Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Sci Rep ; 14(1): 3922, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365953

RESUMEN

The influence of lipid metabolism on tumorigenesis and progression has garnered significant attention. However, the role of Glycerol Kinase (GK), a key enzyme in glycerol metabolism, in Esophageal Carcinoma (ESCA) remains unclear. To further elucidate the relationship between GK and ESCA, we investigated GK expression levels using database information. Controlled studies employing immunohistochemistry were conducted on clinical ESCA tumor samples and normal specimens, confirming GK's elevated expression in ESCA. Analysis of The Cancer Genome Atlas (TCGA) data via Kaplan-Meier (KM) survival plots revealed that increased GK expression correlates with poorer ESCA patient outcomes, particularly in overall survival (OS) and disease-specific survival (DSS). Multiple regression analysis indicated that elevated GK expression is an independent risk factor affecting ESCA prognosis. Statistical analysis of prognostic data from clinical samples further corroborated this finding. Moreover, there appears to be a significant correlation between GK expression and immune infiltration, specifically involving certain T and B lymphocytes. In conclusion, elevated GK expression in ESCA is strongly linked to poor prognosis and increased immune cell infiltration, highlighting its potential as an independent prognostic biomarker and a viable therapeutic target.


Asunto(s)
Neoplasias Esofágicas , Glicerol Quinasa , Humanos , Linfocitos B , Carcinoma , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Glicerol Quinasa/química , Pronóstico , Linfocitos Infiltrantes de Tumor/metabolismo
2.
Food Chem ; 426: 136507, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352712

RESUMEN

This work investigated microplastic (MP) pollution in a commercially-important tuna species Katsuwonus pelamis (K. pelamis) from the Eastern Pacific and health implications. 125 MPs were extracted from gills, esophagus, stomachs, intestinal tracts, and muscle of K. pelamis. MPs in the esophagus was the highest, ∼7.6 times higher than that in the gill. Polyester and polyethylene terephthalate (PET) were dominant. Molecular docking implied that PET stabilized the complex via forming 4 new hydrogen bonds that interacted with Arg83, Gln246, Thr267, and Gly268, given that PET can enter glycerol kinase protein active pocket. Metabonomic results suggested that Glycerol 3-phosphate up expressed 1.66 more times that of control groups with no MPs in the muscle. This confirmed that MPs would lie in the glycerol kinase protein active pocket, which triggered menace to K. pelamis. The results provided insights into suggested the potential influence of MPs on the sustainability of fisheries and seafood safety.


Asunto(s)
Contaminación de Alimentos , Plásticos , Atún , Análisis de los Alimentos , Medición de Riesgo , Glicerol Quinasa/química , Modelos Moleculares , Estructura Terciaria de Proteína
3.
Biosci Rep ; 43(4)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37021775

RESUMEN

BACKGROUND: Glycerol kinase (GK; EC 2.7.1.30) facilitates the entry of glycerol into pathways of glucose and triglyceride metabolism and may play a potential role in Type 2 diabetes mellitus (T2DM). However, the detailed regulatory mechanisms and structure of the human GK are unknown. METHODS: The human GK gene was cloned into the pET-24a(+) vector and over-expressed in Escherichia coli BL21 (DE3). Since the protein was expressed as inclusion bodies (IBs), various culture parameters and solubilising agents were used but they did not produce bioactive His-GK; however, co-expression of His-GK with molecular chaperones, specifically pKJE7, achieved expression of bioactive His-GK. The overexpressed bioactive His-GK was purified using coloumn chromatography and characterised using enzyme kinetics. RESULTS: The overexpressed bioactive His-GK was purified apparently to homogeneity (∼295-fold) and characterised. The native His-GK was a dimer with a monomeric molecular weight of ∼55 kDa. Optimal enzyme activity was observed in TEA buffer (50 mM) at 7.5 pH. K+ (40 mM) and Mg2+ (2.0 mM) emerged as prefered metal ions for His-GK activity with specific activity 0.780 U/mg protein. The purified His-GK obeyed standard Michaelis-Menten kinetics with Km value of 5.022 µM (R2=0.927) for its substrate glycerol; whereas, that for ATP and PEP was 0.767 mM (R2=0.928) and 0.223 mM (R2=0.967), respectively. Other optimal parameters for the substrate and co-factors were also determined. CONCLUSION: The present study demonstrates that co-expression of molecular chaperones assists with the expression of bioactive human GK for its characterisation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glicerol Quinasa , Humanos , Glicerol Quinasa/genética , Glicerol Quinasa/química , Glicerol Quinasa/metabolismo , Glicerol , Chaperonas Moleculares/genética , Escherichia coli
4.
Biotechnol Lett ; 44(9): 1051-1061, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35922648

RESUMEN

Glycerol kinase is the key enzyme in glycerol metabolism, and its catalytic efficiency has an important effect on glycerol utilization. Based on an analysis of the glycerol utilization pathway and regulation mechanism in B. subtilis, we conducted site-directed mutagenesis of the key glycerol kinase gene (glpK) on the chromosome to improve the glycerol utilization efficiency of Bacillus subtilis. Recombinant wild-type Bacillus subtilis glycerol kinase (BsuGlpKWT) and two mutants (BsuGlpKM270I and BsuGlpKS71V) were successfully overexpressed in Escherichia coli BL21(DE3) and purified by Ni-IDA metal chelate chromatography. The specific activity of the BsuGlpKM270I mutant (62.6 U/mg) was significantly higher (296.2%) than that of wild-type BsuGlpKWT (15.8 U/mg). By contrast, the mutant BsuGlpKS71V (4.89 U/mg) exhibited lower (69.1%) activity than BsuGlpKWT, which suggested that variant S71V exhibited reduced catalytic efficiency for the substrate. Furthermore, the mutant strain B. subtilis M270I was constructed using a markerless delivery system, and exhibited a higher specific growth rate (improved by 11.3%, from 0.453 ± 0.012 to 0.511 ± 0.017 h-1) and higher maximal biomass (cell dry weight increased by 16%, from 0.577 ± 0.033 to 0.721 ± 0.015 g/L) than the parental strain with a shortened lag phase (2 ~ 4 h shorter) in M9 minimal medium with glycerol. These results indicate that the mutated glpK resulted in improved glycerol utilization, which has broad application prospects.


Asunto(s)
Bacillus subtilis , Glicerol Quinasa , Cromosomas/metabolismo , Escherichia coli/metabolismo , Glicerol/metabolismo , Glicerol Quinasa/química , Glicerol Quinasa/genética , Glicerol Quinasa/metabolismo , Mutagénesis Sitio-Dirigida
5.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339113

RESUMEN

Glycerol is an organic compound that can be utilized as an alternative source of carbon by various organisms. One of the ways to assimilate glycerol by the cell is the phosphorylative catabolic pathway in which its activation is catalyzed by glycerol kinase (GK) and glycerol-3-phosphate (G3P) is formed. To date, several GK crystal structures from bacteria, archaea, and unicellular eukaryotic parasites have been solved. Herein, we present a series of crystal structures of GK from Chaetomium thermophilum (CtGK) in apo and glycerol-bound forms. In addition, we show the feasibility of an ADP-dependent glucokinase (ADPGK)-coupled enzymatic assay to measure the CtGK activity. New structures described in our work provide structural insights into the GK catalyzed reaction in the filamentous fungus and set the foundation for understanding the glycerol metabolism in eukaryotes.


Asunto(s)
Chaetomium/enzimología , Proteínas Fúngicas/química , Glicerol Quinasa/química , Dominio Catalítico , Estabilidad de Enzimas , Proteínas Fúngicas/metabolismo , Glicerol Quinasa/metabolismo , Simulación de Dinámica Molecular
6.
J Biosci Bioeng ; 129(6): 657-663, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32008925

RESUMEN

Glycerol kinase (GK) is a key enzyme of glycerol metabolism. It participates in glycolysis and lipid membrane biosynthesis. A hexamer of GK from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1(Tk-GK) was identified as a substrate-binding form of the enzyme. Here, the X-ray crystal structure analysis and the biochemical analysis was done and the relationships between its unique oligomer structure and substrate binding affinity were investigated. Wild type GK and mutant K271E GK, which disrupts the hexamer formation interface, were crystallized with and without their substrates and analyzed at 2.19-3.05 Å resolution. In the absence of glycerol, Tk-GK was a dimer in solution. In the presence of its glycerol substrate, however, it became a hexamer consisting of three symmetrical dimers about the threefold axis. Through glycerol binding, all Tk-GK molecules in the hexamer were in closed form as a result of domain-motion. The closed form of Tk-GK had tenfold higher ATP affinity than the open form of Tk-GK. The hexamer structure stabilized the closed conformation and enhanced ATP binding affinity when the GK was bound to glycerol. This molecular mechanism is quite simple activity regulation mechanism among known GKs.


Asunto(s)
Adenosina Trifosfato/metabolismo , Glicerol Quinasa/metabolismo , Glicerol/metabolismo , Thermococcus/enzimología , Glicerol Quinasa/química , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Especificidad por Sustrato
7.
Int J Biol Macromol ; 127: 57-65, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30594620

RESUMEN

An improved amperometric biosensor was fabricated by immobilizing glycerol kinase (GK) and glycerol-3-phosphate oxidase (GPO) nanoparticles (NPs) onto graphene oxide nanoparticles (GrONPs) modified pencil graphite (PG) electrode. The GKNPs, GPONPs and GrONPs were characterized by UV spectroscopy, and transmission electron microscopy (TEM). The working electrode (GKNPs/GPONPs/GrONPs/PGE) was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The biosensor exhibited optimal current response at an applied potential of 0.45 V, pH 8.0, and 35 °C. The biosensor displayed a wide linear response for glycerol concentration from 0.001 to 60 mM with a detection limit of 0.002 µM. Moreover, a very high sensitivity 121.45 µA·mM-1·cm-2, rapid response time (2 s) and a good concurrence with the standard enzymic colorimetric technique with a correlation coefficient (R2 = 0.99) was offered by the present biosensor. Evidently, biosensor revealed an analytical recovery of 98.5% after addition of glycerol to the sera samples. Within and between batches studies of working electrode demonstrated coefficients of variation of 0.098% and 0.101%, respectively. The biosensor measured blood serum glycerol level in patients suffering from hyperglyceridemia. The biosensor lost 25% of its initial activity after its regular use over a period of 210 days, at 4 °C storage condition.


Asunto(s)
Técnicas Biosensibles/métodos , Enzimas Inmovilizadas/química , Glicerol Quinasa/química , Glicerol/análisis , Glicerolfosfato Deshidrogenasa/química , Grafito/química , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Límite de Detección
8.
Mol Genet Metab ; 124(4): 254-265, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29960856

RESUMEN

Glycerol kinase (GK) is a multifunctional enzyme located at the interface of carbohydrate and fat metabolism. It contributes to both central carbon metabolism and adipogenesis; specifically, through its role as the ATP-stimulated translocation promoter (ASTP). GK overexpression leads to increased ASTP activity and increased fat storage in H4IIE cells. We performed metabolic flux analysis in human GK-overexpressing H4IIE cells and found that overexpressing cells had significantly altered fluxes through central carbon and lipid metabolism including increased flux through the pentose phosphate pathway and increased production of lipids. We also observed an equal contribution of glycerol to carbohydrate metabolism in all cell lines, suggesting that GK's alternate functions rather than its enzymatic function are important for these processes. To further elucidate the contributions of the enzymatic (phosphorylation) and alternative (ASTP) functions of GK in adipogenesis, we performed experiments on mammalian GK and E. coli GK. We determined that the ASTP function of GK (which is absent in E. coli GK) plays a greater role than the enzymatic activity in these processes. These studies further emphasize GK's diverse functionality and provides fundamental insights into the multiple protein functions of glycerol kinase.


Asunto(s)
Adipogénesis/genética , Proteínas Portadoras/genética , Glicerol Quinasa/genética , Metabolismo de los Lípidos/genética , Animales , Metabolismo de los Hidratos de Carbono/genética , Proteínas Portadoras/química , Escherichia coli/enzimología , Regulación Enzimológica de la Expresión Génica , Glicerol/metabolismo , Glicerol Quinasa/química , Humanos , Regiones Promotoras Genéticas , Ratas
9.
Anal Biochem ; 555: 94-103, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29908159

RESUMEN

Glycerol kinase (GK) and glycerol-3- phosphate oxidase (GPO) nanoparticles (NPs) were prepared, characterized and immobilized onto pencil graphite (PG) electrode to fabricate an improved amperometric glycerol biosensor (GKNPs/GPONPs/PGE). GKNPs/GPONPs/PGE worked in optimum conditions of pH 7.0, temperature 30 °C, at an applied potential of -0.3 V. The biosensor exhibited wide linear response in a concentration range of glycerol (0.01-45 mM) with detection limit 0.0001 µM. The biosensor revealed high sensitivity (7.24 µAmM-1cm-2), low response time (2.5s) and a good agreement with the standard enzymic colorimetric method with a correlation coefficient (R2 = 0.99). The evaluation study of biosensor offered a good analytical recovery of 98.73% when glycerol concentration was added to the sera sample. In addition, within and between batches study of working electrode showed coefficients of variation as 0.105% and 0.14%, respectively. The application of biosensor is performed in the serum of apparently healthy subject and patients affected by cardiogenic shock. There was a 20% loss in initial activity of biosensor after its regular use over a time period of 180 days, while being stored at 4 °C.


Asunto(s)
Técnicas Biosensibles , Enzimas Inmovilizadas/química , Proteínas de Escherichia coli/química , Glicerol Quinasa/química , Glicerol/análisis , Glicerolfosfato Deshidrogenasa/química , Grafito/química , Escherichia coli/enzimología , Pediococcus/enzimología
10.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2830-2842, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28778484

RESUMEN

BACKGROUND: In general, glycerol kinases (GKs) are transferases that catalyze phospho group transfer from ATP to glycerol, and the mechanism was suggested to be random bi-bi. The reverse reaction i.e. phospho transfer from glycerol 3-phosphate (G3P) to ADP is only physiologically feasible by the African trypanosome GK. In contrast to other GKs the mechanism of Trypanosoma brucei gambiense glycerol kinase (TbgGK) was shown to be in an ordered fashion, and proceeding via autophosphorylation. From the unique reaction mechanism of TbgGK, we envisaged its potential to possess phosphatase activity in addition to being a kinase. METHODS: Our hypothesis was tested by spectrophotometric and LC-MS/MS analyses using paranitrophenyl phosphate (pNPP) and TbgGK's natural substrate, G3P respectively. Furthermore, protein X-ray crystallography and site-directed mutagenesis were performed to examine pNPP binding, catalytic residues, and the possible reaction mechanism. RESULTS: In addition to its widely known and expected phosphotransferase (class II) activity, TbgGK can efficiently facilitate the hydrolytic cleavage of phosphoric anhydride bonds (a class III property). This phosphatase activity followed the classical Michaelis-Menten pattern and was competitively inhibited by ADP and G3P, suggesting a common catalytic site for both activities (phosphatase and kinase). The structure of the TGK-pNPP complex, and structure-guided mutagenesis implicated T276 to be important for the catalysis. Remarkably, we captured a crystallographic molecular snapshot of the phosphorylated T276 reaction intermediate. CONCLUSION: We conclude that TbgGK has both kinase and phosphatase activities. GENERAL SIGNIFICANCE: This is the first report on a bifunctional kinase/phosphatase enzyme among members of the sugar kinase family.


Asunto(s)
Glicerol Quinasa/química , Monoéster Fosfórico Hidrolasas/química , Conformación Proteica , Trypanosoma brucei gambiense/enzimología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Cristalografía por Rayos X , Glicerol/metabolismo , Glicerol Quinasa/genética , Glicerol Quinasa/metabolismo , Glicerofosfatos/metabolismo , Humanos , Nitrobencenos/química , Monoéster Fosfórico Hidrolasas/metabolismo , Especificidad por Sustrato , Trypanosoma brucei gambiense/patogenicidad
11.
Anal Biochem ; 517: 56-63, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27876382

RESUMEN

The nanoparticles (NPs) aggregates of lipase from porcine pancreas, glycerol kinase (GK) from Cellulomonas sp. and glycerol-3-phosphate oxidase (GPO) from Aerococcus viridanss were prepared by desolvation and glutaraldehyde crosslinking and functionalized by cysteamine. These enzyme nanoparticles (ENPs) were characterized by transmission electron microscopy (TEM) and Fourier transform infra red (FTIR) spectroscopy. The functionalzed ENPs aggregates were co-immobilized covalently onto polycrystalline Au electrode through thiolated bond. An improved amperometric triglyceride (TG) bionanosensor was constructed using this ENPs modified Au electrode as working electrode. Biosensor showed optimum current at 1.2 V within 5s, at pH 6.5 and 35 °C.A linear relationship was obtained between current (mA) and triolein concentration in lower concentration range,10-100 mg/dL and higher concentration range, 100-500 mg/dL. Limit of detection (LOD) of bionanosensor was 1.0 µg/ml. Percent analytical recovery of added trolein (50 and 100 mg/dL) in serum was 95.2 ± 0.5 and 96.0 ± 0.17. Within and between batch coefficients of variation (CV) were 2.33% and 2.15% respectively. A good correlation (R2 = 0.99) was obtained between TG values in sera measured by present biosensor and standard enzymic colorimetric method with the regression equation: y= (0.993x + 0.967). ENPs/Au electrode was used 180 times over a period of 3 months with 50% loss in its initial activity, when stored dry at 4 °C.


Asunto(s)
Aerococcus/enzimología , Proteínas Bacterianas/química , Técnicas Biosensibles/métodos , Cellulomonas/enzimología , Glicerol Quinasa/química , Glicerolfosfato Deshidrogenasa/química , Lipasa/química , Nanopartículas/química , Triglicéridos/sangre , Animales , Femenino , Humanos , Masculino , Nanopartículas/ultraestructura , Porcinos
12.
Methods Enzymol ; 571: 197-223, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27112401

RESUMEN

The aggregates of nanoparticles (NPs) are considered better supports for the immobilization of enzymes, as these promote enzyme kinetics, due to their unusual but favorable properties such as larger surface area to volume ratio, high catalytic efficiency of certain immobilized enzymes, non-toxicity of some of the nanoparticle matrices, high stability, strong adsorption of the enzyme of interest by a number of different approaches, and faster electron transportability. Co-immobilization of multiple enzymes required for a multistep reaction cascade on a single support is more efficient than separately immobilizing the corresponding enzymes and mixing them physically, since products of one enzyme could serve as reactants for another. These products can diffuse much more easily between enzymes on the same particle than diffusion from one particle to the next, in the reaction medium. Thus, co-immobilization of enzymes onto NP aggregates is expected to produce faster kinetics than their individual immobilizations on separate matrices. Lipase, glycerol kinase, and glycerol-3-phosphate oxidase are required for lipid analysis in a cascade reaction, and we describe the co-immobilization of these three enzymes on nanocomposites of zinc oxide nanoparticles (ZnONPs)-chitosan (CHIT) and gold nanoparticles-polypyrrole-polyindole carboxylic acid (AuPPy-Pin5COOH) which are electrodeposited on Pt and Au electrodes, respectively. The kinetic properties and analytes used for amperometric determination of TG are fully described for others to practice in a trained laboratory. Cyclic voltammetry, scanning electron microscopy, Fourier transform infra-red spectra, and electrochemical impedance spectra confirmed their covalent co-immobilization onto electrode surfaces through glutaraldehyde coupling on CHIT-ZnONPs and amide bonding on AuPPy/Pin5COOH. The combined activities of co-immobilized enzymes was tested amperometrically, and these composite nanobiocatalysts showed optimum activity within 4-5s, at pH 6.5-7.5 and 35°C, when polarized at a potential between 0.1 and 0.4V. Co-immobilized enzymes showed excellent linearity within 50-700mg/dl of the lipid with detection limit of 20mg/dl for triolein. The half life of co-immobilized enzymes was 7 months, when stored dry at 4°C which is very convenient for practical applications. Co-immobilized biocatalysts measured triglycerides in the sera of apparently healthy persons and persons suffering from hypertriglyceridemia, which is recognized as a leading cause for heart disease. The measurement of serum TG by co-immobilized enzymes was unaffected by the presence of a number of serum substances, tested as potential interferences. Thus, co-immobilization of enzymes onto aggregates of NPs resulted in improved performance for TG analysis.


Asunto(s)
Enzimas Inmovilizadas/química , Glicerol Quinasa/química , Glicerolfosfato Deshidrogenasa/química , Lipasa/química , Nanopartículas del Metal/química , Técnicas Biosensibles , Quitosano/química , Límite de Detección , Nanocompuestos/química , Unión Proteica , Propiedades de Superficie
13.
J Biosci Bioeng ; 121(5): 497-502, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26493633

RESUMEN

Thermostable variants of the Cellulomonas sp. NT3060 glycerol kinase have been constructed by through the introduction of ancestral-consensus mutations. We produced seven mutants, each having an ancestral-consensus amino acid residue that might be present in the common ancestors of both bacteria and of archaea, and that appeared most frequently at the position of 17 glycerol kinase sequences in the multiple sequence alignment. The thermal stabilities of the resulting mutants were assessed by determining their melting temperatures (Tm), which was defined as the temperature at which 50% of the initial catalytic activity is lost after 15 min of incubation, as well as when the half-life of the catalytic activity occurs at a temperature of 60°C (t1/2). Three mutants showed increased stabilities compared to the wild-type protein. We then produced five more mutants with multiple amino acid substitutions. Some of the resulting mutants showed thermal stabilities much greater than those expected given the stabilities of the respective mutants with single mutations. Therefore, the effects of mutations are not always simply additive and some amino acid substitutions, which do not affect or only slightly improve stability when individually introduced into the protein, show substantial stabilizing effects in combination with other mutations.


Asunto(s)
Sustitución de Aminoácidos/genética , Cellulomonas/enzimología , Secuencia de Consenso/genética , Epistasis Genética , Glicerol Quinasa/química , Glicerol Quinasa/genética , Mutación/genética , Temperatura , Secuencia de Aminoácidos , Biocatálisis , Cellulomonas/genética , Estabilidad de Enzimas/genética , Semivida , Datos de Secuencia Molecular , Alineación de Secuencia
14.
Mol Microbiol ; 94(6): 1315-29, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25315291

RESUMEN

The glycerol kinase (GK) of African human trypanosomes is compartmentalized in their glycosomes. Unlike the host GK, which under physiological conditions catalyzes only the forward reaction (ATP-dependent glycerol phosphorylation), trypanosome GK can additionally catalyze the reverse reaction. In fact, owing to this unique reverse catalysis, GK is potentially essential for the parasites survival in the human host, hence a promising drug target. The mechanism of its reverse catalysis was unknown; therefore, it was not clear if this ability was purely due to its localization in the organelles or whether structure-based catalytic differences also contribute. To investigate this lack of information, the X-ray crystal structure of this protein was determined up to 1.90 Å resolution, in its unligated form and in complex with three natural ligands. These data, in conjunction with results from structure-guided mutagenesis suggests that the trypanosome GK is possibly a transiently autophosphorylating threonine kinase, with the catalytic site formed by non-conserved residues. Our results provide a series of structural peculiarities of this enzyme, and gives unexpected insight into the reverse catalysis mechanism. Together, they provide an encouraging molecular framework for the development of trypanosome GK-specific inhibitors, which may lead to the design of new and safer trypanocidal drug(s).


Asunto(s)
Glicerol Quinasa/química , Glicerol Quinasa/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Trypanosoma brucei gambiense/enzimología , Adenosina Difosfato/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Glicerol , Glicerol Quinasa/genética , Humanos , Modelos Moleculares , Mutagénesis , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Protozoarias/genética , Trypanosoma brucei gambiense/química , Tripanosomiasis Africana/parasitología
15.
J Biochem ; 154(1): 77-84, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23620597

RESUMEN

Human African trypanosomes are blood parasites that cause sleeping sickness, a debilitating disease in sub-Saharan Africa. Glycerol kinase (GK) of these parasites additionally possesses a novel property of reverse catalysis. GK is essential to blood stream form trypanosome, and therefore a promising drug target. Here, utilizing recombinant DNA technology an optimized procedure for obtaining large amount of the purified protein was established. Furthermore, biochemical data on its enzymology are reported. The protein was maximally active at pH 6.8 over a temperature range of 25-70°C, with activation energy of 34.02 ± 0.31 kJ mol(-1). The enzyme catalyses a reversible bisubstrate [ADP and glycerol 3-phosphate (G3P)]-biproduct (ATP and glycerol) reaction. It has Km of 0.90 and 5.54 mM for ADP and G3P, respectively, and Vmax of 25.3 and 20.0 µmol min(-1) mg(-1), respectively. Unexpectedly, the enzyme lost more than 50% of its activity in 48 h at 4°C in 0.1 M sodium phosphate buffer pH 6.8 containing 10 mM MgSO4. However, perfect stabilization of the GK for more than 4 weeks was achieved in the presence of its natural ligands and cofactor. Using this stabilized protein, crystals of trypanosome GK with better resolution were obtained. This will accelerate the success of GK inhibitor development for drug design.


Asunto(s)
Glicerol Quinasa/química , Proteínas Protozoarias/química , Trypanosoma brucei gambiense/enzimología , Cristalización , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas , Genes Protozoarios , Glicerol Quinasa/antagonistas & inhibidores , Glicerol Quinasa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/patogenicidad , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/enzimología , Tripanosomiasis Africana/parasitología
16.
FEBS J ; 280(1): 102-14, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23121660

RESUMEN

The heat-inducible lysyl-tRNA synthetase from Escherichia coli (LysU; EC6/1/1/6.html) converts ATP to diadenosine tri- and tetraphosphates (Ap(3)A/Ap(4)A) in the presence of L-lysine/Mg(2+)/Zn(2+). To understand LysU in more detail, 26 mutants were prepared: six of E264, four of R269 and sixteen mutants by alanine-scanning of the inner shell/motif 2 loop. In the presence of glycerol and absence of exogenously added Zn(2+)/L-lysine, we unexpectedly found that E264K catalysed the production of glycerol-3-phosphate, powered by ATP turnover to ADP. E264Q and E264N are also capable of this activity, but all three show little formation of Ap(4)A/Ap(3)A under normal conditions (additional Zn(2+)/L-lysine/Mg(2+)). By contrast, wild-type LysU has a weaker glycerol kinase-like capability in the absence of Zn(2+) and is dominated by Ap(4)A/Ap(3)A synthesis in its presence. Kinetic and isothermal titration calorimetry results suggest that E264 is a crucial residue for Zn(2+) promotion of Ap(4)A/Ap(3)A synthesis. This is consistent with the hypothesis that E264 provides an anchor point for a Zn(2+) ion complexed to the active site, with simultaneous coordination to the enzyme bound lysyl-adenylate intermediate and secondary substrate ATP/ADP. The glycerol kinase-like activity is uncovered on disruption of this specific coordination.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Lisina-ARNt Ligasa/química , Adenosina Trifosfato/química , Sustitución de Aminoácidos , Dominio Catalítico , Proteínas de Escherichia coli/genética , Glicerol Quinasa/química , Enlace de Hidrógeno , Hidrólisis , Cinética , Lisina-ARNt Ligasa/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Zinc/química
17.
J Biotechnol ; 150(3): 396-403, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20933549

RESUMEN

The GUT1 gene of the halotolerant yeast Pichia farinosa, encoding glycerokinase (EC 2.7.1.30), was expressed in Pichia pastoris. A purification factor of approximately 61-fold was achieved by a combination of nickel affinity and anion exchange chromatography. The specific activity of the final preparation was 201.6 units per mg protein with a yield of about 21%. A nearly homogeneous enzyme preparation was confirmed by SDS-polyacrylamide gels and mass spectrometry analysis. Glycerol stabilized the purified enzyme for long-term storage at -80°C. The pH and temperature optima were in the range of 6.5-7.0 and 45-50°C, respectively. ATP was the most effective phosphoryl group donor tested. Additionally, the enzyme phosphorylated glycerol also with ITP, UTP, GTP and CTP. The K(m) values of the enzyme for ATP and ITP were 0.428 and 0.845 mM, respectively. The kinetic properties of the enzyme with respect to UTP, GTP, and CTP suggested that glycerokinase exhibited negative cooperativity as double reciprocal plots showed a biphasic response to increasing nucleoside triphosphate concentrations. The application as a coupling enzyme in the determination of pyruvate kinase activity in cell extracts of Madin-Darby canine kidney cells showed good reproducibility when compared with a commercially available preparation of bacterial glycerokinase.


Asunto(s)
Proteínas Fúngicas/metabolismo , Glicerol Quinasa/metabolismo , Pichia/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Recuento de Células , Extractos Celulares , Línea Celular , Cromatografía de Afinidad , Cromatografía por Intercambio Iónico , Perros , Pruebas de Enzimas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicerol/metabolismo , Glicerol Quinasa/química , Glicerol Quinasa/genética , Histidina/química , Histidina/genética , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Metanol/metabolismo , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Pichia/química , Pichia/enzimología , Pichia/genética , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Temperatura
18.
Analyst ; 135(11): 2979-86, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20877885

RESUMEN

In this paper an enzyme-carrier-based microfluidic chip coupled with a gold nanoband microelectrode as electrochemical detector for Triglyceride (TG) determination was developed by co-immobilized lipase, Glycerokinase (GK) and glycerol-3-phosphate oxidase (GPOx) on chitosan/Fe(3)O(4) composite nanoparticles with a shell-core structure, which combined the advantageous features of microfluidic chips technology with magnetic beads. This procedure enabled the easy renewal of the microchip enzyme carrier after each determination in a highly reproducible manner. Several operational parameters such as working potential, buffer pH, adenosine triphosphate concentrations (ATP, mM), separation voltage and temperature were evaluated and optimized. The performance of enzyme-carrier-based microfluidic chip for TG determination was modulated by changing the length of enzyme carrier from 1.0 to 3.0 cm, and the linear ranges were changed from 0-4.0 mM to 0-10.0 mM with the detection limits from 15 µM to 6.0 µM. The enzyme carrier remained its 70% activity after 40 days storage. This system was successfully employed for on-line detection of TG in serums. The experimental results demonstrated that this enzyme carrier using magnetic beads based microfluidic chip provided a relatively simple, sensitive, miniature, and replaceable means for the accurate determination of TG in serum.


Asunto(s)
Enzimas Inmovilizadas/química , Glicerol Quinasa/química , Glicerolfosfato Deshidrogenasa/química , Dispositivos Laboratorio en un Chip , Lipasa/química , Triglicéridos/análisis , Quitosano/química , Electroquímica , Enzimas Inmovilizadas/metabolismo , Óxido Ferrosoférrico/química , Glicerol Quinasa/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Oro/química , Lipasa/metabolismo , Magnetismo , Microelectrodos , Nanopartículas/química
19.
Artículo en Inglés | MEDLINE | ID: mdl-20208167

RESUMEN

In the bloodstream forms of human trypanosomes, glycerol kinase (GK; EC 2.7.1.30) is one of the nine glycosomally compartmentalized enzymes that are essential for energy metabolism. In this study, a recombinant Trypanosoma brucei gambiense GK (rTbgGK) with an N-terminal cleavable His(6) tag was overexpressed, purified to homogeneity and crystallized by the sitting-drop vapour-diffusion method using PEG 400 as a precipitant. A complete X-ray diffraction data set to 2.75 A resolution indicated that the crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 63.84, b = 121.50, c = 154.59 A. The presence of two rTbgGK molecules in the asymmetric unit gives a Matthews coefficient (V(M)) of 2.5 A(3) Da(-1), corresponding to 50% solvent content.


Asunto(s)
Glicerol Quinasa/química , Trypanosoma brucei gambiense/enzimología , Animales , Cromatografía de Afinidad , Cromatografía en Gel , Cristalización , Cristalografía por Rayos X , Glicerol Quinasa/aislamiento & purificación
20.
Arch Biochem Biophys ; 492(1-2): 29-39, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19819219

RESUMEN

Unlike those for monomeric superfamily members, heterotropic allosteric effectors of the tetrameric Escherichia coli glycerol kinase (EGK) bind to only one of the two domains that define the catalytic cleft and far from the active site. An R369A amino acid substitution removes oligomeric interactions of a novel mini domain-swap loop of one subunit with the catalytic site of another subunit, and an A65T substitution perturbs oligomeric interactions in a second interface. Linked-functions enzyme kinetics, analytical ultracentrifugation, and FRET are used to assess effects of these substitutions on the allosteric control of catalysis. Inhibition by phosphotransferase system protein IIA(Glc) is reduced by the R369A substitution, and inhibition by fructose 1,6-bisphosphate is abolished by the A65T substitution. The oligomeric interactions enable the heterotropic allosteric effectors to act on both domains and modulate the catalytic cleft closure despite binding to only one domain.


Asunto(s)
Actinas/química , Proteínas de Escherichia coli/metabolismo , Glicerol Quinasa/antagonistas & inhibidores , Glicerol Quinasa/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Alanina/genética , Regulación Alostérica/genética , Sustitución de Aminoácidos/genética , Arginina/genética , Dominio Catalítico/genética , Dimerización , Interacciones Farmacológicas , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Glicerol Quinasa/química , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/química , Familia de Multigenes , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...