Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Food Chem Toxicol ; 188: 114668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641044

RESUMEN

The safety of propylene glycol (PG) and vegetable glycerin (VG) as solvents in electronic cigarette liquid has received increasing attention and discussion. However, the conclusions derived from toxicity assessments conducted through animal experiments and traditional in vitro methodologies have consistently been contentious. This study constructed an original real-time aerosol exposure system, centered around a self-designed microfluidic bionic-lung chip, to assess the biological effects following exposure to aerosols from different solvents (PG, PG/VG mixture alone and PG/VG mixture in combination with nicotine) on BEAS-2B cells. The study aimed to investigate the impact of aerosols from different solvents on gene expression profiles, intracellular biomarkers (i.e., reactive oxygen species content, nitric oxide content, and caspase-3/7 activity), and extracellular biomarkers (i.e., IL-6, IL-8, TNF-α, and malondialdehyde) of BEAS-2B cells on-chip. Transcriptome analyses suggest that ribosomal function could serve as a potential target for the impact of aerosols derived from various solvents on the biological responses of BEAS-2B cells on-chip. And the results showed that aerosols of PG/VG mixtures had significantly less effect on intracellular and extracellular biomarkers in BEAS-2B cells than aerosols of PG, whereas increasing nicotine levels might elevate these effects of aerosol from PG/VG mixture.


Asunto(s)
Aerosoles , Sistemas Electrónicos de Liberación de Nicotina , Solventes , Humanos , Solventes/toxicidad , Solventes/química , Línea Celular , Propilenglicol/toxicidad , Glicerol/toxicidad , Glicerol/química , Dispositivos Laboratorio en un Chip , Especies Reactivas de Oxígeno/metabolismo , Nicotina/toxicidad , Biomarcadores/metabolismo
2.
Chemosphere ; 358: 142060, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648981

RESUMEN

The widespread application of engineered nanoparticles (NPs) in environmental remediation has raised public concerns about their toxicity to aquatic organisms. Although appropriate surface modification can mitigate the ecotoxicity of NPs, the lack of polymer coating to inhibit toxicity completely and the insufficient knowledge about charge effect hinder the development of safe nanomaterials. Herein, we explored the potential of polyglycerol (PG) functionalization in alleviating the environmental risks of NPs. Iron oxide NPs (ION) of 20, 100, and 200 nm sizes (IONS, IONM and IONL, respectively) were grafted with PG to afford ION-PG. We examined the interaction of ION and ION-PG with Caenorhabditis elegans (C. elegans) and found that PG suppressed non-specific interaction of ION with C. elegans to reduce their accumulation and to inhibit their translocation. Particularly, IONS-PG was completely excluded from worms of all developmental stages. By covalently introducing sulfate, carboxyl and amino groups onto IONS-PG, we further demonstrated that positively charged IONS-PG-NH3+ induced high intestinal accumulation, cuticle adhesion and distal translocation, whereas the negatively charged IONS-PG-OSO3- and IONS-PG-COO- were excreted out. Consequently, no apparent deleterious effects on brood size and life span were observed in worms treated by IONS-PG and IONS-PG bearing negatively charged groups. This study presents new surface functionalization approaches for developing ecofriendly nanomaterials.


Asunto(s)
Caenorhabditis elegans , Glicerol , Polímeros , Caenorhabditis elegans/efectos de los fármacos , Animales , Glicerol/química , Glicerol/toxicidad , Polímeros/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Tamaño de la Partícula , Propiedades de Superficie
3.
Chemosphere ; 353: 141589, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432465

RESUMEN

A comparative toxicity of widely applied organic solvents (methanol, ethanol, n-propanol, i-propanol, n-butanol, 2-butanol, i-butanol, t-butanol, 3-methoxy-3-methylbutanol-1 (MMB), ethylene glycol, diethylene glycol, 2-methoxyethanol, 2-ethoxyethanol, glycerol, ethyl acetate, acetonitrile, benzene, dioxane, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 2-pyrrolidone, and N-methyl-2-pyrrolidone) and surfactants (PEG 300, PEG 6000, Tween 20, Tween 80, miramistin, and Cremophor EL) was studied using a sea urchin embryo model. Sea urchin embryo morphological alterations caused by the tested chemicals were described. The tested molecules affected P. lividus embryo development in a concentration-dependent manner. The observed phenotypic anomalies ranged from developmental delay and retardation of plutei growth to formation of aberrant blastules and gastrules, cleavage alteration/arrest, and embryo mortality. Discernible morphological defects were found after embryo exposure with common pharmaceutical ingredients, such as glycerol, Tween 80, and Cremophor EL. In general, solvents were less toxic than surfactants. PEG 6000 PEG 300, DMSO, ethanol, and methanol were identified as the most tolerable compounds with minimum effective concentration (MEC) values of 3.0-7.92 mg/mL. Previously reported MEC value of Pluronic F127 (4.0 mg/mL) fell within the same concentration range. Toxic effects of methanol, ethanol, DMSO, 2-methoxyethanol, 2-ethoxyethanol, Tween 20, and Tween 80 on P. lividus embryos correlated well with their toxicity obtained using other cell and animal models. The sea urchin embryos could be considered as an appropriate test system for toxicity assessment of solvents and surfactants for their further application as solubilizers of hydrophobic molecules in conventional in vitro cell-based assays and in vivo mammalian models. Nevertheless, to avoid adverse effect of a solubilizing agent in ecotoxicological and biological experiments, the preliminary assessment of its toxicity on a chosen test model would be beneficial.


Asunto(s)
Glicoles de Etileno , Glicerol/análogos & derivados , Metanol , Polisorbatos , Animales , Polisorbatos/toxicidad , Glicerol/toxicidad , Dimetilsulfóxido , Tensoactivos/toxicidad , Solventes/toxicidad , Erizos de Mar , Etanol/farmacología , Excipientes/química , 1-Propanol , Embrión no Mamífero , Mamíferos , Polietilenglicoles
4.
Ecotoxicol Environ Saf ; 271: 116002, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277972

RESUMEN

Propylene glycol (PG) and vegetable glycerin (VG) are the most common solvents used in electronic cigarette liquids. No long-term inhalation toxicity assessments have been performed combining conventional and multi-omics approaches on the potential respiratory effects of the solvents in vivo. In this study, the systemic toxicity of aerosol generated from a ceramic heating coil-based e-cigarette was evaluated. First, the aerosol properties were characterized, including carbonyl emissions, the particle size distribution, and aerosol temperatures. To determine toxicological effects, rats were exposed, through their nose only, to filtered air or a propylene glycol (PG)/ glycerin (VG) (50:50, %W/W) aerosol mixture at the target concentration of 3 mg/L for six hours daily over a continuous 28-day period. Compared with the air group, female rats in the PG/VG group exhibited significantly lower body weights during both the exposure period and recovery period, and this was linked to a reduced food intake. Male rats in the PG/VG group also experienced a significant decline in body weight during the exposure period. Importantly, rats exposed to the PG/VG aerosol showed only minimal biological effects compared to those with only air exposure, with no signs of toxicity. Moreover, the transcriptomic, proteomic, and metabolomic analyses of the rat lung tissues following aerosol exposure revealed a series of candidate pathways linking aerosol inhalation to altered lung functions, especially the inflammatory response and disease. Dysregulated pathways of arachidonic acids, the neuroactive ligand-receptor interaction, and the hematopoietic cell lineage were revealed through integrated multi-omics analysis. Therefore, our integrated multi-omics approach offers novel systemic insights and early evidence of environmental-related health hazards associated with an e-cigarette aerosol using two carrier solvents in a rat model.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Glicerol , Masculino , Femenino , Ratas , Animales , Glicerol/toxicidad , Glicerol/análisis , Verduras , Multiómica , Proteómica , Propilenglicol/toxicidad , Propilenglicol/análisis , Solventes , Aerosoles/análisis
5.
Environ Sci Pollut Res Int ; 30(56): 119016-119033, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919499

RESUMEN

Acute kidney injury (AKI) is a life-threatening complication that accompanies rhabdomyolysis. Daidzein is a dietary isoflavone that has various biological activities. This study examined the therapeutic potential of daidzein and the underlying mechanisms against AKI induced by glycerol in male rats. Animals were injected once with glycerol (50%, 10 ml/kg, intramuscular) for induction of AKI and pre-treated orally with daidzein (25, 50, and 100 mg/kg) for 2 weeks. Biochemical, histopathological, immunohistopathological, and molecular parameters were assessed to evaluate the effect of daidzein. The results revealed that the model group displayed remarkable functional, molecular, and structural changes in the kidney. However, pre-administration of daidzein markedly decreased the kidney relative weight as well as the levels of urea, creatinine, K, P, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and cystatin C. Further, daidzein lessened the rhabdomyolysis-related markers [lactate dehydrogenase (LDH) and creatine kinase (CK)]. Notably, the enhancement of the antioxidant biomarkers [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and reduced glutathione (GSH) is accompanied by a decrease in malondialdehyde (MDA) and nitric oxide (NO) levels. Moreover, upregulated gene expression levels of nuclear factor erythroid 2-related factor 2 (Nfe212) and hemeoxygenase-1 (Hmox1) were exerted by daidzein administration. Rats who received daidzein displayed markedly lower interleukin-1ß (IL-1ß), tumor nuclear factor-α (TNF-α), myleoperoxidase (MPO), and nuclear factor kappa B (NF-κB) levels together with higher interleukin-10 (IL-10) related to the model group. Remarkably, significant declines were noticed in the pro-apoptotic (Bax and caspase-3) and rises in antiapoptotic (Bcl-2) levels in the group that received daidzein. The renal histological screening validated the aforementioned biochemical and molecular alterations. Our findings support daidzein as a potential therapeutic approach against AKI-induced renal injury via suppression of muscle degradation, oxidative damage, cytokine release, and apoptosis.


Asunto(s)
Lesión Renal Aguda , Isoflavonas , Rabdomiólisis , Ratas , Masculino , Animales , Glicerol/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Riñón , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Estrés Oxidativo , Isoflavonas/farmacología , Rabdomiólisis/inducido químicamente , Rabdomiólisis/complicaciones , Rabdomiólisis/patología
6.
Ren Fail ; 45(1): 2227728, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37417222

RESUMEN

Acute kidney injury (AKI) is a syndrome characterized by an accelerating decrease in renal function in a short time. Thymol is one of the main components of thyme species and has a variety of pharmacological effects. Here, we investigated whether thymol could ameliorate rhabdomyolysis (RM)-induced AKI and its related mechanism. Glycerol was used to induce RM-associated AKI in rats. Rats received thymol (20 mg/kg/day or 40 mg/kg/day) gavage 24 h before glycerol injection until 72 h after injection daily. Kidney injury was identified by measuring serum creatinine (Scr) and urea levels and by H&E and PAS staining and immunohistochemistry (the expression of proliferating cell nuclear antigen (PCNA)). Renal superoxide dismutase (SOD), malondialdehyde (MDA), and oxidative stress-related Nrf2/HO-1 signaling pathways were measured. The expression of the inflammatory markers TNF-α, IL-6, MCP-1, and NF-κB was assessed by ELISA and western blotting. Finally, the expression of the PI3K/Akt signaling pathway was detected by western blotting. Glycerol administration induced obvious renal histologic damage and increased Scr, urea, and PCNA expression. Notably, thymol treatment attenuated these structural and functional changes and prevented renal oxidative stress, inflammatory damage and PI3K/Akt pathway downregulation associated with glycerol-induced AKI. In conclusion, thymol might have potential applications in the amelioration of AKI via its antioxidant and anti-inflammatory effects and upregulation of the PI3K/Akt signaling pathway.


Asunto(s)
Lesión Renal Aguda , Rabdomiólisis , Ratas , Animales , Glicerol/toxicidad , Antígeno Nuclear de Célula en Proliferación/metabolismo , Timol/farmacología , Timol/uso terapéutico , Timol/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Estrés Oxidativo , Riñón/patología , Rabdomiólisis/complicaciones , Urea
7.
Toxicol Appl Pharmacol ; 474: 116631, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37468077

RESUMEN

Electronic cigarettes (e-cigs) are customizable tobacco products that allow users to select e-liquid composition, flavors, and (in some devices) adjust wattage or heat used to generate e-cig aerosol. This study compared vascular outcomes in a conducting vessel (thoracic aorta) and a resistance artery (middle cerebral artery, MCA) in C57Bl/6 mice exposed to e-cig aerosol generated from either pure vegetable glycerin (VG) or pure propylene glycol (PG) over 60-min (Study 1), and separately the effect of using 5- vs. 30-watt settings with an exposure of 100-min (Study 2). In Study 1, aortic endothelial-dependent-dilation (EDD) was only impaired with PG- exposure (p < 0.05) compared with air. In the MCA, EDD response was impaired by ∼50% in both VG and PG groups compared with air (p < 0.05). In Study 2, the aortic EDD responses were not different for either 5- or 30-watt exposed groups compared with air controls; however, in the MCA, both 5- and 30-watt groups were impaired by 32% and 55%, respectively, compared with air controls (p < 0.05). These pre-clinical data provide evidence that chronic exposure to aerosol produced by either VG or PG, and regardless of the wattage used, leads to vascular dysfunction at multiple levels within the arterial system. For all exposures, we observed greater impairment of arterial reactivity in a resistance artery (i.e. MCA) compared with the aorta. These data could suggest the smaller arteries may be more sensitive or first to be affected, or that different mechanism(s) for impairment may be involved depending on arterial hierarchy.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Animales , Ratones , Propilenglicol/toxicidad , Vapeo/efectos adversos , Glicerol/toxicidad , Aerosoles
8.
An Acad Bras Cienc ; 95(1): e20211102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36946806

RESUMEN

The control of weeds in agriculture is mainly conducted with the use of synthetic herbicides. However, environmental and human health concerns and increased resistance of weeds to existing herbicides have increased the pressure on researchers to find new active ingredients for weed control which present low toxicity to non-target organisms, are environmentally safe, and can be applied at low concentrations. It is herein described the synthesis of glycerol-fluorinated triazole derivatives and evaluation of their phytotoxic and cytogenotoxic activities. Starting from glycerol, ten fluorinated triazole derivatives were prepared in four steps. The assessment of them on Lactuca sativa revealed that they present effects on phytotoxic and cytogenotoxic parameters with different degrees of efficiency. The compounds 4a, 4b, 4d, 4e, 4i, and 4j have pre-emergent inhibition behavior, while all the investigated compounds showed post emergent effect. Mechanism of action as clastogenic, aneugenic, and epigenetic were observed in the lettuce root meristematic cells, with alterations as stick chromosome, bridge, delay, c-metaphase, and loss. It is believed that glycerol-fluorinated triazole derivatives possess a scaffold that can be explored towards the development of new chemicals for the control of weed species.


Asunto(s)
Alcaloides , Herbicidas , Humanos , Glicerol/toxicidad , Alcoholes de Triosa , Triazoles/toxicidad , Meristema , Alcaloides/farmacología , Herbicidas/toxicidad , Herbicidas/química , Malezas , Lactuca
9.
Sci Rep ; 13(1): 1777, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720927

RESUMEN

Deep eutectic solvents (DESs) have emerged as new promising solvents in the field of "green chemistry," which possess a broad range of potential applications. However, the ecotoxicological profile of these solvents is still poorly known. In this study, ammonium-based deep eutectic solutions with glycerol (2:2), ethylene glycol (1:2), and diethylene glycol (1:2) as hydrogen bond donors in 1:2 proportion were evaluated for their interaction with various biological systems, including gram-positive and negative bacteria, fungi, fish, and human fibroblast cell lines. The DES synthesis was confirmed by Fourier transform infrared spectroscopy analysis, which analyses the interactions between DES precursors for their synthesis. The antimicrobial activity of tetrabutylammonium bromide: ethylene glycol was the most potent, while tetrabutylammonium bromide: diethylene glycol had a higher LC50 against C. carpio fish. Tetrabutylammonium bromide: glycerol was supposed to be the most suitable DES in terms of cell viability percentage (118%) and 2,2-diphenyl-1-picrylhydrazyl scavenging activity (93%). Finally, tetrabutylammonium bromide in glycerol can be considered an eco-friendly solvent due to its lower toxicity in both in vivo and in vitro environments.


Asunto(s)
Disolventes Eutécticos Profundos , Glicerol , Animales , Humanos , Glicerol/toxicidad , Etanol , Glicoles de Etileno , Solventes
10.
Med Gas Res ; 13(2): 78-88, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36204787

RESUMEN

Acute kidney injury (AKI) is the major complication of rhabdomyolysis (RM) clinically, which is usually mimicked by glycerol injection in basic research. Oxidative stress, inflammatory response and apoptosis are recognized to play important roles in development of this disease. Recently, numerous studies have reported the therapeutic effects of molecular hydrogen (H2) on oxidative stress and inflammation-related diseases. Here, the effects of H2 against glycerol-induced AKI and the underlying mechanisms were explored in rats. Low (4%) and high (67%) concentrations of H2 were prepared using a self-made device to investigate the dose-response. After 72 hours of glycerol injection (8 mL/kg), we found that glycerol triggered oxidative stress, inflammatory reactions, and apoptotic events. These caused subsequent renal damage, evidenced by a significant reduction of antioxidases and up-regulation of the relevant damaged biomarkers. H2 inhalation reversed the above alterations and exerted renoprotective effects. Interestingly, for RM/AKI-related factors, no consistent dose-response benefits of H2 were observed. However, higher concentration of H2 inhalation improved histological and morphological changes better. This study suggests that H2 is a potential alternative therapy to prevent or minimize RM induced AKI possibly via its antioxidant, anti-inflammatory, anti-apoptotic and anti-necroptotic properties.


Asunto(s)
Lesión Renal Aguda , Rabdomiólisis , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Apoptosis , Biomarcadores , Glicerol/toxicidad , Hidrógeno/efectos adversos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/patología , Necroptosis , Estrés Oxidativo , Ratas , Rabdomiólisis/inducido químicamente , Rabdomiólisis/complicaciones , Rabdomiólisis/tratamiento farmacológico
11.
Cryobiology ; 108: 1-9, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113568

RESUMEN

Vitrification is a promising cryopreservation technique for complex specimens such as tissues and organs. However, it is challenging to identify mixtures of cryoprotectants (CPAs) that prevent ice formation without exerting excessive toxicity. In this work, we developed a multi-CPA toxicity model that predicts the toxicity kinetics of mixtures containing five of the most common CPAs used in the field (glycerol, dimethyl sulfoxide (DMSO), propylene glycol, ethylene glycol, and formamide). The model accounts for specific toxicity, non-specific toxicity, and interactions between CPAs. The proposed model shows reasonable agreement with training data for single and binary CPA solutions, as well as ternary CPA solution validation data. Sloppy model analysis was used to examine the model parameters that were most important for predictions, providing clues about mechanisms of toxicity. This analysis revealed that the model terms for non-specific toxicity were particularly important, especially the non-specific toxicity of propylene glycol, as well as model terms for specific toxicity of formamide and interactions between formamide and glycerol. To demonstrate the potential for model-based design of vitrification methods, we paired the multi-CPA toxicity model with a published vitrification/devitrification model to identify vitrifiable CPA mixtures that are predicted to have minimal toxicity. The resulting optimized vitrification solution composition was a mixture of 7.4 molal glycerol, 1.4 molal DMSO, and 2.4 molal formamide. This demonstrates the potential for mathematical optimization of vitrification solution composition and sets the stage for future studies to optimize the complete vitrification process, including CPA mixture composition and CPA addition and removal methods.


Asunto(s)
Dimetilsulfóxido , Vitrificación , Criopreservación/métodos , Crioprotectores/toxicidad , Dimetilsulfóxido/toxicidad , Glicol de Etileno/toxicidad , Formamidas/toxicidad , Glicerol/toxicidad , Hielo , Propilenglicol/toxicidad
12.
J Appl Toxicol ; 42(10): 1701-1722, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35543240

RESUMEN

Most flavors used in e-liquids are generally recognized as safe for oral consumption, but their potential effects when inhaled are not well characterized. In vivo inhalation studies of flavor ingredients in e-liquids are scarce. A structure-based grouping approach was used to select 38 flavor group representatives (FGR) on the basis of known and in silico-predicted toxicological data. These FGRs were combined to create prototype e-liquid formulations and tested against cigarette smoke (CS) in a 5-week inhalation study. Female A/J mice were whole-body exposed for 6 h/day, 5 days/week, for 5 weeks to air, mainstream CS, or aerosols from (1) test formulations containing propylene glycol (PG), vegetable glycerol (VG), nicotine (N; 2% w/w), and flavor (F) mixtures at low (4.6% w/w), medium (9.3% w/w), or high (18.6% w/w) concentration or (2) base formulation (PG/VG/N). Male A/J mice were exposed to air, PG/VG/N, or PG/VG/N/F-high under the same exposure regimen. There were no significant mortality or in-life clinical findings in the treatment groups, with only transient weight loss during the early exposure adaptation period. While exposure to flavor aerosols did not cause notable lung inflammation, it caused only minimal adaptive changes in the larynx and nasal epithelia. In contrast, exposure to CS resulted in lung inflammation and moderate-to-severe changes in the epithelia of the nose, larynx, and trachea. In summary, the study evaluates an approach for assessing the inhalation toxicity potential of flavor mixtures, thereby informing the selection of flavor exposure concentrations (up to 18.6%) for a future chronic inhalation study.


Asunto(s)
Fumar Cigarrillos , Administración por Inhalación , Aerosoles/toxicidad , Animales , Femenino , Glicerol/toxicidad , Masculino , Ratones , Ratones Endogámicos , Propilenglicol/toxicidad , Nicotiana
13.
Life Sci ; 302: 120646, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35595070

RESUMEN

Acute kidney injury (AKI) is a clinical disorder with a serious impact on the quality of patients' lives. Considering its increased worldwide prevalence, investigating novel therapeutic approaches for the management of AKI has been inevitable. Lactoferrin (LF), a glycoprotein belonging to the transferrin family, is known to play an important role in regulating iron homeostasis. This study aimed to evaluate the renoprotective effect of LF (30, 100, and 300 mg/kg orally) against glycerol (GLY)-induced rhabdomyolysis (RM) in rats. RM was induced by a single intramuscular injection of GLY 50% (10 mL/kg) after 24-h water deprivation in male Sprague-Dawley rats. LF administration conferred significant dose-dependent renoprotective impact against GLY-induced RM as evidenced by the decreased renal/somatic index and the significant improvement in renal functions as confirmed by the significant increase in creatinine clearance, decrease in serum creatinine and blood urea nitrogen, and improvement in albuminuria and proteinuria. Redox homeostasis was significantly restored in a dose-dependent manner as well. Moreover, serum interleukin-1ß (IL-1ß) was significantly decreased with a parallel significant decrease in renal NOD-like receptor family pyrin domain containing 3 (NLRP3) and thioredoxin interacting protein (TXNIP), kidney injury molecule-1 (KIM-1), caspase-3 expression, nuclear factor kappa B (NF-κB), cluster of differentiation (CD68) expression, and a significant increase in renal nuclear factor erythroid 2-related factor 2 (NRF2) expression. Ultimately, LF administration was associated with a significant amelioration of GLY-induced renal necrotic and inflammatory alterations. In conclusion, the observed dose-dependent nephroprotective effect of LF can be attributed to its modulatory impact on inflammatory/apoptotic/oxidative signaling.


Asunto(s)
Lesión Renal Aguda , Rabdomiólisis , Animales , Masculino , Ratas , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Proteínas de Ciclo Celular/metabolismo , Glicerol/toxicidad , Riñón/metabolismo , Lactoferrina/farmacología , Lactoferrina/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Ratas Sprague-Dawley , Rabdomiólisis/inducido químicamente , Rabdomiólisis/complicaciones , Rabdomiólisis/tratamiento farmacológico
14.
Ren Fail ; 44(1): 473-481, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35285384

RESUMEN

OBJECTIVES: Rhabdomyolysis is a series of symptoms caused by the dissolution of striped muscle, and acute kidney injury (AKI) is a potential complication of severe rhabdomyolysis. The underlying causes of AKI are remarkably complex and diverse. Here, we aim to investigate whether pifithrin-α protected against rhabdomyolysis-induced AKI and to determine the involved mechanisms. METHODS: Intramuscular injection in the right thigh caudal muscle of C57BL/6J mice with 7.5 ml/kg saline (Group A) or of the same volume 50% glycerol was used to induce rhabdomyolysis and subsequent AKI (Group B). Pifithrin-α was injected intraperitoneally 4 h before (Group C) or 4 h after (Group D) the glycerol injection. Serum creatine kinase, blood urea nitrogen, and creatinine were determined, and the renal cortex was histologically analyzed. Renal expression levels of interested mRNAs and proteins were determined and compared, too. RESULTS: Intramuscular injection of glycerol induced rhabdomyolysis and subsequent AKI in mice (Groups B-D). Renal function reduction and histologic injury of renal tubular epithelial cells were associated with increased p53 activation, oxidative stress, and inflammation. Notably, compared with pifithrin-α rescue therapy (Group D), pretreatment of pifithrin-α (Group C) protected the mice from severe injury more effectively. CONCLUSIONS: Our present study suggests that p53 may be a therapeutic target of AKI caused by glycerol, and the inhibition of p53 can block glycerol-mediated AKI by using pharmacological agents instead of genetic inhibitory approaches, which further supports that p53 played a pivotal role in renal tubular injury when challenged with glycerol.


Asunto(s)
Lesión Renal Aguda , Rabdomiólisis , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Animales , Benzotiazoles , Glicerol/toxicidad , Ratones , Ratones Endogámicos C57BL , Rabdomiólisis/inducido químicamente , Rabdomiólisis/complicaciones , Rabdomiólisis/tratamiento farmacológico , Tolueno/análogos & derivados , Proteína p53 Supresora de Tumor/efectos adversos , Proteína p53 Supresora de Tumor/metabolismo
15.
Cryo Letters ; 43(2): 120-128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36626153

RESUMEN

BACKGROUND: The relationship between the toxicity of cryoprotectants and their osmotic and/or oxidative stresses remains to be further investigated. OBJECTIVE: To investigate the toxic effects of different cryoprotectants and osmotic stress on Awassi ram sperm and to determine the relationship between oxidative and antioxidative status of the sperm. MATERIALS AND METHODS: Pooled sperm samples were exposed to sucrose solutions of different concentrations (75 to 900 mOsm) and isosmotic condition (290-325 mOsm) was re-established by adding HEPES buffered Tyrode's lactate. Sperm samples were mixed with 0.5, 1.0 and 1.5 M of glycerol, methanol, 2-methoxyethanol, dimethylacetamide or 1,2-propanediol for 5 min and returned to isosmotic condition. Sperm samples were exposed to cryoprotectants at 4 degree C for 2 hours and isosmotic conditions were re-established. Motility, viability, acrosome integrity and oxidative or antioxidative parameters were determined. RESULTS: Treatment with hypo- or hyperosmotic sucrose solution reduced motility and viability without affecting acrosome integrity. The addition and removal of glycerol and dimethylacetamide (1.0 or 1.5 M) decreased sperm motility, while cryoprotectants had no effect on viability except for 1.5 M glycerol. Chilling significantly reduced the motility and viability of the sperm, but not the acrosome integrity. Rapid addition or removal of cryoprotectants also did not affect the acrosome integrity. Cryoprotectants changed only the ceruloplasmin level, while there were significant post-chilling differences in lipid hydroperoxide, paraoxonase and ceruloplasmin levels. CONCLUSION: Cryoprotectants without other additives have limited protection and glycerol can be toxic to spermatozoa. The oxidative stress plays a role in cryoprotectant toxicity and chilling stress. doi.org/10.54680/fr22210110612.


Asunto(s)
Glicerol , Preservación de Semen , Masculino , Animales , Ovinos , Glicerol/toxicidad , Ceruloplasmina/farmacología , Semen , Criopreservación , Motilidad Espermática , Espermatozoides , Crioprotectores/toxicidad , Estrés Oxidativo , Sacarosa/farmacología
16.
Toxicol Appl Pharmacol ; 430: 115727, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34543670

RESUMEN

Electronic cigarettes (e-cigarettes) have gained increasing popularity in recent years, mostly because they are supposed to be less harmful than regular cigarettes. Therefore, it is highly imperative to investigate possible noxious effects to protect the consumers. E-liquids consist of propylene glycol, glycerol, aroma compounds and sweeteners. One of these sweeteners is a chlorinated version of sucrose, namely sucralose. The aim of this work was to investigate degradation products of sucralose in the presence of propylene glycol and glycerol at different temperatures of commercially available e-cigarettes. Chemical analysis and biological tests were simultaneously performed on e-liquid aerosol condensates. The results of the chemical analysis, which was executed by employing GC-MS/GC-FID, demonstrated high amounts of various chloropropanols. The most abundant one is extremely toxic, namely 3-chloropropane-1,2-diol, which can be detected at concentrations ranging up to 10,000 mg/kg. Furthermore, a cytotoxicity investigation of the condensates was performed on HUVEC/Tert2 cells in which metabolic activity was determined by means of resazurin assay. The cellular metabolic activity significantly decreased by treatment with e-liquid aerosol condensate. Due to the results of this study, we advise against the use of sucralose as sweetener in e-liquids.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Glicerol/toxicidad , Propilenglicol/toxicidad , Sacarosa/análogos & derivados , Edulcorantes/toxicidad , Vapeo/efectos adversos , alfa-Clorhidrina/toxicidad , Células Cultivadas , Seguridad de Productos para el Consumidor , Estabilidad de Medicamentos , Glicerol/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Propilenglicol/química , Medición de Riesgo , Sacarosa/química , Sacarosa/toxicidad , Edulcorantes/química , Temperatura , Pruebas de Toxicidad , Volatilización , alfa-Clorhidrina/química
17.
J Biochem Mol Toxicol ; 35(11): e22892, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34409680

RESUMEN

Rhabdomyolysis is a clinical syndrome caused by damage to skeletal muscle, which consequently releases breakdown products into circulation and causes acute kidney injury (AKI) in humans. Intramuscular injection of glycerol mimics rhabdomyolysis and associated AKI. In this study, we explored the role of umbelliferone against glycerol-induced AKI in rats. Kidney function was assessed by measuring serum creatinine, urea, electrolytes, and microproteinuria. Renal oxidative stress was quantified using thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione assay. Renal histological changes were determined using periodic acid Schiff and hematoxylin-eosin staining, and immunohistology of apoptotic markers (Bax, Bcl-2) was done. Serum creatine kinase was quantified to assess glycerol-induced muscle damage. Umbelliferone attenuated glycerol-induced change in biochemical parameters, oxidative stress, histological alterations, and renal apoptosis. Pretreatment with bisphenol A diglycidyl ether, a peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, attenuated umbelliferone-mediated protection. It is concluded that umbelliferone attenuates glycerol-induced AKI possibly through PPAR-γ agonism in rats.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Glicerol/toxicidad , Mioglobina/metabolismo , PPAR gamma/agonistas , Umbeliferonas/farmacología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Animales , Riñón/metabolismo , Riñón/fisiopatología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
19.
Mutagenesis ; 36(2): 129-142, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33769537

RESUMEN

In vitro (geno)toxicity assessment of electronic vapour products (EVPs), relative to conventional cigarette, currently uses assays, including the micronucleus and Ames tests. Whilst informative on induction of a finite endpoint and relative risk posed by test articles, such assays could benefit from mechanistic supplementation. The ToxTracker and Aneugen Clastogen Evaluation analysis can indicate the activation of reporters associated with (geno)toxicity, including DNA damage, oxidative stress, the p53-related stress response and protein damage. Here, we tested for the different effects of a selection of neat e-liquids, EVP aerosols and Kentucky reference 1R6F cigarette smoke samples in the ToxTracker assay. The assay was initially validated to assess whether a mixture of e-liquid base components, propylene glycol (PG) and vegetable glycerine (VG) had interfering effects within the system. This was achieved by spiking three positive controls into the system with neat PG/VG or phosphate-buffered saline bubbled (bPBS) PG/VG aerosol (nicotine and flavour free). PG/VG did not greatly affect responses induced by the compounds. Next, when compared to cigarette smoke samples, neat e-liquids and bPBS aerosols (tobacco flavour; 1.6% freebase nicotine, 1.6% nicotine salt or 0% nicotine) exhibited reduced and less complex responses. Tested up to a 10% concentration, EVP aerosol bPBS did not induce any ToxTracker reporters. Neat e-liquids, tested up to 1%, induced oxidative stress reporters, thought to be due to their effects on osmolarity in vitro. E-liquid nicotine content did not affect responses induced. Additionally, spiking nicotine alone only induced an oxidative stress response at a supraphysiological level. In conclusion, the ToxTracker assay is a quick, informative screen for genotoxic potential and mechanisms of a variety of (compositionally complex) samples, derived from cigarettes and EVPs. This assay has the potential for future application in the assessment battery for next-generation (smoking alternative) products, including EVPs.


Asunto(s)
Aneugénicos/toxicidad , Sistemas Electrónicos de Liberación de Nicotina , Glicerol/toxicidad , Pruebas de Mutagenicidad/métodos , Nicotiana/toxicidad , Nicotina/toxicidad , Propilenglicol/toxicidad , Aerosoles/efectos adversos , Aerosoles/análisis , Animales , Fumar Cigarrillos/efectos adversos , Daño del ADN , Glicerol/análisis , Humanos , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones , Mutágenos/toxicidad , Nicotina/análisis , Estrés Oxidativo , Propilenglicol/análisis , Medición de Riesgo , Humo/efectos adversos , Fumar/efectos adversos
20.
Am J Physiol Heart Circ Physiol ; 320(4): H1510-H1525, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33543686

RESUMEN

After more than a decade of electronic cigarette (E-cig) use in the United States, uncertainty persists regarding E-cig use and long-term cardiopulmonary disease risk. As all E-cigs use propylene glycol and vegetable glycerin (PG-VG) and generate abundant saturated aldehydes, mice were exposed by inhalation to PG-VG-derived aerosol, formaldehyde (FA), acetaldehyde (AA), or filtered air. Biomarkers of exposure and cardiopulmonary injury were monitored by mass spectrometry (urine metabolites), radiotelemetry (respiratory reflexes), isometric myography (aorta), and flow cytometry (blood markers). Acute PG-VG exposure significantly affected multiple biomarkers including pulmonary reflex (decreased respiratory rate, -50%), endothelium-dependent relaxation (-61.8 ± 4.2%), decreased WBC (-47 ± 7%), and, increased RBC (+6 ± 1%) and hemoglobin (+4 ± 1%) versus air control group. Notably, FA exposure recapitulated the prominent effects of PG-VG aerosol on pulmonary irritant reflex and endothelial dysfunction, whereas AA exposure did not. To attempt to link PG-VG exposure with FA or AA exposure, urinary formate and acetate levels were measured by GC-MS. Although neither FA nor AA exposure altered excretion of their primary metabolite, formate or acetate, respectively, compared with air-exposed controls, PG-VG aerosol exposure significantly increased post-exposure urinary acetate but not formate. These data suggest that E-cig use may increase cardiopulmonary disease risk independent of the presence of nicotine and/or flavorings. This study indicates that FA levels in tobacco product-derived aerosols should be regulated to levels that do not induce biomarkers of cardiopulmonary harm. There remains a need for reliable biomarkers of exposure to inhaled FA and AA.NEW & NOTEWORTHY Use of electronic cigarettes (E-cig) induces endothelial dysfunction (ED) in healthy humans, yet the specific constituents in E-cig aerosols that contribute to ED are unknown. Our study implicates formaldehyde that is formed in heating of E-cig solvents (propylene glycol, PG; vegetable glycerin, VG). Exposure to formaldehyde or PG-VG-derived aerosol alone stimulated ED in female mice. As ED was independent of nicotine and flavorants, these data reflect a "universal flaw" of E-cigs that use PG-VG.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/e-cigarettes-aldehydes-and-endothelial-dysfunction/.


Asunto(s)
Acetaldehído/toxicidad , Aorta Torácica/efectos de los fármacos , Cigarrillo Electrónico a Vapor/toxicidad , Endotelio Vascular/efectos de los fármacos , Formaldehído/toxicidad , Glicerol/toxicidad , Pulmón/efectos de los fármacos , Propilenglicol/toxicidad , Solventes/toxicidad , Acetaldehído/orina , Aerosoles , Animales , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatología , Biomarcadores/sangre , Biomarcadores/orina , Cigarrillo Electrónico a Vapor/orina , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Femenino , Formaldehído/orina , Exposición por Inhalación , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Ratones Endogámicos C57BL , Respiración/efectos de los fármacos , Medición de Riesgo , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...