Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.013
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 325, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717668

RESUMEN

Actinomycetota have been widely described as valuable sources for the acquisition of secondary metabolites. Most microbial metabolites are produced via metabolic pathways encoded by biosynthetic gene clusters (BGCs). Although many secondary metabolites are not essential for the survival of bacteria, they play an important role in their adaptation and interactions within microbial communities. This is how bacteria isolated from extreme environments such as Antarctica could facilitate the discovery of new BGCs with biotechnological potential. This study aimed to isolate rare Actinomycetota strains from Antarctic soil and sediment samples and identify their metabolic potential based on genome mining and exploration of biosynthetic gene clusters. To this end, the strains were sequenced using Illumina and Oxford Nanopore Technologies platforms. The assemblies were annotated and subjected to phylogenetic analysis. Finally, the BGCs present in each genome were identified using the antiSMASH tool, and the biosynthetic diversity of the Micrococcaceae family was evaluated. Taxonomic annotation revealed that seven strains were new and two were previously reported in the NCBI database. Additionally, BGCs encoding type III polyketide synthases (T3PKS), beta-lactones, siderophores, and non-ribosomal peptide synthetases (NRPS) have been identified, among others. In addition, the sequence similarity network showed a predominant type of BGCs in the family Micrococcaceae, and some genera were distinctly grouped. The BGCs identified in the isolated strains could be associated with applications such as antimicrobials, anticancer agents, and plant growth promoters, among others, positioning them as excellent candidates for future biotechnological applications and innovations. KEY POINTS: • Novel Antarctic rare Actinomycetota strains were isolated from soil and sediments • Genome-based taxonomic affiliation revealed seven potentially novel species • Genome mining showed metabolic potential for novel natural products.


Asunto(s)
Sedimentos Geológicos , Familia de Multigenes , Filogenia , Microbiología del Suelo , Regiones Antárticas , Sedimentos Geológicos/microbiología , Metabolismo Secundario/genética , Actinobacteria/genética , Actinobacteria/metabolismo , Actinobacteria/clasificación , Genoma Bacteriano , Biotecnología/métodos , Vías Biosintéticas/genética , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo
2.
PeerJ ; 12: e17381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726379

RESUMEN

Background: Escherichia coli is an important intestinal flora, of which pathogenic E. coli is capable of causing many enteric and extra-intestinal diseases. Antibiotics are essential for the treatment of bacterial infections caused by pathogenic E. coli; however, with the widespread use of antibiotics, drug resistance in E. coli has become particularly serious, posing a global threat to human, animal, and environmental health. While the drug resistance and pathogenicity of E. coli carried by tigers and leopards in captivity have been studied intensively in recent years, there is an extreme lack of information on E. coli in these top predators in the wild environment. Methods: Whole genome sequencing data of 32 E. coli strains collected from the feces of wild Amur tiger (Panthera tigris altaica, n = 24) and North China leopard (Panthera pardus japonensis, n = 8) were analyzed in this article. The multi-locus sequence types, serotypes, virulence and resistance genotypes, plasmid replicon types, and core genomic SNPs phylogeny of these isolates were studied. Additionally, antimicrobial susceptibility testing (AST) was performed on these E. coli isolates. Results: Among the E. coli isolates studied, 18 different sequence types were identified, with ST939 (21.9%), ST10 (15.6%), and ST3246 (9.4%) being the most prevalent. A total of 111 virulence genes were detected, averaging about 54 virulence genes per sample. They contribute to invasion, adherence, immune evasion, efflux pump, toxin, motility, stress adaption, and other virulence-related functions of E. coli. Sixty-eight AMR genes and point mutations were identified. Among the detected resistance genes, those belonging to the efflux pump family were the most abundant. Thirty-two E. coli isolates showed the highest rate of resistance to tetracycline (14/32; 43.8%), followed by imipenem (4/32; 12.5%), ciprofloxacin (3/32; 9.4%), doxycycline (2/32; 6.3%), and norfloxacin (1/32; 3.1%). Conclusions: Our results suggest that E. coli isolates carried by wild Amur tigers and North China leopards have potential pathogenicity and drug resistance.


Asunto(s)
Escherichia coli , Heces , Panthera , Tigres , Secuenciación Completa del Genoma , Animales , Tigres/microbiología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Escherichia coli/aislamiento & purificación , Panthera/microbiología , Heces/microbiología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Filogenia , Antibacterianos/farmacología , Genoma Bacteriano/genética , Pruebas de Sensibilidad Microbiana , China , Virulencia/genética , Farmacorresistencia Bacteriana/genética , Polimorfismo de Nucleótido Simple/genética , Tipificación de Secuencias Multilocus
3.
BMC Microbiol ; 24(1): 159, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724926

RESUMEN

The Hyphomicrobiales bacterial order (previously Rhizobiales) exhibits a wide range of lifestyle characteristics, including free-living, plant-association, nitrogen-fixing, and association with animals (Bartonella and Brucella). This study explores the diversity and evolutionary strategies of bacteriophages within the Hyphomicrobiales order, comparing animal-associated (AAB) with non-animal-associated bacteria (NAAB). We curated 560 high-quality complete genomes of 58 genera from this order and used the PHASTER server for prophage annotation and classification. For 19 genera with representative genomes, we curated 96 genomes and used the Defense-Finder server to summarize the type of anti-phage systems (APS) found in this order. We analyzed the genetic repertoire and length distributions of prophages, estimating evolutionary rates and comparing intact, questionable, and incomplete prophages in both groups. Analyses of best-fit parameters and bootstrap sensitivity were used to understand the evolutionary processes driving prophage gene content. A total of 1860 prophages distributed in Hyphomicrobiales were found, 695 in AAB and 1165 in the NAAB genera. The results revealed a similar number of prophages per genome in AAB and NAAB and a similar length distribution, suggesting shared mechanisms of genetic acquisition of prophage genes. Changes in the frequency of specific gene classes were observed between incomplete and intact prophages, indicating preferential loss or enrichment in both groups. The analysis of best-fit parameters and bootstrap sensitivity tests indicated a higher selection coefficient, induction rate, and turnover in NAAB genomes. We found 68 types of APS in Hyphomicrobiales; restriction modification (RM) and abortive infection (Abi) were the most frequent APS found for all Hyphomicrobiales, and within the AAB group. This classification of APS showed that NAAB genomes have a greater diversity of defense systems compared to AAB, which could be related to the higher rates of prophage induction and turnover in the latter group. Our study provides insights into the distributions of both prophages and APS in Hyphomicrobiales genomes, demonstrating that NAAB carry more defense systems against phages, while AAB show increased prophage stability and an increased number of incomplete prophages. These results suggest a greater role for domesticated prophages within animal-associated bacteria in Hyphomicrobiales.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Profagos , Profagos/genética , Animales , Genoma Bacteriano/genética , Filogenia , Genoma Viral/genética , Bacterias/virología , Bacterias/genética , Bacterias/clasificación , Variación Genética
4.
Curr Microbiol ; 81(7): 168, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733376

RESUMEN

In 2018, Nouioui et al. proposed that Bifidobacterium coryneforme was a later synonym of Bifidobacterium indicum on the basis of the digital DNA-DNA hybridization (dDDH) value (85.0%) between B. coryneforme LMG 18911T and B. indicum LMG 11587T. However, in the study of Scardovi et al. (1970), the type strains of B. indicum and B. coryneforme only exhibited 60% DNA-DNA hybridization value. In the present study, the genomes of B. coryneforme CGMCC 1.2279T, B. coryneforme JCM 5819T, B. indicum JCM 1302T, B. indicum CGMCC 1.2275T, B. indicum DSM 20214T, B. indicum LMG 27437T, B. indicum ATCC 25912T, B. indicum KCTC 3230T, B. indicum CCUG 34985T, were sequenced, and the taxonomic relationship between B. coryneforme and B. indicum was re-evaluated. On the basis of the results presented here, (i) ATCC 25912 and DSM 20214 deposited by Vittorio Scardovi are two different strains; (ii) the type strain of B. indicum is ATCC 25912T (= JCM 1302T = LMG 27437T = CGMCC 1.2275T = KCTC 3230T), and not DSM 20214 (= BCRC 14674 = CCUG 34985 = LMG 11587); (iii) B. coryneforme and B. indicum represent two different species of the genus Bifidobacterium; (iv) strain DSM 20214 (= BCRC 14674 = CCUG 34985 = LMG 11587) belongs to B. coryneforme.


Asunto(s)
Bifidobacterium , ADN Bacteriano , Genoma Bacteriano , Filogenia , Bifidobacterium/genética , Bifidobacterium/clasificación , Bifidobacterium/aislamiento & purificación , ADN Bacteriano/genética , Hibridación de Ácido Nucleico , Técnicas de Tipificación Bacteriana , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
5.
Arch Microbiol ; 206(6): 252, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727820

RESUMEN

A microaerophilic Gram-stain-negative bacilliform bacterial strain, FB-5 T, was isolated from activated sludge in Yokohama, Japan, that exhibited filamentous growth and formed a microtube (sheath). Cells were motile using a single polar flagellum. The optimum growth temperature and pH were 30 °C and 7.5, respectively. Strain FB-5 T was catalase-negative. Peptides and amino acids were utilized as energy and carbon sources. Sugars and organic acids were not utilized. Vitamin B12 enhanced the growth of strain FB-5 T. Sulfur-dependent lithotrophic growth was possible. Major respiratory quinone was UQ-8. Major fatty acids were C16:1ω7 and C16:0. The genomic DNA G + C content was 69.16%. Phylogenetic analysis of the 16S rRNA gene suggested that strain FB-5 T belongs to the genus Sphaerotilus. The close relatives were S. natans subsup. sulfidivorans and S. natans subsup. natans with 98.0% and 97.8% similarity based on the 16S rRNA gene analysis, respectively. The genome size (6.06 Mbp) was larger than that (4.39-5.07 Mbp) of the Sphaerotilus strains. The AAI values against the related strains ranged from 71.0 to 72.5%. The range of ANI values was 81.7 - 82.5%. In addition to these distinguishable features of the genome, the core genome and dDDH analyses suggested that this strain is a novel member of the genus Sphaerotilus. Based on its physiological properties and genomic features, strain FB-5 T is considered as a novel species of the genus Sphaerotilus, for which the name S. microaerophilus sp. nov. is proposed. The type strain is FB-5 T (= JCM 35424 T = KACC 23146 T).


Asunto(s)
Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Japón , Genoma Bacteriano
6.
Nat Commun ; 15(1): 3916, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729927

RESUMEN

The UK observed a marked increase in scarlet fever and invasive group A streptococcal infection in 2022 with severe outcomes in children and similar trends worldwide. Here we report lineage M1UK to be the dominant source of invasive infections in this upsurge. Compared with ancestral M1global strains, invasive M1UK strains exhibit reduced genomic diversity and fewer mutations in two-component regulator genes covRS. The emergence of M1UK is dated to 2008. Following a bottleneck coinciding with the COVID-19 pandemic, three emergent M1UK clades underwent rapid nationwide expansion, despite lack of detection in previous years. All M1UK isolates thus-far sequenced globally have a phylogenetic origin in the UK, with dispersal of the new clades in Europe. While waning immunity may promote streptococcal epidemics, the genetic features of M1UK point to a fitness advantage in pathogenicity, and a striking ability to persist through population bottlenecks.


Asunto(s)
COVID-19 , Filogenia , Infecciones Estreptocócicas , Streptococcus pyogenes , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad , Streptococcus pyogenes/aislamiento & purificación , Reino Unido/epidemiología , Humanos , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/microbiología , COVID-19/epidemiología , Pandemias , Escarlatina/epidemiología , Escarlatina/microbiología , Mutación , Proteínas Represoras/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Genoma Bacteriano , Europa (Continente)/epidemiología , Proteínas Bacterianas
7.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731830

RESUMEN

Brevibacillus sp. JNUCC 41, characterized as a plant-growth-promoting rhizobacterium (PGPR), actively participates in lipid metabolism and biocontrol based on gene analysis. This study aimed to investigate the crucial secondary metabolites in biological metabolism; fermentation, extraction, and isolation were performed, revealing that methyl indole-3-acetate showed the best hyaluronidase (HAase) inhibitory activity (IC50: 343.9 µM). Molecular docking results further revealed that the compound forms hydrogen bonds with the residues Tyr-75 and Tyr-247 of HAase (binding energy: -6.4 kcal/mol). Molecular dynamics (MD) simulations demonstrated that the compound predominantly binds to HAase via hydrogen bonding (MM-PBSA binding energy: -24.9 kcal/mol) and exhibits good stability. The residues Tyr-247 and Tyr-202, pivotal for binding in docking, were also confirmed via MD simulations. This study suggests that methyl indole-3-acetate holds potential applications in anti-inflammatory and anti-aging treatments.


Asunto(s)
Brevibacillus , Hialuronoglucosaminidasa , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Hialuronoglucosaminidasa/antagonistas & inhibidores , Hialuronoglucosaminidasa/metabolismo , Brevibacillus/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Enlace de Hidrógeno , Genoma Bacteriano
8.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731857

RESUMEN

Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae.


Asunto(s)
Erysipelothrix , Gansos , Profagos , Animales , Gansos/microbiología , Polonia , Erysipelothrix/genética , Profagos/genética , Antibacterianos/farmacología , Infecciones por Erysipelothrix/microbiología , Infecciones por Erysipelothrix/genética , Enfermedades de las Aves de Corral/microbiología , Secuenciación Completa del Genoma , Genoma Bacteriano , Elementos Transponibles de ADN/genética , Farmacorresistencia Bacteriana/genética , Conjugación Genética , Plásmidos/genética
9.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732070

RESUMEN

Wolbachia, a group of Gram-negative symbiotic bacteria, infects nematodes and a wide range of arthropods. Diaphorina citri Kuwayama, the vector of Candidatus Liberibacter asiaticus (CLas) that causes citrus greening disease, is naturally infected with Wolbachia (wDi). However, the interaction between wDi and D. citri remains poorly understood. In this study, we performed a pan-genome analysis using 65 wDi genomes to gain a comprehensive understanding of wDi. Based on average nucleotide identity (ANI) analysis, we classified the wDi strains into Asia and North America strains. The ANI analysis, principal coordinates analysis (PCoA), and phylogenetic tree analysis supported that the D. citri in Florida did not originate from China. Furthermore, we found that a significant number of core genes were associated with metabolic pathways. Pathways such as thiamine metabolism, type I secretion system, biotin transport, and phospholipid transport were highly conserved across all analyzed wDi genomes. The variation analysis between Asia and North America wDi showed that there were 39,625 single-nucleotide polymorphisms (SNPs), 2153 indels, 10 inversions, 29 translocations, 65 duplications, 10 SV-based insertions, and 4 SV-based deletions. The SV-based insertions and deletions involved genes encoding transposase, phage tail tube protein, ankyrin repeat (ANK) protein, and group II intron-encoded protein. Pan-genome analysis of wDi contributes to our understanding of the geographical population of wDi, the origin of hosts of D. citri, and the interaction between wDi and its host, thus facilitating the development of strategies to control the insects and huanglongbing (HLB).


Asunto(s)
Genoma Bacteriano , Filogenia , Simbiosis , Wolbachia , Wolbachia/genética , Wolbachia/clasificación , Simbiosis/genética , Animales , Asia , América del Norte , Hemípteros/microbiología , Hemípteros/genética , Dípteros/microbiología , Dípteros/genética , Polimorfismo de Nucleótido Simple
10.
BMC Genomics ; 25(1): 478, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745294

RESUMEN

BACKGROUND: Tuberculosis (TB) represents a major global health challenge. Drug resistance in Mycobacterium tuberculosis (MTB) poses a substantial obstacle to effective TB treatment. Identifying genomic mutations in MTB isolates holds promise for unraveling the underlying mechanisms of drug resistance in this bacterium. METHODS: In this study, we investigated the roles of single nucleotide variants (SNVs) in MTB isolates resistant to four antibiotics (moxifloxacin, ofloxacin, amikacin, and capreomycin) through whole-genome analysis. We identified the drug-resistance-associated SNVs by comparing the genomes of MTB isolates with reference genomes using the MuMmer4 tool. RESULTS: We observed a strikingly high proportion (94.2%) of MTB isolates resistant to ofloxacin, underscoring the current prevalence of drug resistance in MTB. An average of 3529 SNVs were detected in a single ofloxacin-resistant isolate, indicating a mutation rate of approximately 0.08% under the selective pressure of ofloxacin exposure. We identified a set of 60 SNVs associated with extensively drug-resistant tuberculosis (XDR-TB), among which 42 SNVs were non-synonymous mutations located in the coding regions of nine key genes (ctpI, desA3, mce1R, moeB1, ndhA, PE_PGRS4, PPE18, rpsA, secF). Protein structure modeling revealed that SNVs of three genes (PE_PGRS4, desA3, secF) are close to the critical catalytic active sites in the three-dimensional structure of the coding proteins. CONCLUSION: This comprehensive study elucidates novel resistance mechanisms in MTB against antibiotics, paving the way for future design and development of anti-tuberculosis drugs.


Asunto(s)
Mycobacterium tuberculosis , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Genoma Bacteriano , Humanos , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Mutación , Antituberculosos/farmacología , Proteínas Bacterianas/genética
11.
Front Cell Infect Microbiol ; 14: 1377993, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711928

RESUMEN

Introduction: Detailed assessment of the population structure of group B Streptococcus (GBS) among adults is still lacking in Saudi Arabia. Here we characterized a representative collection of isolates from colonized and infected adults. Methods: GBS isolates (n=89) were sequenced by Illumina and screened for virulence and antimicrobial resistance determinants. Genetic diversity was assessed by single nucleotide polymorphisms and core-genome MLST analyses. Results: Genome sequences revealed 28 sequence types (STs) and nine distinct serotypes, including uncommon serotypes VII and VIII. Majority of these STs (n=76) belonged to the human-associated clonal complexes (CCs) CC1 (33.71%), CC19 (25.84%), CC17 (11.24%), CC10/CC12 (7.87%), and CC452 (6.74%). Major CCs exhibited intra-lineage serotype diversity, except for the hypervirulent CC17, which exclusively expressed serotype III. Virulence profiling revealed that nearly all isolates (94.38%) carried at least one of the four alpha family protein genes (i.e., alphaC, alp1, alp2/3, and rib), and 92.13% expressed one of the two serine-rich repeat surface proteins Srr1 or Srr2. In addition, most isolates harbored the pilus island (PI)-2a alone (15.73%) or in combination with PI-1 (62.92%), and those carrying PI-2b alone (10.11%) belonged to CC17. Phylogenetic analysis grouped the sequenced isolates according to CCs and further subdivided them along with their serotypes. Overall, isolates across all CC1 phylogenetic clusters expressed Srr1 and carried the PI-1 and PI-2a loci, but differed in genes encoding the alpha-like proteins. CC19 clusters were dominated by the III/rib/srr1/PI-1+PI-2a (43.48%, 10/23) and V/alp1/srr1/PI-1+PI-2a (34.78%, 8/23) lineages, whereas most CC17 isolates (90%, 9/10) had the same III/rib/srr2/P1-2b genetic background. Interestingly, genes encoding the CC17-specific adhesins HvgA and Srr2 were detected in phylogenetically distant isolates belonging to ST1212, suggesting that other highly virulent strains might be circulating within the species. Resistance to macrolides and/or lincosamides across all major CCs (n=48) was associated with the acquisition of erm(B) (62.5%, 30/48), erm(A) (27.1%, 13/48), lsa(C) (8.3%, 4/48), and mef(A) (2.1%, 1/48) genes, whereas resistance to tetracycline was mainly mediated by presence of tet(M) (64.18%, 43/67) and tet(O) (20.9%, 14/67) alone or in combination (13.43%, 9/67). Discussion: These findings underscore the necessity for more rigorous characterization of GBS isolates causing infections.


Asunto(s)
Farmacorresistencia Bacteriana , Variación Genética , Genoma Bacteriano , Tipificación de Secuencias Multilocus , Serogrupo , Infecciones Estreptocócicas , Streptococcus agalactiae , Factores de Virulencia , Humanos , Arabia Saudita , Streptococcus agalactiae/genética , Streptococcus agalactiae/efectos de los fármacos , Streptococcus agalactiae/clasificación , Streptococcus agalactiae/patogenicidad , Streptococcus agalactiae/aislamiento & purificación , Infecciones Estreptocócicas/microbiología , Virulencia/genética , Farmacorresistencia Bacteriana/genética , Factores de Virulencia/genética , Polimorfismo de Nucleótido Simple , Antibacterianos/farmacología , Adulto , Filogenia , Secuenciación Completa del Genoma , Genómica , Genotipo , Pruebas de Sensibilidad Microbiana , Femenino
12.
Epidemiol Mikrobiol Imunol ; 73(1): 30-36, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38697838

RESUMEN

Streptococcus pneumoniae (pneumococcus) is a Gram-positive coccus causing both non-invasive and invasive infectious diseases. Pneumococcal diseases are vaccine preventable. Invasive pneumococcal diseases (IPD) meeting the international case definition are reported nationally and internationally and are subject to surveillance programmes in many countries, including the Czech Republic. An important part of IPD surveillance is the monitoring of causative serotypes and their frequency over time and in relation to ongoing vaccination programmes. In the world and in the Czech Republic, whole genome sequencing (WGS) is increasingly used for pneumococci, which allows for serotyping from sequencing data, precise analysis of their genetic relationships, and the study of genes present in their genome. Whole-genome sequencing enables the generation of reliable and internationally comparable data that can be easily shared. Sequencing data are analysed using bioinformatics tools that require knowledge in the field of natural sciences with an emphasis on genetics and expertise in bioinformatics. This publication presents some options for pneumococcal analysis, i.e., serotyping, multilocus sequence typing (MLST), ribosomal MLST (rMLST), core genome MLST (cgMLST), whole genome MLST (wgMLST), single nucleotide polymorphism (SNP) analysis, assignment to Global Pneumococcal Sequence Cluster (GPSC), and identification of virulence genes and antibiotic resistance genes. The WGS strategies and applications for Europe and WGS implementation in practice are presented. WGS analysis of pneumococci allows for improved IPD surveillance, thanks to molecular serotyping, more detailed typing, generation of internationally comparable data, and improved evaluation of the effectiveness of vaccination programmes.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Secuenciación Completa del Genoma , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/aislamiento & purificación , Streptococcus pneumoniae/clasificación , Humanos , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/prevención & control , República Checa , Genoma Bacteriano , Tipificación de Secuencias Multilocus , Serotipificación
13.
Gut Microbes ; 16(1): 2347725, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722028

RESUMEN

The gut commensal bacteria Christensenellaceae species are negatively associated with many metabolic diseases, and have been seen as promising next-generation probiotics. However, the cultured Christensenellaceae strain resources were limited, and their beneficial mechanisms for improving metabolic diseases have yet to be explored. In this study, we developed a method that enabled the enrichment and cultivation of Christensenellaceae strains from fecal samples. Using this method, a collection of Christensenellaceae Gut Microbial Biobank (ChrisGMB) was established, composed of 87 strains and genomes that represent 14 species of 8 genera. Seven species were first described and the cultured Christensenellaceae resources have been significantly expanded at species and strain levels. Christensenella strains exerted different abilities in utilization of various complex polysaccharides and other carbon sources, exhibited host-adaptation capabilities such as acid tolerance and bile tolerance, produced a wide range of volatile probiotic metabolites and secondary bile acids. Cohort analyses demonstrated that Christensenellaceae and Christensenella were prevalent in various cohorts and the abundances were significantly reduced in T2D and OB cohorts. At species level, Christensenellaceae showed different changes among healthy and disease cohorts. C. faecalis, F. tenuis, L. tenuis, and Guo. tenuis significantly reduced in all the metabolic disease cohorts. The relative abundances of C. minuta, C. hongkongensis and C. massiliensis showed no significant change in NAFLD and ACVD. and C. tenuis and C. acetigenes showed no significant change in ACVD, and Q. tenuis and Geh. tenuis showed no significant change in NAFLD, when compared with the HC cohort. So far as we know, this is the largest collection of cultured resource and first exploration of Christensenellaceae prevalences and abundances at species level.


Asunto(s)
Heces , Microbioma Gastrointestinal , Humanos , Heces/microbiología , Clostridiales/genética , Clostridiales/metabolismo , Clostridiales/aislamiento & purificación , Clostridiales/clasificación , Probióticos/metabolismo , Metabolómica , Genómica , Masculino , Filogenia , Femenino , Genoma Bacteriano
14.
Elife ; 132024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696239

RESUMEN

The reconstruction of complete microbial metabolic pathways using 'omics data from environmental samples remains challenging. Computational pipelines for pathway reconstruction that utilize machine learning methods to predict the presence or absence of KEGG modules in incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that incorporates machine learning models to predict the presence of complete KEGG modules within bacterial genomic datasets. Using gene annotation data and information from the KEGG module database, MetaPathPredict employs deep learning models to predict the presence of KEGG modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, and both options are designed to be run locally or on a compute cluster. Benchmarks show that MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete genomes.


Asunto(s)
Genoma Bacteriano , Redes y Vías Metabólicas , Programas Informáticos , Redes y Vías Metabólicas/genética , Biología Computacional/métodos , Aprendizaje Automático , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación
15.
PLoS One ; 19(5): e0301172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696408

RESUMEN

Horizontal gene transfer (HGT) is a powerful evolutionary force that considerably shapes the structure of prokaryotic genomes and is associated with genomic islands (GIs). A GI is a DNA segment composed of transferred genes that can be found within a prokaryotic genome, obtained through HGT. Much research has focused on detecting GIs in genomes, but here we pursue a new course, which is identifying possible preferred locations of GIs in the prokaryotic genome. Here, we identify the locations of the GIs within prokaryotic genomes to examine patterns in those locations. Prokaryotic GIs were analyzed according to the genome structure that they are located in, whether it be a circular or a linear genome. The analytical investigations employed are: (1) studying the GI locations in relation to the origin of replication (oriC); (2) exploring the distances between GIs; and (3) determining the distribution of GIs across the genomes. For each of the investigations, the analysis was performed on all of the GIs in the data set. Moreover, to void bias caused by the distribution of the genomes represented, the GIs in one genome from each species and the GIs of the most frequent species are also analyzed. Overall, the results showed that there are preferred sites for the GIs in the genome. In the linear genomes, these sites are usually located in the oriC region and terminus region, while in the circular genomes, they are located solely in the terminus region. These results also showed that the distance distribution between the GIs is almost exponential, which proves that GIs have preferred sites within genomes. The oriC and termniuns are preferred sites for the GIs and a possible natural explanation for this could be connected to the content of the oriC region. Moreover, the content of the GIs in terms of its protein families was studied and the results demonstrated that the majority of frequent protein families are close to identical in each section.


Asunto(s)
Transferencia de Gen Horizontal , Islas Genómicas , Genoma Bacteriano , Genoma Arqueal , Origen de Réplica/genética , Células Procariotas/metabolismo
16.
BMC Genomics ; 25(1): 461, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734623

RESUMEN

BACKGROUND: Pseudomonas syringae pv. actinidiae (Psa) is an important bacterial plant pathogen that causes severe damage to the kiwifruit industry worldwide. Three Psa strains were recently obtained from different kiwifruit orchards in Anhui Province, China. The present study mainly focused on the variations in virulence and genome characteristics of these strains based on the pathogenicity assays and comparative genomic analyses. RESULTS: Three strains were identified as biovar 3 (Psa3), along with strain QSY6 showing higher virulence than JZY2 and YXH1 in pathogenicity assays. The whole genome assembly revealed that each of the three strains had a circular chromosome and a complete plasmid. The chromosome sizes ranged from 6.5 to 6.6 Mb with a GC content of approximately 58.39 to 58.46%, and a predicted number of protein-coding sequences ranging from 5,884 to 6,019. The three strains clustered tightly with 8 Psa3 reference strains in terms of average nucleotide identity (ANI), whole-genome-based phylogenetic analysis, and pangenome analysis, while they were evolutionarily distinct from other biovars (Psa1 and Psa5). Variations were observed in the repertoire of effectors of the type III secretion system among all 15 strains. Moreover, synteny analysis of the three sequenced strains revealed eight genomic regions containing 308 genes exclusively present in the highly virulent strain QSY6. Further investigation of these genes showed that 16 virulence-related genes highlight several key factors, such as effector delivery systems (type III secretion systems) and adherence (type IV pilus), which might be crucial for the virulence of QSY6. CONCLUSION: Three Psa strains were identified and showed variant virulence in kiwifruit plant. Complete genome sequences and comparative genomic analyses further provided a theoretical basis for the potential pathogenic factors responsible for kiwifruit bacterial canker.


Asunto(s)
Actinidia , Genoma Bacteriano , Genómica , Filogenia , Enfermedades de las Plantas , Pseudomonas syringae , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , China , Actinidia/microbiología , Virulencia/genética , Enfermedades de las Plantas/microbiología
17.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38747283

RESUMEN

The analysis and comparison of gene neighborhoods is a powerful approach for exploring microbial genome structure, function, and evolution. Although numerous tools exist for genome visualization and comparison, genome exploration across large genomic databases or user-generated datasets remains a challenge. Here, we introduce AnnoView, a web server designed for interactive exploration of gene neighborhoods across the bacterial and archaeal tree of life. Our server offers users the ability to identify, compare, and visualize gene neighborhoods of interest from 30 238 bacterial genomes and 1672 archaeal genomes, through integration with the comprehensive Genome Taxonomy Database and AnnoTree databases. Identified gene neighborhoods can be visualized using pre-computed functional annotations from different sources such as KEGG, Pfam and TIGRFAM, or clustered based on similarity. Alternatively, users can upload and explore their own custom genomic datasets in GBK, GFF or CSV format, or use AnnoView as a genome browser for relatively small genomes (e.g. viruses and plasmids). Ultimately, we anticipate that AnnoView will catalyze biological discovery by enabling user-friendly search, comparison, and visualization of genomic data. AnnoView is available at http://annoview.uwaterloo.ca.


Asunto(s)
Programas Informáticos , Bases de Datos Genéticas , Genoma Bacteriano , Genoma Arqueal , Genómica/métodos , Archaea/genética , Genes Microbianos/genética , Biología Computacional/métodos , Bacterias/genética , Bacterias/clasificación
18.
Microb Genom ; 10(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743050

RESUMEN

Natural products from Actinomycetota have served as inspiration for many clinically relevant therapeutics. Despite early triumphs in natural product discovery, the rate of unearthing new compounds has decreased, necessitating inventive approaches. One promising strategy is to explore environments where survival is challenging. These harsh environments are hypothesized to lead to bacteria developing chemical adaptations (e.g. natural products) to enable their survival. This investigation focuses on ore-forming environments, particularly fluoride mines, which typically have extreme pH, salinity and nutrient scarcity. Herein, we have utilized metagenomics, metabolomics and evolutionary genome mining to dissect the biodiversity and metabolism in these harsh environments. This work has unveiled the promising biosynthetic potential of these bacteria and has demonstrated their ability to produce bioactive secondary metabolites. This research constitutes a pioneering endeavour in bioprospection within fluoride mining regions, providing insights into uncharted microbial ecosystems and their previously unexplored natural products.


Asunto(s)
Actinobacteria , Actinobacteria/genética , Actinobacteria/metabolismo , Metagenómica , Fluoruros/metabolismo , Productos Biológicos/metabolismo , Bioprospección , Metabolómica , Biodiversidad , Genoma Bacteriano , Filogenia , Concentración de Iones de Hidrógeno , Salinidad
19.
Curr Genet ; 70(1): 7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743270

RESUMEN

Fermented eggplant is a traditional fermented food, however lactic acid bacteria capable of producing exopolysaccharide (EPS) have not yet been exploited. The present study focused on the production and protective effects against oxidative stress of an EPS produced by Lacticaseibacillus paracasei NC4 (NC4-EPS), in addition to deciphering its genomic features and EPS biosynthesis pathway. Among 54 isolates tested, strain NC4 showed the highest EPS yield and antioxidant activity. The maximum EPS production (2.04 ± 0.11 g/L) was achieved by culturing in MRS medium containing 60 g/L sucrose at 37 °C for 48 h. Under 2 mM H2O2 stress, the survival of a yeast model Saccharomyces cerevisiae treated with 0.4 mg/mL NC4-EPS was 2.4-fold better than non-treated cells, which was in agreement with the catalase and superoxide dismutase activities measured from cell lysates. The complete genome of NC4 composed of a circular chromosome of 2,888,896 bp and 3 circular plasmids. The NC4 genome comprises more genes with annotated function in nitrogen metabolism, phosphorus metabolism, cell division and cell cycle, and iron acquisition and metabolism as compared to other reported L. paracasei. Of note, the eps gene cluster is not conserved across L. paracasei. Pathways of sugar metabolism for EPS biosynthesis were proposed for the first time, in which gdp pathway only present in few plant-derived bacteria was identified. These findings shed new light on the cell-protective activity and biosynthesis of EPS produced by L. paracasei, paving the way for future efforts to enhance yield and tailor-made EPS production for food and pharmaceutical industries.


Asunto(s)
Fermentación , Lacticaseibacillus paracasei , Estrés Oxidativo , Polisacáridos Bacterianos , Solanum melongena , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Solanum melongena/microbiología , Solanum melongena/genética , Solanum melongena/metabolismo , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus paracasei/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Genoma Bacteriano , Alimentos Fermentados/microbiología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética
20.
Proc Natl Acad Sci U S A ; 121(21): e2320170121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743630

RESUMEN

Pangenomes vary across bacteria. Some species have fluid pangenomes, with a high proportion of genes varying between individual genomes. Other species have less fluid pangenomes, with different genomes tending to contain the same genes. Two main hypotheses have been suggested to explain this variation: differences in species' bacterial lifestyle and effective population size. However, previous studies have not been able to test between these hypotheses because the different features of lifestyle and effective population size are highly correlated with each other, and phylogenetically conserved, making it hard to disentangle their relative importance. We used phylogeny-based analyses, across 126 bacterial species, to tease apart the causal role of different factors. We found that pangenome fluidity was lower in i) host-associated compared with free-living species and ii) host-associated species that are obligately dependent on a host, live inside cells, and are more pathogenic and less motile. In contrast, we found no support for the competing hypothesis that larger effective population sizes lead to more fluid pangenomes. Effective population size appears to correlate with pangenome variation because it is also driven by bacterial lifestyle, rather than because of a causal relationship.


Asunto(s)
Bacterias , Genoma Bacteriano , Filogenia , Bacterias/genética , Bacterias/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...