2) exploring the distances between GIs; and (3) determining the distribution of GIs across the genomes. For each of the investigations, the analysis was performed on all of the GIs in the data set. Moreover, to void bias caused by the distribution of the genomes represented, the GIs in one genome from each species and the GIs of the most frequent species are also analyzed. Overall, the results showed that there are preferred sites for the GIs in the genome. In the linear genomes, these sites are usually located in the oriC region and terminus region, while in the circular genomes, they are located solely in the terminus region. These results also showed that the distance distribution between the GIs is almost exponential, which proves that GIs have preferred sites within genomes. The oriC and termniuns are preferred sites for the GIs and a possible natural explanation for this could be connected to the content of the oriC region. Moreover, the content of the GIs in terms of its protein families was studied and the results demonstrated that the majority of frequent protein families are close to identical in each section.


Asunto(s)
Transferencia de Gen Horizontal , Islas Genómicas , Genoma Bacteriano , Genoma Arqueal , Origen de Réplica/genética , Células Procariotas/metabolismo
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38747283

RESUMEN

The analysis and comparison of gene neighborhoods is a powerful approach for exploring microbial genome structure, function, and evolution. Although numerous tools exist for genome visualization and comparison, genome exploration across large genomic databases or user-generated datasets remains a challenge. Here, we introduce AnnoView, a web server designed for interactive exploration of gene neighborhoods across the bacterial and archaeal tree of life. Our server offers users the ability to identify, compare, and visualize gene neighborhoods of interest from 30 238 bacterial genomes and 1672 archaeal genomes, through integration with the comprehensive Genome Taxonomy Database and AnnoTree databases. Identified gene neighborhoods can be visualized using pre-computed functional annotations from different sources such as KEGG, Pfam and TIGRFAM, or clustered based on similarity. Alternatively, users can upload and explore their own custom genomic datasets in GBK, GFF or CSV format, or use AnnoView as a genome browser for relatively small genomes (e.g. viruses and plasmids). Ultimately, we anticipate that AnnoView will catalyze biological discovery by enabling user-friendly search, comparison, and visualization of genomic data. AnnoView is available at http://annoview.uwaterloo.ca.


Asunto(s)
Programas Informáticos , Bases de Datos Genéticas , Genoma Bacteriano , Genoma Arqueal , Genómica/métodos , Archaea/genética , Genes Microbianos/genética , Biología Computacional/métodos , Bacterias/genética , Bacterias/clasificación
3.
Nat Commun ; 15(1): 4066, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744885

RESUMEN

Terrestrial geothermal springs are physicochemically diverse and host abundant populations of Archaea. However, the diversity, functionality, and geological influences of these Archaea are not well understood. Here we explore the genomic diversity of Archaea in 152 metagenomes from 48 geothermal springs in Tengchong, China, collected from 2016 to 2021. Our dataset is comprised of 2949 archaeal metagenome-assembled genomes spanning 12 phyla and 392 newly identified species, which increases the known species diversity of Archaea by ~48.6%. The structures and potential functions of the archaeal communities are strongly influenced by temperature and pH, with high-temperature acidic and alkaline springs favoring archaeal abundance over Bacteria. Genome-resolved metagenomics and metatranscriptomics provide insights into the potential ecological niches of these Archaea and their potential roles in carbon, sulfur, nitrogen, and hydrogen metabolism. Furthermore, our findings illustrate the interplay of competition and cooperation among Archaea in biogeochemical cycles, possibly arising from overlapping functional niches and metabolic handoffs. Taken together, our study expands the genomic diversity of Archaea inhabiting geothermal springs and provides a foundation for more incisive study of biogeochemical processes mediated by Archaea in geothermal ecosystems.


Asunto(s)
Archaea , Genoma Arqueal , Manantiales de Aguas Termales , Metagenoma , Metagenómica , Filogenia , Manantiales de Aguas Termales/microbiología , Archaea/genética , Archaea/clasificación , China , Metagenómica/métodos , Biodiversidad , Concentración de Iones de Hidrógeno , Azufre/metabolismo , Temperatura , Ecosistema
4.
mBio ; 15(5): e0040824, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38619241

RESUMEN

In this study, we use pan-genomics to characterize the genomic variability of the widely dispersed halophilic archaeal species Halorubrum ezzemoulense (Hez). We include a multi-regional sampling of newly sequenced, high-quality draft genomes. The pan-genome graph of the species reveals 50 genomic islands that represent rare accessory genetic capabilities available to members. Most notably, we observe rearrangements that have led to the insertion/recombination/replacement of mutually exclusive genomic islands in equivalent genome positions ("homeocassettes"). These conflicting islands encode for similar functions, but homologs from islands located between the same core genes exhibit high divergence on the amino acid level, while the neighboring core genes are nearly identical. Both islands of a homeocassette often coexist in the same geographic location, suggesting that either island may be beyond the reach of selective sweeps and that these loci of divergence between Hez members are maintained and persist long term. This implies that subsections of the population have different niche preferences and rare metabolic capabilities. After an evaluation of the gene content in the homeocassettes, we speculate that these islands may play a role in the speciation, niche adaptability, and group selection dynamics in Hez. Though homeocassettes are first described in this study, similar replacements and divergence of genes on genomic islands have been previously reported in other Haloarchaea and distantly related Archaea, suggesting that homeocassettes may be a feature in a wide range of organisms outside of Hez.IMPORTANCEThis study catalogs the rare genes discovered in strains of the species Halorubrum ezzemoulense (Hez), an obligate halophilic archaeon, through the perspective of its pan-genome. These rare genes are often found to be arranged on islands that confer metabolic and transport functions and contain genes that have eluded previous studies. The discovery of divergent, but homologous islands occupying equivalent genome positions ("homeocassettes") in different genomes, reveals significant new information on genome evolution in Hez. Homeocassette pairs encode for similar functions, but their dissimilarity and distribution imply high rates of recombination, different specializations, and niche preferences in Hez. The coexistence of both islands of a homeocassette pair in multiple environments demonstrates that both islands are beyond the reach of selective sweeps and that these genome content differences between strains persist long term. The switch between islands through recombination under different environmental conditions may lead to a greater range of niche adaptability in Hez.


Asunto(s)
Genoma Arqueal , Islas Genómicas , Halorubrum , Halorubrum/genética , Halorubrum/clasificación , Genómica , Evolución Molecular , Variación Genética , Filogenia
5.
Appl Environ Microbiol ; 90(5): e0026824, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38619268

RESUMEN

A new variant of Methanothermobacter wolfeii was isolated from an anaerobic digester using enrichment cultivation in anaerobic conditions. The new isolate was taxonomically identified via 16S rRNA gene sequencing and tagged as M. wolfeii BSEL. The whole genome of the new variant was sequenced and de novo assembled. Genomic variations between the BSEL strain and the type strain were discovered, suggesting evolutionary adaptations of the BSEL strain that conferred advantages while growing under a low concentration of nutrients. M. wolfeii BSEL displayed the highest specific growth rate ever reported for the wolfeii species (0.27 ± 0.03 h-1) using carbon dioxide (CO2) as unique carbon source and hydrogen (H2) as electron donor. M. wolfeii BSEL grew at this rate in an environment with ammonium (NH4+) as sole nitrogen source. The minerals content required to cultivate the BSEL strain was relatively low and resembled the ionic background of tap water without mineral supplements. Optimum growth rate for the new isolate was observed at 64°C and pH 8.3. In this work, it was shown that wastewater from a wastewater treatment facility can be used as a low-cost alternative medium to cultivate M. wolfeii BSEL. Continuous gas fermentation fed with a synthetic biogas mimic along with H2 in a bubble column bioreactor using M. wolfeii BSEL as biocatalyst resulted in a CO2 conversion efficiency of 97% and a final methane (CH4) titer of 98.5%v, demonstrating the ability of the new strain for upgrading biogas to renewable natural gas.IMPORTANCEAs a methanogenic archaeon, Methanothermobacter wolfeii uses CO2 as electron acceptor, producing CH4 as final product. The metabolism of M. wolfeii can be harnessed to capture CO2 from industrial emissions, besides producing a drop-in renewable biofuel to substitute fossil natural gas. If used as biocatalyst in new-generation CO2 sequestration processes, M. wolfeii has the potential to accelerate the decarbonization of the energy generation sector, which is the biggest contributor of CO2 emissions worldwide. Nonetheless, the development of CO2 sequestration archaeal-based biotechnology is still limited by an uncertainty in the requirements to cultivate methanogenic archaea and the unknown longevity of archaeal cultures. In this study, we report the adaptation, isolation, and phenotypic characterization of a novel variant of M. wolfeii, which is capable of maximum growth with minimal nutrients input. Our findings demonstrate the potential of this variant for the production of renewable natural gas, paving the way for the development of more efficient and sustainable CO2 sequestration processes.


Asunto(s)
Dióxido de Carbono , Methanobacteriaceae , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Methanobacteriaceae/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , ARN Ribosómico 16S/genética , Genoma Arqueal , Filogenia , Fenotipo , Aguas Residuales/microbiología , Metano/metabolismo , Nutrientes/metabolismo
6.
Nat Ecol Evol ; 8(5): 986-998, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38443606

RESUMEN

Horizontal gene transfer, the exchange of genetic material through means other than reproduction, is a fundamental force in prokaryotic genome evolution. Genomic persistence of horizontally transferred genes has been shown to be influenced by both ecological and evolutionary factors. However, there is limited availability of ecological information about species other than the habitats from which they were isolated, which has prevented a deeper exploration of ecological contributions to horizontal gene transfer. Here we focus on transfers detected through comparison of individual gene trees to the species tree, assessing the distribution of gene-exchanging prokaryotes across over a million environmental sequencing samples. By analysing detected horizontal gene transfer events, we show distinct functional profiles for recent versus old events. Although most genes transferred are part of the accessory genome, genes transferred earlier in evolution tend to be more ubiquitous within present-day species. We find that co-occurring, interacting and high-abundance species tend to exchange more genes. Finally, we show that host-associated specialist species are most likely to exchange genes with other host-associated specialist species, whereas species found across different habitats have similar gene exchange rates irrespective of their preferred habitat. Our study covers an unprecedented scale of integrated horizontal gene transfer and environmental information, highlighting broad eco-evolutionary trends.


Asunto(s)
Bacterias , Transferencia de Gen Horizontal , Bacterias/genética , Genoma Bacteriano , Ecosistema , Archaea/genética , Genoma Arqueal , Evolución Molecular
7.
J Bacteriol ; 206(2): e0035123, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38289045

RESUMEN

The DPANN archaeal clade includes obligately ectosymbiotic species. Their cell surfaces potentially play an important role in the symbiotic interaction between the ectosymbionts and their hosts. However, little is known about the mechanism of ectosymbiosis. Here, we show cell surface structures of the cultivated DPANN archaeon Nanobdella aerobiophila strain MJ1T and its host Metallosphaera sedula strain MJ1HA, using a variety of electron microscopy techniques, i.e., negative-staining transmission electron microscopy, quick-freeze deep-etch TEM, and 3D electron tomography. The thickness, unit size, and lattice symmetry of the S-layer of strain MJ1T were different from those of the host archaeon strain MJ1HA. Genomic and transcriptomic analyses highlighted the most highly expressed MJ1T gene for a putative S-layer protein with multiple glycosylation sites and immunoglobulin-like folds, which has no sequence homology to known S-layer proteins. In addition, genes for putative pectin lyase- or lectin-like extracellular proteins, which are potentially involved in symbiotic interaction, were found in the MJ1T genome based on in silico 3D protein structure prediction. Live cell imaging at the optimum growth temperature of 65°C indicated that cell complexes of strains MJ1T and MJ1HA were motile, but sole MJ1T cells were not. Taken together, we propose a model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila.IMPORTANCEDPANN archaea are widely distributed in a variety of natural and artificial environments and may play a considerable role in the microbial ecosystem. All of the cultivated DPANN archaea so far need host organisms for their growth, i.e., obligately ectosymbiotic. However, the mechanism of the ectosymbiosis by DPANN archaea is largely unknown. To this end, we performed a comprehensive analysis of the cultivated DPANN archaeon, Nanobdella aerobiophila, using electron microscopy, live cell imaging, transcriptomics, and genomics, including 3D protein structure prediction. Based on the results, we propose a reasonable model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila, which will enhance our understanding of the enigmatic physiology and ecological significance of DPANN archaea.


Asunto(s)
Archaea , Archaea/genética , Genoma Arqueal , Genómica , Filogenia
8.
mBio ; 15(2): e0309223, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38189270

RESUMEN

The identification of microbial genes essential for survival as those with lethal knockout phenotype (LKP) is a common strategy for functional interrogation of genomes. However, interpretation of the LKP is complicated because a substantial fraction of the genes with this phenotype remains poorly functionally characterized. Furthermore, many genes can exhibit LKP not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes (conditionally essential genes). We analyzed the sets of LKP genes for two archaea, Methanococcus maripaludis and Sulfolobus islandicus, using a variety of computational approaches aiming to differentiate between essential and conditionally essential genes and to predict at least a general function for as many of the proteins encoded by these genes as possible. This analysis allowed us to predict the functions of several LKP genes including previously uncharacterized subunit of the GINS protein complex with an essential function in genome replication and of the KEOPS complex that is responsible for an essential tRNA modification as well as GRP protease implicated in protein quality control. Additionally, several novel antitoxins (conditionally essential genes) were predicted, and this prediction was experimentally validated by showing that the deletion of these genes together with the adjacent genes apparently encoding the cognate toxins caused no growth defect. We applied principal component analysis based on sequence and comparative genomic features showing that this approach can separate essential genes from conditionally essential ones and used it to predict essential genes in other archaeal genomes.IMPORTANCEOnly a relatively small fraction of the genes in any bacterium or archaeon is essential for survival as demonstrated by the lethal effect of their disruption. The identification of essential genes and their functions is crucial for understanding fundamental cell biology. However, many of the genes with a lethal knockout phenotype remain poorly functionally characterized, and furthermore, many genes can exhibit this phenotype not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes. We applied state-of-the-art computational methods to predict the functions of a number of uncharacterized genes with the lethal knockout phenotype in two archaeal species and developed a computational approach to predict genes involved in essential functions. These findings advance the current understanding of key functionalities of archaeal cells.


Asunto(s)
Archaea , Proteínas Arqueales , Archaea/genética , Archaea/metabolismo , Genes Esenciales , Genoma Arqueal , Genómica , Fenotipo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo
9.
Nucleic Acids Res ; 52(D1): D762-D769, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37962425

RESUMEN

The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) contains over 315 000 bacterial and archaeal genomes and 236 million proteins with up-to-date and consistent annotation. In the past 3 years, we have expanded the diversity of the RefSeq collection by including the best quality metagenome-assembled genomes (MAGs) submitted to INSDC (DDBJ, ENA and GenBank), while maintaining its quality by adding validation checks. Assemblies are now more stringently evaluated for contamination and for completeness of annotation prior to acceptance into RefSeq. MAGs now account for over 17000 assemblies in RefSeq, split over 165 orders and 362 families. Changes in the Prokaryotic Genome Annotation Pipeline (PGAP), which is used to annotate nearly all RefSeq assemblies include better detection of protein-coding genes. Nearly 83% of RefSeq proteins are now named by a curated Protein Family Model, a 4.7% increase in the past three years ago. In addition to literature citations, Enzyme Commission numbers, and gene symbols, Gene Ontology terms are now assigned to 48% of RefSeq proteins, allowing for easier multi-genome comparison. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/. PGAP is available as a stand-alone tool able to produce GenBank-ready files at https://github.com/ncbi/pgap.


Asunto(s)
Archaea , Bacterias , Bases de Datos de Ácidos Nucleicos , Metagenoma , Archaea/genética , Bacterias/genética , Bases de Datos de Ácidos Nucleicos/normas , Bases de Datos de Ácidos Nucleicos/tendencias , Genoma Arqueal/genética , Genoma Bacteriano/genética , Internet , Anotación de Secuencia Molecular , Proteínas/genética
10.
Methods Mol Biol ; 2732: 1-22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38060114

RESUMEN

During the past decade, environmental research has demonstrated that archaea are abundant and widespread in nature and play important ecological roles at a global scale. Currently, however, the majority of archaeal lineages cannot be cultivated under laboratory conditions and are known exclusively or nearly exclusively through metagenomics. A similar trend extends to the archaeal virosphere, where isolated representatives are available for a handful of model archaeal virus-host systems. Viral metagenomics provides an alternative way to circumvent the limitations of culture-based virus discovery and offers insight into the diversity, distribution, and environmental impact of uncultured archaeal viruses. Presently, metagenomics approaches have been successfully applied to explore the viromes associated with various lineages of extremophilic and mesophilic archaea, including Asgard archaea (Asgardarchaeota), ANME-1 archaea (Methanophagales), thaumarchaea (Nitrososphaeria), altiarchaea (Altiarchaeota), and marine group II archaea (Poseidoniales). Here, we provide an overview of methods widely used in archaeal virus metagenomics, covering metavirome preparation, genome annotation, phylogenetic and phylogenomic analyses, and archaeal host assignment. We hope that this summary will contribute to further exploration and characterization of the enigmatic archaeal virome lurking in diverse environments.


Asunto(s)
Archaea , Virus de Archaea , Filogenia , Metagenómica/métodos , Virus de Archaea/genética , Genoma Arqueal
11.
Microbiol Mol Biol Rev ; 87(4): e0018621, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38018971

RESUMEN

SUMMARYIn this hypothesis article, we explore the origin of the eukaryotic nucleus. In doing so, we first look afresh at the nature of this defining feature of the eukaryotic cell and its core functions-emphasizing the utility of seeing the eukaryotic nucleoplasm and cytoplasm as distinct regions of a common compartment. We then discuss recent progress in understanding the evolution of the eukaryotic cell from archaeal and bacterial ancestors, focusing on phylogenetic and experimental data which have revealed that many eukaryotic machines with nuclear activities have archaeal counterparts. In addition, we review the literature describing the cell biology of representatives of the TACK and Asgardarchaeaota - the closest known living archaeal relatives of eukaryotes. Finally, bringing these strands together, we propose a model for the archaeal origin of the nucleus that explains much of the current data, including predictions that can be used to put the model to the test.


Asunto(s)
Células Eucariotas , Genoma Arqueal , Filogenia , Archaea/genética , Bacterias/genética , Evolución Biológica
12.
Sci Rep ; 13(1): 16105, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752120

RESUMEN

This study provides comprehensive quantitative evidence suggesting that adaptations to extreme temperatures and pH imprint a discernible environmental component in the genomic signature of microbial extremophiles. Both supervised and unsupervised machine learning algorithms were used to analyze genomic signatures, each computed as the k-mer frequency vector of a 500 kbp DNA fragment arbitrarily selected to represent a genome. Computational experiments classified/clustered genomic signatures extracted from a curated dataset of [Formula: see text] extremophile (temperature, pH) bacteria and archaea genomes, at multiple scales of analysis, [Formula: see text]. The supervised learning resulted in high accuracies for taxonomic classifications at [Formula: see text], and medium to medium-high accuracies for environment category classifications of the same datasets at [Formula: see text]. For [Formula: see text], our findings were largely consistent with amino acid compositional biases and codon usage patterns in coding regions, previously attributed to extreme environment adaptations. The unsupervised learning of unlabelled sequences identified several exemplars of hyperthermophilic organisms with large similarities in their genomic signatures, in spite of belonging to different domains in the Tree of Life.


Asunto(s)
Extremófilos , Extremófilos/genética , Genómica/métodos , Bacterias/genética , Archaea/genética , Genoma Arqueal/genética
13.
Nat Microbiol ; 8(7): 1339-1347, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37277532

RESUMEN

Conjugative plasmids are self-transmissible mobile genetic elements that transfer DNA between host cells via type IV secretion systems (T4SS). While T4SS-mediated conjugation has been well-studied in bacteria, information is sparse in Archaea and known representatives exist only in the Sulfolobales order of Crenarchaeota. Here we present the first self-transmissible plasmid identified in a Euryarchaeon, Thermococcus sp. 33-3. The 103 kbp plasmid, pT33-3, is seen in CRISPR spacers throughout the Thermococcales order. We demonstrate that pT33-3 is a bona fide conjugative plasmid that requires cell-to-cell contact and is dependent on canonical, plasmid-encoded T4SS-like genes. Under laboratory conditions, pT33-3 transfers to various Thermococcales and transconjugants propagate at 100 °C. Using pT33-3, we developed a genetic toolkit that allows modification of phylogenetically diverse Archaeal genomes. We demonstrate pT33-3-mediated plasmid mobilization and subsequent targeted genome modification in previously untransformable Thermococcales species, and extend this process to interphylum transfer to a Crenarchaeon.


Asunto(s)
Archaea , ADN , Archaea/genética , Plásmidos/genética , ADN/genética , Bacterias/genética , Genoma Arqueal
14.
Sci Data ; 10(1): 332, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244914

RESUMEN

Oxygen-deficient marine waters referred to as oxygen minimum zones (OMZs) or anoxic marine zones (AMZs) are common oceanographic features. They host both cosmopolitan and endemic microorganisms adapted to low oxygen conditions. Microbial metabolic interactions within OMZs and AMZs drive coupled biogeochemical cycles resulting in nitrogen loss and climate active trace gas production and consumption. Global warming is causing oxygen-deficient waters to expand and intensify. Therefore, studies focused on microbial communities inhabiting oxygen-deficient regions are necessary to both monitor and model the impacts of climate change on marine ecosystem functions and services. Here we present a compendium of 5,129 single-cell amplified genomes (SAGs) from marine environments encompassing representative OMZ and AMZ geochemical profiles. Of these, 3,570 SAGs have been sequenced to different levels of completion, providing a strain-resolved perspective on the genomic content and potential metabolic interactions within OMZ and AMZ microbiomes. Hierarchical clustering confirmed that samples from similar oxygen concentrations and geographic regions also had analogous taxonomic compositions, providing a coherent framework for comparative community analysis.


Asunto(s)
Genoma Arqueal , Genoma Bacteriano , Bacterias/genética , Bacterias/metabolismo , Genómica , Microbiota , Oxígeno , Agua de Mar/microbiología , Archaea/genética , Archaea/metabolismo , Análisis de la Célula Individual
15.
Environ Microbiol ; 25(6): 1077-1083, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36764661

RESUMEN

Resolving bacterial and archaeal genomes from metagenomes has revolutionized our understanding of Earth's biomes yet producing high-quality genomes from assembled fragments has been an ever-standing problem. While automated binning software and their combination produce prokaryotic bins in high throughput, their manual refinement has been slow, sometimes difficult or missing entirely facilitating error propagation in public databases. Here, we present uBin, a GUI-based, standalone bin refiner that runs on all major operating platforms and was additionally designed for educational purposes. When applied to the public CAMI dataset, refinement of bins using GC content, coverage and taxonomy was able to improve 78.9% of bins by decreasing their contamination. We also applied the bin refiner as a standalone binner to public metagenomes from the International Space Station and demonstrate the recovery of near-complete genomes, whose replication indices indicate the active proliferation of microbes in Earth's lower orbit. uBin is an easy to instal software for bin refinement, binning of simple metagenomes and communication of metagenomic results to other scientists and in classrooms. The software and its helper scripts are open source and available under https://github.com/ProbstLab/uBin.


Asunto(s)
Genoma Arqueal , Genoma Bacteriano , Metagenoma , Programas Informáticos , Filogenia , Bacterias/clasificación , Bacterias/genética , Archaea/clasificación , Archaea/genética , Curaduría de Datos
16.
Cell Rep ; 42(3): 112158, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827180

RESUMEN

The biology of Korarchaeia remains elusive due to the lack of genome representatives. Here, we reconstruct 10 closely related metagenome-assembled genomes from hot spring habitats and place them into a single species, proposed herein as Panguiarchaeum symbiosum. Functional investigation suggests that Panguiarchaeum symbiosum is strictly anaerobic and grows exclusively in thermal habitats by fermenting peptides coupled with sulfide and hydrogen production to dispose of electrons. Due to its inability to biosynthesize archaeal membranes, amino acids, and purines, this species likely exists in a symbiotic lifestyle similar to DPANN archaea. Population metagenomics and metatranscriptomic analyses demonstrated that genes associated with amino acid/peptide uptake and cell attachment exhibited positive selection and were highly expressed, supporting the proposed proteolytic catabolism and symbiotic lifestyle. Our study sheds light on the metabolism, evolution, and potential symbiotic lifestyle of Panguiarchaeum symbiosum, which may be a unique host-dependent archaeon within the TACK superphylum.


Asunto(s)
Archaea , Manantiales de Aguas Termales , Simbiosis , Simbiosis/genética , Manantiales de Aguas Termales/microbiología , Fermentación , Anaerobiosis , Aminoácidos/metabolismo , Coenzimas/metabolismo , Filogeografía , Polimorfismo de Nucleótido Simple/genética , Azufre/metabolismo , Péptidos/metabolismo , Proteolisis , Archaea/clasificación , Archaea/citología , Archaea/genética , Adhesión Celular/genética , Genes Arqueales , Regulación de la Expresión Génica Arqueal , Genoma Arqueal , Metagenómica , Metagenoma
18.
Nucleic Acids Res ; 51(D1): D723-D732, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36382399

RESUMEN

The Integrated Microbial Genomes & Microbiomes system (IMG/M: https://img.jgi.doe.gov/m/) at the Department of Energy (DOE) Joint Genome Institute (JGI) continues to provide support for users to perform comparative analysis of isolate and single cell genomes, metagenomes, and metatranscriptomes. In addition to datasets produced by the JGI, IMG v.7 also includes datasets imported from public sources such as NCBI Genbank, SRA, and the DOE National Microbiome Data Collaborative (NMDC), or submitted by external users. In the past couple years, we have continued our effort to help the user community by improving the annotation pipeline, upgrading the contents with new reference database versions, and adding new analysis functionalities such as advanced scaffold search, Average Nucleotide Identity (ANI) for high-quality metagenome bins, new cassette search, improved gene neighborhood display, and improvements to metatranscriptome data display and analysis. We also extended the collaboration and integration efforts with other DOE-funded projects such as NMDC and DOE Biology Knowledgebase (KBase).


Asunto(s)
Manejo de Datos , Genómica , Genoma Bacteriano , Programas Informáticos , Genoma Arqueal , Bases de Datos Genéticas , Metagenoma
19.
Nucleic Acids Res ; 51(D1): D117-D120, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36305822

RESUMEN

DoriC was first launched in 2007 as a database of replication origins (oriCs) in bacterial genomes and has since been constantly updated to integrate the latest research progress in this field. The database was subsequently extended to include the oriCs in archaeal genomes as well as those in plasmids. This latest release, DoriC 12.0, includes the oriCs in both draft and complete prokaryotic genomes. At the same time, the number of oriCs in the database has also increased significantly and currently contains over 200 000 bacterial entries distributed in more than 40 phyla. Among them, a large number are from bacteria in new phyla whose oriCs were not explored before. Additionally, new oriC features and improvements have been introduced, especially in the visualization and analysis of oriCs. Currently, DoriC is considered as an important database in the fields of bioinformatics, microbial genomics, and even synthetic biology, providing a valuable resource as well as a comprehensive platform for the research on oriCs. DoriC 12.0 can be accessed at https://tubic.org/doric/ and http://tubic.tju.edu.cn/doric/.


Asunto(s)
Archaea , Bacterias , Bases de Datos Genéticas , Origen de Réplica , Genoma Arqueal , Genoma Bacteriano , Internet , Plásmidos , Origen de Réplica/genética , Programas Informáticos , Bacterias/genética , Archaea/genética , Células Procariotas
20.
Biochem Soc Trans ; 50(6): 1931-1939, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36511238

RESUMEN

A key maxim in modernist architecture is that 'form follows function'. While modernist buildings are hopefully the product of intelligent design, the architectures of chromosomes have been sculpted by the forces of evolution over many thousands of generations. In the following, I will describe recent advances in our understanding of chromosome architecture in the archaeal domain of life. Although much remains to be learned about the mechanistic details of archaeal chromosome organization, some general principles have emerged. At the 10-100 kb level, archaeal chromosomes have a conserved local organization reminiscent of bacterial genomes. In contrast, lineage-specific innovations appear to have imposed distinct large-scale architectural features. The ultimate functions of genomes are to store and to express genetic information. Gene expression profiles have been shown to influence chromosome architecture, thus their form follows function. However, local changes to chromosome conformation can also influence gene expression and therefore, in these instances, function follows form.


Asunto(s)
Cromosomas de Archaea , Genoma Arqueal , Archaea/genética , Genoma Bacteriano , Cromosomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...