Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 772
Filtrar
1.
Epigenetics ; 19(1): 2348840, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38716769

RESUMEN

To explore the role of lncRNA m6A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m6A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m6A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m6A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m6A peaks, with statistically significant differences (| Fold Change (FC) |≥2, p < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- ß signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m6A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m6A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m6A methylation.


Asunto(s)
Adenosina , Síndrome de Exfoliación , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Femenino , Síndrome de Exfoliación/genética , Síndrome de Exfoliación/metabolismo , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Anciano , Humor Acuoso/metabolismo , Redes Reguladoras de Genes , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metilación de ADN , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo
2.
Sci Rep ; 14(1): 10258, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704467

RESUMEN

In order to identify how differential gene expression in the trabecular meshwork (TM) contributes to racial disparities of caveolar protein expression, TM dysfunction and development of primary open angle glaucoma (POAG), RNA sequencing was performed to compare TM tissue obtained from White and Black POAG surgical (trabeculectomy) specimens. Healthy donor TM tissue from White and Black donors was analyzed by PCR, qPCR, immunohistochemistry staining, and Western blot to evaluate SDPR (serum deprivation protein response; Cavin 2) and CAV1/CAV2 (Caveolin 1/Caveolin 2). Standard transmission electron microscopy (TEM) and immunogold labeled studies were performed. RNA sequencing demonstrated reduced SDPR expression in TM from Black vs White POAG patients' surgical specimens, with no significant expression differences in other caveolae-associated genes, confirmed by qPCR analysis. No racial differences in SDPR gene expression were noted in healthy donor tissue by PCR analysis, but there was greater expression as compared to specimens from patients with glaucoma. Analysis of SDPR protein expression confirmed specific expression in the TM regions, but not in adjacent tissues. TEM studies of TM specimens from healthy donors did not demonstrate any racial differences in caveolar morphology, but a significant reduction of caveolae with normal morphology and immuno-gold staining of SDPR were noted in glaucomatous TM as compared to TM from healthy donors. Linkage of SDPR expression levels in TM, POAG development, and caveolar ultrastructural morphology may provide the basis for a novel pathway of exploration of the pathologic mechanisms of glaucoma. Differential gene expression of SDPR in TM from Black vs White subjects with glaucoma may further our understanding of the important public health implications of the racial disparities of this blinding disease.


Asunto(s)
Caveolina 1 , Glaucoma de Ángulo Abierto , Malla Trabecular , Humanos , Malla Trabecular/metabolismo , Malla Trabecular/patología , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/patología , Glaucoma de Ángulo Abierto/etnología , Femenino , Masculino , Persona de Mediana Edad , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 2/genética , Caveolina 2/metabolismo , Anciano , Población Blanca/genética , Negro o Afroamericano/genética
3.
Exp Eye Res ; 241: 109855, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453040

RESUMEN

Transgenic C57BL/6 mice expressing human myocilinY437 (Tg-MYOCY437H) are a well-established model for primary open-angle glaucoma (POAG). While the reduced trabecular meshwork (TM) cellularity due to severe endoplasmic reticulum (ER) stress has been characterized as the etiology of this model, there is a limited understanding of how glaucomatous phenotypes evolve over the lifespan of Tg-MyocY437H mice. In this study, we compiled the model's intraocular pressure (IOP) data recorded in our laboratory from 2017 to 2023 and selected representative eyes to measure the outflow facility (Cr), a critical parameter indicating the condition of the conventional TM pathway. We found that Tg-MYOCY437H mice aged 4-12 months exhibited significantly higher IOPs than age-matched C57BL/6 mice. Notably, a decline in IOP was observed in Tg-MYOCY437H mice at 17-24 months of age, a phenomenon not attributable to the gene dosage of mutant myocilin. Measurements of the Cr of Tg-MYOCY437H mice indicated that the age-related IOP reduction was not a result of ongoing TM damage. Instead, Hematoxylin and Eosin staining, immunohistochemistry analysis, and transmission electron microscopic examination revealed that this reduction might be induced by degenerations of the non-pigmented epithelium in the ciliary body of aged Tg-MYOCY437H mice. Overall, our findings provide a comprehensive profile of mutant myocilin-induced ocular changes over the Tg-MYOCY437H mouse lifespan and suggest a specific temporal window of elevated IOP that may be ideal for experimental purposes.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Animales , Humanos , Ratones , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Glaucoma/metabolismo , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo , Presión Intraocular , Longevidad , Ratones Endogámicos C57BL , Malla Trabecular/metabolismo
4.
J Ocul Pharmacol Ther ; 40(3): 189-196, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38502813

RESUMEN

Purpose: The objective of the present study was to evaluate the effects of low concentrations of benzalkonium chloride (BAC) (10-7%, 10-6%, or 10-5%) on healthy and glaucomatous human trabecular meshwork (HTM) cells. For this purpose, we used in vitro models replicating a healthy HTM and HTM with primary open-angle glaucoma (POAG) or steroid-induced glaucoma (SG) using two-dimensional (2D) cultures of HTM cells not treated or treated with a 5 ng/mL solution of transforming growth factor-ß2 or 250 nM dexamethasone (DEX). Methods: Analyses were carried out for (1) the intercellular affinity function of 2D HTM monolayers, as determined by transepithelial electrical resistance (TEER) measurements; (2) cell viability; (3) cellular metabolism by using a Seahorse bioanalyzer; and (4) expression of extracellular matrix (ECM) molecules, an ECM modulator, and cell junction-related molecules. Results: In the absence and presence of BAC (10-7% or 10-5%), intercellular affinity function determined by TEER and cellular metabolic activities were significantly and dose dependently affected in both healthy and glaucomatous HTM cells despite the fact that there was no significant decrease in cell viabilities. However, the effects based on TEER values were significantly greater in the healthy HTM. The mRNA expression of several molecules that were tested was not substantially modulated by these concentrations of BAC. Conclusions: The findings reported herein suggest that low concentrations of BAC may have unfavorable adverse effects on cellular metabolic capacity by inducing increases in the intercellular affinity properties of the HTM, but those effects of BAC were different in healthy and glaucomatous HTM cells.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Malla Trabecular/metabolismo , Compuestos de Benzalconio/farmacología , Compuestos de Benzalconio/uso terapéutico , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Glaucoma de Ángulo Abierto/metabolismo , Células Cultivadas , Glaucoma/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Dexametasona/farmacología , Dexametasona/uso terapéutico , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/farmacología , Factores de Crecimiento Transformadores/uso terapéutico
5.
Exp Eye Res ; 241: 109859, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467175

RESUMEN

It is known that the actin cytoskeleton and its associated cellular interactions in the trabecular meshwork (TM) and juxtacanalicular tissues mainly contribute to the formation of resistance to aqueous outflow of the eye. Fibulin-3, encoded by EFEMP1 gene, has a role in extracellular matrix (ECM) modulation, and interacts with enzymatic ECM regulators, but the effects of fibulin-3 on TM cells has not been explored. Here, we report a stop codon variant (c.T1480C, p.X494Q) of EFEMP1 that co-segregates with primary open angle glaucoma (POAG) in a Chinese pedigree. In the human TM cells, overexpression of wild-type fibulin-3 reduced intracellular actin stress fibers formation and the extracellular fibronectin levels by inhibiting Rho/ROCK signaling. TGFß1 up-regulated fibulin-3 protein levels in human TM cells by activating Rho/ROCK signaling. In rat eyes, overexpression of wild-type fibulin-3 decreased the intraocular pressure and the fibronectin expression of TM, however, overexpression of mutant fibulin-3 (c.T1480C, p.X494Q) showed opposite effects in cells and rat eyes. Taken together, the EFEMP1 variant may impair the regulatory capacity of fibulin-3 which has a role for modulating the cell contractile activity and ECM synthesis in TM cells, and in turn may maintain normal resistance of aqueous humor outflow. This study contributes to the understanding of the important role of fibulin-3 in TM pathophysiology and provides a new possible POAG therapeutic approach.


Asunto(s)
Humor Acuoso , Glaucoma de Ángulo Abierto , Humanos , Humor Acuoso/metabolismo , Fibronectinas/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Codón de Terminación/metabolismo , Malla Trabecular/metabolismo , Presión Intraocular , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo
6.
Talanta ; 273: 125826, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479028

RESUMEN

Primary Open-Angle Glaucoma (POAG) is the most prevalent glaucoma type, and the leading cause of irreversible visual impairment and blindness worldwide. Identification of early POAG biomarkers is of enormous value, as there is not an effective treatment for the glaucomatous optic nerve degeneration (OND). In this pilot study, a metabolomic analysis, by using proton (1H) nuclear magnetic resonance (NMR) spectroscopy was conducted in tears, in order to determine the changes of specific metabolites in the initial glaucoma eyes and to discover potential diagnostic biomarkers. A classification model, based on the metabolomic fingerprint in tears was generated as a non-invasive tool to support the preclinical and clinical POAG diagnosis. 1H NMR spectra were acquired from 30 tear samples corresponding to the POAG group (n = 11) and the control group (n = 19). Data were analysed by multivariate statistics (partial least squares-discriminant analysis: PLS-DA) to determine a model capable of differentiating between groups. The whole data set was split into calibration (65%)/validation (35%), to test the performance and the ability for glaucoma discrimination. The calculated PLS-DA model showed an area under the curve (AUC) of 1, as well as a sensitivity of 100% and a specificity of 83.3% to distinguish POAG group versus control group tear data. This model included 11 metabolites, potential biomarkers of the disease. When comparing the study groups, a decrease in the tear concentration of phenylalanine, phenylacetate, leucine, n-acetylated compounds, formic acid, and uridine, was found in the POAG group. Moreover, an increase in the tear concentration of taurine, glycine, urea, glucose, and unsaturated fatty acids was observed in the POAG group. These results highlight the potential of tear metabolomics by 1H NMR spectroscopy as a non-invasive approach to support early POAG diagnosis and in order to prevent visual loss.


Asunto(s)
Glaucoma de Ángulo Abierto , Humanos , Glaucoma de Ángulo Abierto/diagnóstico , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/patología , Proyectos Piloto , Metabolómica , Biomarcadores , Taurina
7.
Sci Rep ; 14(1): 6958, 2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521856

RESUMEN

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.


Asunto(s)
Proteínas del Citoesqueleto , Glaucoma de Ángulo Abierto , Glicoproteínas , Animales , Ratones , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/terapia , Glaucoma de Ángulo Abierto/metabolismo , Presión Intraocular/genética , Lentivirus/genética , Malla Trabecular/metabolismo
8.
Exp Eye Res ; 241: 109835, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373629

RESUMEN

The etiology of elevated intraocular pressure (IOP), a major risk factor for glaucoma (optic nerve atrophy), is poorly understood despite continued efforts. Although the gene variant of CACNA2D1 (encoding α2δ1), a calcium voltage-gated channel auxiliary subunit, has been reported to be associated with primary open-angle glaucoma, and the pharmacological mitigation of α2δ1 activity by pregabalin lowers IOP, the cellular basis for α2δ1 role in the modulation of IOP remains unclear. Our recent findings reveled readily detectable levels of α2δ1 and its ligand thrombospondin in the cytoskeletome fraction of human trabecular meshwork (TM) cells. To understand the direct role of α2δ1 in the modulation of IOP, we evaluated α2δ1 null mice for changes in IOP and found a moderate (∼10%) but significant decrease in IOP compared to littermate wild type control mice. Additionally, to gain cellular insights into α2δ1 antagonist (pregabalin) induced IOP changes, we assessed pregabalin's effects on human TM cell actin cytoskeletal organization and cell adhesive interactions in comparison with a Rho kinase inhibitor (Y27632), a known ocular hypotensive agent. Unlike Y27632, pregabalin did not have overt effects on cell morphology, actin cytoskeletal organization, or cell adhesion in human TM cells. These results reveal a modest but significant decrease in IOP in α2δ1 deficient mice, and this response appears to be not associated with the contractile and cell adhesive characteristics of TM cells based on the findings of pregabalin effects on isolated TM cells. Therefore, the mechanism by which pregabalin lowers IOP remains elusive.


Asunto(s)
Amidas , Glaucoma de Ángulo Abierto , Glaucoma , Piridinas , Animales , Humanos , Ratones , Actinas/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Glaucoma/metabolismo , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo , Presión Intraocular , Pregabalina , Malla Trabecular/metabolismo
9.
Sci Rep ; 14(1): 3683, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355836

RESUMEN

To investigate the association between lactate metabolism and glaucoma, we conducted a multi-institutional cross-sectional clinical study and a retinal metabolomic analysis of mice with elevated intraocular pressure (IOP) induced by intracameral microbead injection. We compared lactate concentrations in serum and aqueous humor in age-matched 64 patients each with primary open-angle glaucoma (POAG) and cataract. Neither serum nor aqueous humor lactate concentrations differed between the two groups. Multiple regression analysis revealed that only body mass index showed a significant positive correlation with serum and aqueous humor lactate concentration in POAG patients (rs = 0.376, P = 0.002, and rs = 0.333, P = 0.007, respectively), but not in cataract patients. L-Lactic acid was one of the most abundantly detected metabolites in mouse retinas with gas chromatography and mass spectrometry, but there were no significant differences among control, 2-week, and 4-week IOP elevation groups. After 4 weeks of elevated IOP, D-glucose and L-glutamic acid ranked as the top two for a change in raised concentration, roughly sevenfold and threefold, respectively (ANOVA, P = 0.004; Tukey-Kramer, P < 0.05). Glaucoma may disrupt the systemic and intraocular lactate metabolic homeostasis, with a compensatory rise in glucose and glutamate in the retina.


Asunto(s)
Catarata , Glaucoma de Ángulo Abierto , Animales , Humanos , Ratones , Humor Acuoso/metabolismo , Catarata/metabolismo , Estudios Transversales , Cromatografía de Gases y Espectrometría de Masas , Glaucoma de Ángulo Abierto/metabolismo , Ácido Glutámico/metabolismo , Homeostasis , Presión Intraocular , Ácido Láctico/metabolismo , Retina/metabolismo
10.
Front Biosci (Landmark Ed) ; 29(1): 29, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38287812

RESUMEN

BACKGROUND: Although the current role of cytokines and neuroinflammation in glaucoma remains obscure, it represents an expanding field in research. The purpose of this study was to analyze cytokines in the aqueous humor (AH) of glaucoma patients and in retinas from an ex vivo glaucoma animal model, to aid in determining the role of neuroinflammation in glaucoma. METHODS: AH samples were collected from 20 patients during cataract surgeries (controls: n = 10, age = 70.3 ± 9.742; glaucoma: n = 10, age: 66.5 ± 8.073) in Shanghai East Hospital, an affiliate of Tongji University, between September 2018 and March 2019 and analyzed in duplicate by Luminex cytokine polystyrene color bead-based multiplex assay. Retinas from female Sprague-Dawley rats (n = 6) were harvested ex vivo and cultured with or without 60 mmHg of hydrostatic pressure for 24 hours. Retinal ganglion cells (RGCs) were quantified using Brn3a staining. Cytokines in the retina and culture medium were analyzed by rat cytokine array (Abcam). RESULTS: At baseline, patients with primary angle closure glaucoma (PACG) have significantly lower levels of IL-6 and IP-10 and a higher level of PDGF-BB in their AH, compared to the controls. Postoperatively, patients with PACG have significantly higher levels of IL-1ra, IL-13, and MIP-1α and a lower level of IL-6. Elevated hydrostatic pressure led to significant RGC loss in the retina, ex vivo, as well as the upregulation of ciliary neurotrophic factor (CNTF), IL-6, IL-10, IL-4, and TIMP-1 alongside the downregulation of PDGF-AA, MMP-8, TNF-α, and IFN-γ. Furthermore, eight cytokines were detected as being downregulated in the culture medium, including PDGF-AA, MMP-8, and IL-4. CONCLUSIONS: Proinflammatory cytokines showed changes in both AH and ex vivo. Further studies are needed on the role of these cytokines and their corresponding signaling pathways in both neurodegeneration and glaucoma.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Femenino , Ratas , Animales , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Interleucina-6/metabolismo , Humor Acuoso/metabolismo , Enfermedades Neuroinflamatorias , Interleucina-4/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/cirugía , Ratas Sprague-Dawley , China , Glaucoma/metabolismo , Citocinas/metabolismo , Modelos Animales , Retina
11.
Exp Eye Res ; 239: 109752, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123010

RESUMEN

Fuchs uveitis syndrome (FUS) is a commonly misdiagnosed uveitis syndrome often presenting as an asymptomatic mild inflammatory condition until complications arise. The diagnosis of this disease remains clinical because of the lack of specific laboratory tests. The aqueous humor (AH) is a complex fluid containing nutrients and metabolic wastes from the eye. Changes in the AH protein provide important information for diagnosing intraocular diseases. This study aimed to analyze the proteomic profile of AH in individuals diagnosed with FUS and to identify potential biomarkers of the disease. We used liquid chromatography-tandem mass spectrometry-based proteomic methods to evaluate the AH protein profiles of all 37 samples, comprising 15 patients with FUS, six patients with Posner-Schlossman syndrome (PSS), and 16 patients with age-related cataract. A total of 538 proteins were identified from a comprehensive spectral library of 634 proteins. Subsequent differential expression analysis, enrichment analysis, and construction of key sub-networks revealed that the inflammatory response, complement activation and hypoxia might be crucial in mediating the process of FUS. The hypoxia inducible factor-1 may serve as a key regulator and therapeutic target. Additionally, the innate and adaptive immune responses are considered dominant in the patients with FUS. A diagnostic model was constructed using machine-learning algorithm to classify FUS, PSS, and normal controls. Two proteins, complement C1q subcomponent subunit B and secretogranin-1, were found to have the highest scores by the Extreme Gradient Boosting, suggesting their potential utility as a biomarker panel. Furthermore, these two proteins as biomarkers were validated in a cohort of 18 patients using high resolution multiple reaction monitoring assays. Therefore, this study contributes to advancing of the current knowledge of FUS pathogenesis and promotes the development of effective diagnostic strategies.


Asunto(s)
Glaucoma de Ángulo Abierto , Uveítis , Humanos , Humor Acuoso/metabolismo , Proteómica , Uveítis/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Biomarcadores/metabolismo , Hipoxia/metabolismo
12.
Expert Opin Ther Targets ; 27(12): 1217-1229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38069479

RESUMEN

INTRODUCTION: Elevated intraocular pressure (IOP) is a well-recognized risk factor for development of primary open angle glaucoma (POAG), a leading cause of irreversible blindness. Ocular hypertension is associated with excessive extracellular matrix (ECM) deposition in trabecular meshwork (TM) resulting in increased aqueous outflow resistance and elevated IOP. Hence, therapeutic options targeting ECM remodeling in TM to lower IOP in glaucomatous eyes are of considerable importance. AREAS COVERED: This paper discusses the complex process of ECM regulation in TM and explores promising therapeutic targets. The role of Transforming Growth Factor-ß as a central player in ECM deposition in TM is discussed. We elaborate the key regulatory processes involved in its activation, release, signaling, and cross talk with other signaling pathways including Rho GTPase, Wnt, integrin, cytokines, and renin-angiotensin-aldosterone. Further, we summarize the therapeutic agents that have been explored to target ECM dysregulation in TM. EXPERT OPINION: Targeting molecular pathways to reduce ECM deposition and/or enhance its degradation are of considerable significance for IOP lowering. Challenges lie in pinpointing specific targets and designing drug delivery systems to precisely interact with pathologically active/inactive signaling. Recent advances in monoclonal antibodies, fusion molecules, and vectored nanotechnology offer potential solutions.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Glaucoma de Ángulo Abierto/metabolismo , Presión Intraocular , Glaucoma/tratamiento farmacológico , Malla Trabecular/metabolismo , Matriz Extracelular/metabolismo , Humor Acuoso/metabolismo
13.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833870

RESUMEN

Pigmentary glaucoma has recently been associated with missense mutations in PMEL that are dominantly inherited and enriched in the protein's fascinating repeat domain. PMEL pathobiology is intriguing because PMEL forms functional amyloid in healthy eyes, and this PMEL amyloid acts to scaffold melanin deposition. This is an informative contradistinction to prominent neurodegenerative diseases where amyloid formation is neurotoxic and mutations cause a toxic gain of function called "amyloidosis". Preclinical animal models have failed to model this PMEL "dysamyloidosis" pathomechanism and instead cause recessively inherited ocular pigment defects via PMEL loss of function; they have not addressed the consequences of disrupting PMEL's repetitive region. Here, we use CRISPR to engineer a small in-frame mutation in the zebrafish homolog of PMEL that is predicted to subtly disrupt the protein's repetitive region. Homozygous mutant larvae displayed pigmentation phenotypes and altered eye morphogenesis similar to presumptive null larvae. Heterozygous mutants had disrupted eye morphogenesis and disrupted pigment deposition in their retinal melanosomes. The deficits in the pigment deposition of these young adult fish were not accompanied by any detectable glaucomatous changes in intraocular pressure or retinal morphology. Overall, the data provide important in vivo validation that subtle PMEL mutations can cause a dominantly inherited pigment pathology that aligns with the inheritance of pigmentary glaucoma patient pedigrees. These in vivo observations help to resolve controversy regarding the necessity of PMEL's repeat domain in pigmentation. The data foster an ongoing interest in an antithetical dysamyloidosis mechanism that, akin to the amyloidosis of devastating dementias, manifests as a slow progressive neurodegenerative disease.


Asunto(s)
Glaucoma de Ángulo Abierto , Enfermedades Neurodegenerativas , Animales , Humanos , Adulto Joven , Amiloide/metabolismo , Ojo/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Antígeno gp100 del Melanoma/genética , Melanosomas/genética , Melanosomas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Pez Cebra
14.
Curr Eye Res ; 48(12): 1089-1099, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37661784

RESUMEN

PURPOSE: To provide an overview of the existing alternative models for studying trabecular meshwork (TM). METHODS: Literature review. RESULTS: The TM is a complex tissue that regulates aqueous humor outflow from the eye. Dysfunction of the TM is a major contributor to the pathogenesis of open-angle glaucoma, a leading cause of irreversible blindness worldwide. The TM is a porous structure composed of trabecular meshwork cells (TMC) within a multi-layered extracellular matrix (ECM). Although dysregulation of the outflow throughout the TM represents the first step in the disease process, the underlying mechanisms of TM degeneration associate cell loss and accumulation of ECM, but remain incompletely understood, and drugs targeting the TM are limited. Therefore, experimental models of glaucomatous trabeculopathy are necessary for preclinical screening, to advance research on this disease's pathophysiology, and to develop new therapeutic strategies targeting the TM. Traditional animal models have been used extensively, albeit with inherent limitations, including ethical concerns and limited translatability to humans. Consequently, there has been an increasing focus on developing alternative in vitro models to study the TM. Recent advancements in three-dimensional cell culture and tissue engineering are still in their early stages and do not yet fully reflect the complexity of the outflow pathway. However, they have shown promise in reducing reliance on animal experimentation in certain aspects of glaucoma research. CONCLUSION: This review provides an overview of the existing alternative models for studying TM and their potential for advancing research on the pathophysiology of open-angle glaucoma and developing new therapeutic strategies.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Animales , Humanos , Malla Trabecular/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Humor Acuoso/metabolismo , Matriz Extracelular/metabolismo , Presión Intraocular
15.
J Ocul Pharmacol Ther ; 39(9): 585-599, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37738326

RESUMEN

Currently, corneal blindness is affecting >10 million individuals worldwide, and there is a significant unmet medical need because only 1.5% of transplantation needs are met globally due to a lack of high-quality grafts. In light of this global health disaster, researchers are developing corneal substitutes that can resemble the human cornea in vivo and replace human donor tissue. Thus, this review examines ROCK (Rho-associated coiled-coil containing protein kinases) inhibitors as a potential corneal wound-healing (CWH) therapy by reviewing the existing clinical and nonclinical findings. The systematic review was done from PubMed, Scopus, Web of Science, and Google Scholar for CWH, corneal injury, corneal endothelial wound healing, ROCK inhibitors, Fasudil, Netarsudil, Ripasudil, Y-27632, clinical trial, clinical study, case series, case reports, preclinical study, in vivo, and in vitro studies. After removing duplicates, all downloaded articles were examined. The literature search included the data till January 2023. This review summarized the results of ROCK inhibitors in clinical and preclinical trials. In a clinical trial, various ROCK inhibitors improved CWH in individuals with open-angle glaucoma, cataract, iris cyst, ocular hypertension, and other ocular diseases. ROCK inhibitors also improved ocular wound healing by increasing cell adhesion, migration, and proliferation in vitro and in vivo. ROCK inhibitors have antifibrotic, antiangiogenic, anti-inflammatory, and antiapoptotic characteristics in CWH, according to the existing research. ROCK inhibitors were effective topical treatments for corneal infections. Ripasudil, Y-27632, H-1152, Y-39983, and AMA0526 are a few new ROCK inhibitors that may help CWH and replace human donor tissue.


Asunto(s)
Lesiones de la Cornea , Trasplante de Córnea , Glaucoma de Ángulo Abierto , Humanos , Endotelio Corneal/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Lesiones de la Cornea/metabolismo , Quinasas Asociadas a rho/metabolismo
16.
ACS Biomater Sci Eng ; 9(11): 6333-6344, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37725561

RESUMEN

Primary open-angle glaucoma is characterized by the progressive degeneration of the optic nerve, with the high intraocular pressure (IOP) being one of the main risk factors. The human trabecular meshwork (HTM), specifically the juxtacanalicular tissue (JCT), is responsible for placing resistance to the aqueous humor (AH) outflow and the resulting IOP control. Currently, the lack of a proper in vitro JCT model and the complexity of three-dimensional models impede advances in understanding the relationship between AH outflow and HTM degeneration. Therefore, we design an in vitro JCT model using a polycaprolactone (PCL) nanofibrous scaffold, which supports cells to recapitulate the functional JCT morphology and allow the study of outflow physiology. Mechanical and morphological characterizations of the electrospun membranes were performed, and human trabecular meshwork cells were seeded over the scaffolds. The engineered JCT was characterized by scanning electron microscopy, quantitative real-time polymerase chain reaction, and immunochemistry assays staining HTM cell markers and proteins. A pressure-sensitive perfusion system was constructed and used for the investigation of the outflow facility of the polymeric scaffold treated with dexamethasone (a glucocorticoid) and netarsudil (a novel IOP lowering the rho inhibitor). Cells in the in vitro model exhibited an HTM-like morphology, expression of myocilin, fibronectin, and collagen IV, genetic expression, outflow characteristics, and drug responsiveness. Altogether, the present work develops an in vitro JCT model to better understand HTM cell biology and the relationship between the AH outflow and the HTM and allow further drug screening of pharmacological agents that affect the trabecular outflow facility.


Asunto(s)
Glaucoma de Ángulo Abierto , Nanofibras , Humanos , Malla Trabecular/metabolismo , Humor Acuoso/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Ingeniería de Tejidos
17.
Exp Eye Res ; 234: 109592, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474016

RESUMEN

Understanding the metabolic dysfunctions and underlying complex pathological mechanisms of neurodegeneration in glaucoma could help discover disease pathways, identify novel biomarkers, and rationalize newer therapeutics. Therefore, we aimed to investigate the local metabolomic alterations in the aqueous humor and plasma of primary glaucomatous patients. This study cohort comprised primary open-angle glaucoma (POAG), primary angle-closure glaucoma (PACG), and cataract control groups. Aqueous humor and plasma samples were collected from patients undergoing trabeculectomy or cataract surgery and subjected to high-resolution mass spectrometry (HRMS) analysis. Spectral information was processed, and the acquired data were subjected to uni-variate as well as multi-variate statistical analyses using MetaboAnalyst ver5.0. To further understand the localized metabolic abnormalities in glaucoma, metabolites affected in aqueous humor were distinguished from metabolites altered in plasma in this study. Nine and twelve metabolites were found to be significantly altered (p < 0.05, variable importance of projection >1 and log2 fold change ≥0.58/≤ -0.58) in the aqueous humor of PACG and POAG patients, respectively. The galactose and amino acid metabolic pathways were locally affected in the PACG and POAG groups, respectively. Based on the observation of the previous findings, gene expression profiles of trace amine-associated receptor-1 (TAAR-1) were studied in rat ocular tissues. The pharmacodynamics of TAAR-1 were explored in rabbits using topical administration of its agonist, ß-phenyl-ethylamine (ß-PEA). TAAR-1 was expressed in the rat's iris-ciliary body, optic nerve, lens, and cornea. ß-PEA elicited a mydriatic response in rabbit eyes, without altering intraocular pressure. Targeted analysis of ß-PEA levels in the aqueous humor of POAG patients showed an insignificant elevation. This study provides new insights regarding alterations in both localized and systemic metabolites in primary glaucomatous patients. This study also demonstrated the propensity of ß-PEA to cause an adrenergic response through the TAAR-1 pathway.


Asunto(s)
Catarata , Glaucoma de Ángulo Cerrado , Glaucoma de Ángulo Abierto , Animales , Conejos , Ratas , Humor Acuoso/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Presión Intraocular , Catarata/metabolismo , Metabolómica , Glaucoma de Ángulo Cerrado/metabolismo
18.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511406

RESUMEN

Primary open-angle glaucoma remains a global issue, lacking a definitive treatment. Increased intraocular pressure (IOP) is considered the primary risk factor of the disease and it can be caused by fibrotic-like changes in the trabecular meshwork (TM) such as increased tissue stiffness and outflow resistance. Previously, we demonstrated that the sigma-1 receptor (S1R) agonist fluvoxamine (FLU) has anti-fibrotic properties in the kidney and lung. In this study, the localization of the S1R in TM cells was determined, and the anti-fibrotic efficacy of FLU was examined in both mouse and human TM cells. Treatment with FLU reduced the F-actin rearrangement, inhibited cell proliferation and migration induced by the platelet-derived growth factor and decreased the levels of fibrotic proteins. The protective role of the S1R in fibrosis was confirmed by a more pronounced increase in alpha smooth muscle actin and F-actin bundle and clump formation in primary mouse S1R knockout TM cells. Furthermore, FLU demonstrated its protective effects by increasing the production of nitric oxide and facilitating the degradation of the extracellular matrix through the elevation of cathepsin K. These findings suggest that the S1R could be a novel target for the development of anti-fibrotic drugs and offer a new therapeutic approach for glaucoma.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Ratones , Animales , Malla Trabecular/metabolismo , Fluvoxamina/farmacología , Glaucoma de Ángulo Abierto/metabolismo , Actinas/metabolismo , Glaucoma/metabolismo , Células Cultivadas , Fibrosis , Presión Intraocular , Receptor Sigma-1
19.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511316

RESUMEN

Oxidative stress (OS)-induced mitochondrial damage is a risk factor for primary open-angle glaucoma (POAG). Mitochondria-targeted novel antioxidant therapies could unearth promising drug candidates for the management of POAG. Previously, our dual-acting hybrid molecule SA-2 with nitric oxide-donating and antioxidant activity reduced intraocular pressure and improved aqueous humor outflow in rodent eyes. Here, we examined the mechanistic role of SA-2 in trabecular meshwork (TM) cells in vitro and measured the activity of intracellular antioxidant enzymes during OS. Primary human TM cells isolated from normal (hNTM) or glaucomatous (hGTM) post-mortem donors and transformed glaucomatous TM cells (GTM-3) were used for in vitro assays. We examined the effect of SA-2 on oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in vitro using Seahorse Analyzer with or without the oxidant, tert-butyl hydroperoxide (TBHP) treatment. Concentrations of total antioxidant enzymes, catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GPx) were measured. We observed significant protection of both hNTM and hGTM cells from TBHP-induced cell death by SA-2. Antioxidant enzymes were elevated in SA-2-treated cells compared to TBHP-treated cells. In addition, SA-2 demonstrated an increase in mitochondrial metabolic parameters. Altogether, SA-2 protected both normal and glaucomatous TM cells from OS via increasing mitochondrial energy parameters and the activity of antioxidant enzymes.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Antioxidantes/metabolismo , Malla Trabecular/metabolismo , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Mitocondrias/metabolismo
20.
J Neuroinflammation ; 20(1): 180, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525172

RESUMEN

BACKGROUND: Dysfunction of microglia during aging affects normal neuronal function and results in the occurrence of neurodegenerative diseases. Retinal microglial senescence attributes to retinal ganglion cell (RGC) death in glaucoma. This study aims to examine the role of ATP-P2X7R in the mediation of microglia senescence and glaucoma progression. METHODS: Forty-eight participants were enrolled, including 24 patients with primary open-angle glaucoma (POAG) and age-related cataract (ARC) and 24 patients with ARC only. We used ARC as the inclusion criteria because of the availability of aqueous humor (AH) before phacoemulsification. AH was collected and the adenosine triphosphate (ATP) concentration was measured by ATP Assay Kit. The chronic ocular hypertension (COH) mouse model was established by microbead occlusion. Microglia were ablated by feeding PLX5622 orally. Mouse bone marrow cells (BMCs) were prepared and infused into mice through the tail vein for the restoration of microglia function. Western blotting, qPCR and ELISA were performed to analyze protein and mRNA expression in the ocular tissue, respectively. Microglial phenotype and RGC survival were assessed by immunofluorescence. The mitochondrial membrane potential was measured using a JC-1 assay kit by flow cytometry. RESULTS: ATP concentrations in the AH were increased in older adults and patients with POAG. The expression of P2X7R was upregulated in the retinal tissues of mice with glaucoma, and functional enrichment analysis showed that P2X7R was closely related to cell aging. Through in vivo and in vitro approaches, we showed that pathological activation of ATP-P2X7R induced accelerated microglial senescence through impairing PTEN-induced kinase 1 (PINK1)-mediated mitophagy, which led to RGC damage. Additionally, we found that replacement of senescent microglia in COH model of old mice with BMCs from young mice reversed RGC damage. CONCLUSION: ATP-P2X7R induces microglia senescence by inhibiting PINK1-mediated mitophagy pathway. Specific inhibition of ATP-P2X7R may be a fundamental approach for targeted therapy of RGC injury in microglial aging-related glaucoma.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Hipertensión Ocular , Ratones , Animales , Células Ganglionares de la Retina/patología , Microglía/metabolismo , Adenosina Trifosfato/farmacología , Glaucoma de Ángulo Abierto/complicaciones , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/patología , Hipertensión Ocular/patología , Glaucoma/metabolismo , Modelos Animales de Enfermedad , Proteínas Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...