Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 781, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134931

RESUMEN

BACKGROUND: Alfalfa (Medicago sativa L.) is the most widely planted legume forage and one of the most economically valuable crops in the world. Serine hydroxymethyltransferase (SHMT), a pyridoxal phosphate-dependent enzyme, plays crucial roles in plant growth, development, and stress responses. To date, there has been no comprehensive bioinformatics investigation conducted on the SHMT genes in M. sativa. RESULTS: Here, we systematically analyzed the phylogenetic relationship, expansion pattern, gene structure, cis-acting elements, and expression profile of the MsSHMT family genes. The result showed that a total of 15 SHMT members were identified from the M. sativa genome database. Phylogenetic analysis demonstrated that the MsSHMTs can be divided into 4 subgroups and conserved with other plant homologues. Gene structure analysis found that the exons of MsSHMTs ranges from 3 to 15. Analysis of cis-acting elements found that each of the MsSHMT genes contained different kinds of hormones and stress-related cis-acting elements in their promoter regions. Expression and function analysis revealed that MsSHMTs expressed in all plant tissues. qRT-PCR analysis showed that MsSHMTs induced by ABA, Salt, and drought stresses. CONCLUSIONS: These results provided definite evidence that MsSHMTs might involve in growth, development and adversity responses in M. sativa, which laid a foundation for future functional studies of MsSHMTs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glicina Hidroximetiltransferasa , Medicago sativa , Familia de Multigenes , Filogenia , Estrés Fisiológico , Medicago sativa/genética , Estrés Fisiológico/genética , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Sequías , Regiones Promotoras Genéticas
2.
Mol Cell ; 84(14): 2682-2697.e6, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38996576

RESUMEN

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.


Asunto(s)
Microscopía por Crioelectrón , Glicina Hidroximetiltransferasa , Glicina Hidroximetiltransferasa/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/química , Humanos , ARN/metabolismo , ARN/genética , Serina/metabolismo , Regulación Alostérica , Unión Proteica , Filogenia , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , Glicina/metabolismo , Glicina/química , Sitios de Unión
3.
J Am Chem Soc ; 146(32): 22476-22484, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38961805

RESUMEN

Visible light-driven pyridoxal radical biocatalysis has emerged as a promising strategy for the stereoselective synthesis of valuable noncanonical amino acids (ncAAs). Previously, the use of well-tailored photoredox catalysts represented the key to enable efficient pyridoxal phosphate (PLP) enzyme-catalyzed radical reactions. Here, we report a PLP-dependent threonine aldolase-catalyzed asymmetric α-C-H alkylation of abundant amino acids using Katritzky pyridinium salts as alkylating agents. The use of engineered threonine aldolases allowed for this redox-neutral radical alkylation to proceed efficiently, giving rise to challenging α-trisubstituted and -tetrasubstituted ncAA products in a protecting-group-free fashion with excellent enantiocontrol. Mechanistically, this enantioselective α-alkylation capitalizes on the unique reactivity of the persistent enzymatic quinonoid intermediate derived from the PLP cofactor and the amino acid substrate to allow for novel radical C-C coupling. Surprisingly, this photobiocatalytic process does not require the use of well-established photoredox catalysts and operates through an unconventional photoinduced radical generation involving a PLP-derived aldimine. The ability to develop photobiocatalytic reactions without relying on classic photocatalysts or photoenzymes opens up new avenues for advancing stereoselective intermolecular radical reactions that are not known in either organic chemistry or enzymology.


Asunto(s)
Aminoácidos , Procesos Fotoquímicos , Alquilación , Estereoisomerismo , Aminoácidos/química , Radicales Libres/química , Glicina Hidroximetiltransferasa/metabolismo , Glicina Hidroximetiltransferasa/química , Biocatálisis , Luz , Estructura Molecular
4.
FASEB J ; 38(12): e23742, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38865203

RESUMEN

Mitochondrial disease is a devastating genetic disorder, with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and m.3243A>G being the most common phenotype and genotype, respectively. The treatment for MELAS patients is still less effective. Here, we performed transcriptomic and proteomic analysis in muscle tissue of MELAS patients, and discovered that the expression of molecules involved in serine catabolism were significantly upregulated, and serine hydroxymethyltransferase 2 (SHMT2) increased significantly in both the mRNA and protein levels. The SHMT2 protein level was also increased in myoblasts with m.3243A>G mutation, which was transdifferentiated from patients derived fibroblasts, accompanying with the decreased nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) ratio and cell viability. After treating with SHMT2 inhibitor (SHIN1), the NAD+/NADH ratio and cell viability in MELAS myoblasts increased significantly. Taken together, our study indicates that enhanced serine catabolism plays an important role in the pathogenesis of MELAS and that SHIN1 can be a potential small molecule for the treatment of this disease.


Asunto(s)
Glicina Hidroximetiltransferasa , Síndrome MELAS , Serina , Humanos , Síndrome MELAS/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/patología , Glicina Hidroximetiltransferasa/metabolismo , Glicina Hidroximetiltransferasa/genética , Serina/metabolismo , Mioblastos/metabolismo , NAD/metabolismo , Masculino , Proteómica/métodos , Femenino , Transcriptoma , Multiómica
5.
Nat Metab ; 6(7): 1310-1328, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38877143

RESUMEN

Non-small-cell lung cancer (NSCLC) with concurrent mutations in KRAS and the tumour suppressor LKB1 (KL NSCLC) is refractory to most therapies and has one of the worst predicted outcomes. Here we describe a KL-induced metabolic vulnerability associated with serine-glycine-one-carbon (SGOC) metabolism. Using RNA-seq and metabolomics data from human NSCLC, we uncovered that LKB1 loss enhanced SGOC metabolism via serine hydroxymethyltransferase (SHMT). LKB1 loss, in collaboration with KEAP1 loss, activated SHMT through inactivation of the salt-induced kinase (SIK)-NRF2 axis and satisfied the increased demand for one-carbon units necessary for antioxidant defence. Chemical and genetic SHMT suppression increased cellular sensitivity to oxidative stress and cell death. Further, the SHMT inhibitor enhanced the in vivo therapeutic efficacy of paclitaxel (first-line NSCLC therapy inducing oxidative stress) in KEAP1-mutant KL tumours. The data reveal how this highly aggressive molecular subtype of NSCLC fulfills their metabolic requirements and provides insight into therapeutic strategies.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Antioxidantes , Carcinoma de Pulmón de Células no Pequeñas , Glicina Hidroximetiltransferasa , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Pulmonares , Mutación , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas p21(ras) , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Antioxidantes/metabolismo , Animales , Estrés Oxidativo , Ratones , Línea Celular Tumoral , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética
6.
Plant J ; 119(4): 1920-1936, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924321

RESUMEN

Photorespiratory serine hydroxymethyltransferases (SHMTs) are important enzymes of cellular one-carbon metabolism. In this study, we investigated the potential role of SHMT6 in Arabidopsis thaliana. We found that SHMT6 is localized in the nucleus and expressed in different tissues during development. Interestingly SHMT6 is inducible in response to avirulent, virulent Pseudomonas syringae and to Fusarium oxysporum infection. Overexpression of SHMT6 leads to larger flowers, siliques, seeds, roots, and consequently an enhanced overall biomass. This enhanced growth was accompanied by increased stomatal conductance and photosynthetic capacity as well as ATP, protein, and chlorophyll levels. By contrast, a shmt6 knockout mutant displayed reduced growth. When challenged with Pseudomonas syringae pv tomato (Pst) DC3000 expressing AvrRpm1, SHMT6 overexpression lines displayed a clear hypersensitive response which was characterized by enhanced electrolyte leakage and reduced bacterial growth. In response to virulent Pst DC3000, the shmt6 mutant developed severe disease symptoms and becomes very susceptible, whereas SHMT6 overexpression lines showed enhanced resistance with increased expression of defense pathway associated genes. In response to Fusarium oxysporum, overexpression lines showed a reduction in symptoms. Moreover, SHMT6 overexpression lead to enhanced production of ethylene and lignin, which are important components of the defense response. Collectively, our data revealed that SHMT6 plays an important role in development and defense against pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad , Etilenos , Fusarium , Glicina Hidroximetiltransferasa , Lignina , Enfermedades de las Plantas , Pseudomonas syringae , Arabidopsis/genética , Arabidopsis/microbiología , Etilenos/metabolismo , Lignina/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pseudomonas syringae/fisiología , Fusarium/fisiología , Fusarium/patogenicidad , Enfermedades de las Plantas/microbiología , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente
7.
Endocr Regul ; 58(1): 144-152, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38861539

RESUMEN

Objective. Serine hydroxymethyltransferase (SHMT2) plays a multifunctional role in mitochondria (folate-dependent tRNA methylation, translation, and thymidylate synthesis). The endoplasmic reticulum stress, hypoxia, and glucose and glutamine supply are significant factors of malignant tumor growth including glioblastoma. Previous studies have shown that the knockdown of the endoplasmic reticulum to nucleus signaling 1 (ERN1) pathway of endoplasmic reticulum stress strongly suppressed glioblastoma cell proliferation and modified the sensitivity of these cells to hypoxia and glucose or glutamine deprivations. The present study aimed to investigate the regulation of the SHMT2 gene in U87MG glioblastoma cells by ERN1 knockdown, hypoxia, and glucose or glutamine deprivations with the intent to reveal the role of ERN1 signaling in sensitivity of this gene expression to hypoxia and nutrient supply. Methods. The control U87MG glioblastoma cells (transfected by an empty vector) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine (500 ng/ml for 4 h). For glucose and glutamine deprivations, cells were exposed in DMEM without glucose and glutamine, respectively for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of the SHMT2 gene was studied by real-time qPCR and normalized to ACTB. Results. It was found that inhibition of ERN1 endoribonuclease and protein kinase in glioblastoma cells led to a down-regulation of SHMT2 gene expression in U87MG cells. At the same time, the expression of this gene did not significantly change in cells with inhibited ERN1 endoribonuclease, but tunicamycin strongly increased its expression. Moreover, the expression of the SHMT2 gene was not affected in U87MG cells after silencing of XBP1. Hypoxia up-regulated the expression level of the SHMT2 gene in both control and ERN1 knockdown U87MG cells. The expression of this gene was significantly up-regulated in glioblastoma cells under glucose and glutamine deprivations and ERN1 knockdown significantly increased the sensitivity of the SHMT2 gene to these nutrient deprivation conditions. Conclusion. The results of the present study demonstrate that the expression of the SHMT2 gene responsible for serine metabolism and formation of folate one-carbon is controlled by ERN1 protein kinase and induced by hypoxia as well as glutamine and glucose deprivation conditions in glioblastoma cells and reflects the ERN1-mediated reprogramming of sensitivity this gene expression to nutrient deprivation.


Asunto(s)
Estrés del Retículo Endoplásmico , Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glicina Hidroximetiltransferasa , Humanos , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Estrés del Retículo Endoplásmico/fisiología , Estrés del Retículo Endoplásmico/genética , Línea Celular Tumoral , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Glucosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Hipoxia de la Célula/fisiología , Hipoxia de la Célula/genética , Glutamina/metabolismo , Técnicas de Silenciamiento del Gen
8.
J Am Chem Soc ; 146(20): 13754-13759, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739748

RESUMEN

a-Tertiary amino acids are essential components of drugs and agrochemicals, yet traditional syntheses are step-intensive and provide access to a limited range of structures with varying levels of enantioselectivity. Here, we report the α-alkylation of unprotected alanine and glycine by pyridinium salts using pyridoxal (PLP)-dependent threonine aldolases with a Rose Bengal photoredox catalyst. The strategy efficiently prepares various a-tertiary amino acids in a single chemical step as a single enantiomer. UV-vis spectroscopy studies reveal a ternary interaction between the pyridinium salt, protein, and photocatalyst, which we hypothesize is responsible for localizing radical formation to the active site. This method highlights the opportunity for combining photoredox catalysts with enzymes to reveal new catalytic functions for known enzymes.


Asunto(s)
Aminoácidos , Aminoácidos/química , Glicina Hidroximetiltransferasa/metabolismo , Glicina Hidroximetiltransferasa/química , Procesos Fotoquímicos , Biocatálisis , Catálisis , Alquilación , Glicina/química , Glicina/análogos & derivados , Estereoisomerismo , Estructura Molecular , Oxidación-Reducción
9.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696020

RESUMEN

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Asunto(s)
Clorofila , Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Estrés Salino , Tolerancia a la Sal , Plantones , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/fisiología , Cucumis sativus/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Tolerancia a la Sal/genética , Estrés Salino/genética , Clorofila/metabolismo , Fotosíntesis/genética , Fotosíntesis/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Antioxidantes/metabolismo , Malondialdehído/metabolismo , Plantas Modificadas Genéticamente , Silenciador del Gen
10.
Cell Signal ; 120: 111219, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38723737

RESUMEN

Cardiac remodeling is a critical process following myocardial infarction (MI), potentially leading to heart failure if untreated. The significance of mitochondrial homeostasis in MI remains insufficiently understood. Samm50 is an essential component of mitochondria. Our study aimed to investigate its role in hypoxia-induced cardiac injury and the underlying mechanisms. First, we observed that Samm50 was dynamically downregulated in mice with MI compared to the control mice. In vitro, Samm50 was also downregulated in oxygen-glucose-deprived neonatal rat cardiomyocytes and fibroblasts. Overexpression and knockdown of Samm50 mitigated and exacerbated cardiac apoptosis and fibrosis, while also improving and worsening mitochondrial homeostasis, respectively. Protein interactions with Samm50 during the protective process were identified via immune-coprecipitation/mass spectroscopy. Mechanistically, serine hydroxymethyltransferase 2 (Shmt2) interacted with Samm50, acting as a crucial element in the protective process by hindering the transfer of Bax from the cytoplasm to the mitochondria and subsequent activation of caspase-3. Inhibition of Shmt2 diminished the protective effect of Samm50 overexpression against cardiac injury. Finally, Samm50 overexpression in vivo mitigated cardiac remodeling and enhanced cardiac function in both acute and chronic MI. In conclusion, Samm50 overexpression mitigated hypoxia-induced cardiac remodeling by inhibiting apoptosis and fibrosis, with Shmt2 acting as a key regulator in this protective process. The Samm50/Shmt2 axis represents a newly discovered mitochondria-related pathway for mitigating hypoxia-induced cardiac injury.


Asunto(s)
Apoptosis , Glicina Hidroximetiltransferasa , Infarto del Miocardio , Miocitos Cardíacos , Animales , Masculino , Ratones , Ratas , Hipoxia de la Célula , Glicina Hidroximetiltransferasa/metabolismo , Glicina Hidroximetiltransferasa/genética , Hipoxia/complicaciones , Hipoxia/metabolismo , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas Sprague-Dawley , Transferasas de Hidroximetilo y Formilo/metabolismo
11.
Nature ; 629(8010): 98-104, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693411

RESUMEN

Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2-9. Here we report photobiocatalytic asymmetric sp3-sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5'-phosphate-dependent enzymes, threonine aldolases10-12, for the α-C-H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13-15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox-pyridoxal biocatalysis provides a platform for sp3-sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.


Asunto(s)
Aminoácidos , Biocatálisis , Acoplamiento Oxidativo , Procesos Fotoquímicos , Aminoácidos/biosíntesis , Aminoácidos/química , Aminoácidos/metabolismo , Biocatálisis/efectos de la radiación , Evolución Molecular Dirigida , Radicales Libres/química , Radicales Libres/metabolismo , Glicina/química , Glicina/metabolismo , Glicina Hidroximetiltransferasa/metabolismo , Glicina Hidroximetiltransferasa/química , Indicadores y Reactivos , Luz , Acoplamiento Oxidativo/efectos de la radiación , Fosfato de Piridoxal/metabolismo , Estereoisomerismo , Aminoácidos de Cadena Ramificada/química , Aminoácidos de Cadena Ramificada/metabolismo
12.
Methods Enzymol ; 696: 199-229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658080

RESUMEN

Fluorine (F) is an important element in the synthesis of molecules broadly used in medicine, agriculture, and materials. F addition to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to produce fluorometabolites (such as fluorinated amino acids, key building blocks for synthesis) are relatively scarce. This chapter discusses the use of L-threonine aldolase enzymes (LTAs), a class of enzymes that catalyze reversible aldol addition to the α-carbon of glycine. The C-C bond formation ability of LTAs, together with their known substrate promiscuity, make them ideal for in vitro F biocatalysis. Here, we describe protocols to harness the activity of the low-specificity LTAs isolated from Escherichia coli and Pseudomonas putida on 2-fluoroacetaldehyde to efficiently synthesize 4-fluoro-L-threonine in vitro. This chapter also provides a comprehensive account of experimental protocols to implement these activities in vivo. These methods are illustrative and can be adapted to produce other fluorometabolites of interest.


Asunto(s)
Escherichia coli , Halogenación , Pseudomonas putida , Especificidad por Sustrato , Escherichia coli/enzimología , Escherichia coli/genética , Pseudomonas putida/enzimología , Biocatálisis , Aminoácidos/química , Glicina Hidroximetiltransferasa/metabolismo , Glicina Hidroximetiltransferasa/química , Glicina Hidroximetiltransferasa/genética , Treonina/química , Treonina/metabolismo , Treonina/análogos & derivados , Flúor/química , Aldehídos/química , Aldehídos/metabolismo
13.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656254

RESUMEN

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Asunto(s)
Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glucosa , Glutamina , Fosfoglicerato-Deshidrogenasa , Monoéster Fosfórico Hidrolasas , Proteínas Serina-Treonina Quinasas , Serina , Transaminasas , Humanos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Serina/biosíntesis , Transducción de Señal
14.
Adv Sci (Weinh) ; 11(18): e2307834, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460155

RESUMEN

Targeting cancer-specific metabolic processes is a promising therapeutic strategy. Here, this work uses a compound library that directly inhibits metabolic enzymes to screen the potential metabolic targets in lung adenocarcinoma (LUAD). SHIN1, the specific inhibitor of serine hydroxymethyltransferase 1/2 (SHMT1/2), has a highly specific inhibitory effect on LUAD cells, and this effect depends mainly on the overexpression of SHMT2. This work clarifies that mitogen-activated protein kinase 1 (MAPK1)-mediated phosphorylation at Ser90 is the key mechanism underlying SHMT2 upregulation in LUAD and that this phosphorylation stabilizes SHMT2 by reducing STIP1 homology and U-box containing protein 1 (STUB1)-mediated ubiquitination and degradation. SHMT2-Ser90 dephosphorylation decreases S-adenosylmethionine levels in LUAD cells, resulting in reduced N6-methyladenosine (m6A) levels in global RNAs without affecting total protein or DNA methylation. Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq) analyses further demonstrate that SHMT2-Ser90 dephosphorylation accelerates the RNA degradation of oncogenic genes by reducing m6A modification, leading to the inhibition of tumorigenesis. Overall, this study elucidates a new regulatory mechanism of SHMT2 during oncogenesis and provides a theoretical basis for targeting SHMT2 as a therapeutic target in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Adenosina , Carcinogénesis , Glicina Hidroximetiltransferasa , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Fosforilación/genética
15.
Mol Cancer Ther ; 23(6): 809-822, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38377173

RESUMEN

One-carbon (C1) metabolism is compartmentalized between the cytosol and mitochondria with the mitochondrial C1 pathway as the major source of glycine and C1 units for cellular biosynthesis. Expression of mitochondrial C1 genes including SLC25A32, serine hydroxymethyl transferase (SHMT) 2, 5,10-methylene tetrahydrofolate dehydrogenase 2, and 5,10-methylene tetrahydrofolate dehydrogenase 1-like was significantly elevated in primary epithelial ovarian cancer (EOC) specimens compared with normal ovaries. 5-Substituted pyrrolo[3,2-d]pyrimidine antifolates (AGF347, AGF359, AGF362) inhibited proliferation of cisplatin-sensitive (A2780, CaOV3, IGROV1) and cisplatin-resistant (A2780-E80, SKOV3) EOC cells. In SKOV3 and A2780-E80 cells, colony formation was inhibited. AGF347 induced apoptosis in SKOV3 cells. In IGROV1 cells, AGF347 was transported by folate receptor (FR) α. AGF347 was also transported into IGROV1 and SKOV3 cells by the proton-coupled folate transporter (SLC46A1) and the reduced folate carrier (SLC19A1). AGF347 accumulated to high levels in the cytosol and mitochondria of SKOV3 cells. By targeted metabolomics with [2,3,3-2H]L-serine, AGF347, AGF359, and AGF362 inhibited SHMT2 in the mitochondria. In the cytosol, SHMT1 and de novo purine biosynthesis (i.e., glycinamide ribonucleotide formyltransferase, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) were targeted; AGF359 also inhibited thymidylate synthase. Antifolate treatments of SKOV3 cells depleted cellular glycine, mitochondrial NADH and glutathione, and showed synergistic in vitro inhibition toward SKOV3 and A2780-E80 cells when combined with cisplatin. In vivo studies with subcutaneous SKOV3 EOC xenografts in SCID mice confirmed significant antitumor efficacy of AGF347. Collectively, our studies demonstrate a unique metabolic vulnerability in EOC involving mitochondrial and cytosolic C1 metabolism, which offers a promising new platform for therapy.


Asunto(s)
Cisplatino , Citosol , Resistencia a Antineoplásicos , Mitocondrias , Neoplasias Ováricas , Humanos , Femenino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Citosol/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Cisplatino/farmacología , Ratones , Línea Celular Tumoral , Carbono/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Glicina Hidroximetiltransferasa/metabolismo , Glicina Hidroximetiltransferasa/genética , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/patología , Carcinoma Epitelial de Ovario/genética , Antagonistas del Ácido Fólico/farmacología
16.
Nat Commun ; 15(1): 1163, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331894

RESUMEN

The role of the serine/glycine metabolic pathway (SGP) has recently been demonstrated in tumors; however, the pathological relevance of the SGP in thyroid cancer remains unexplored. Here, we perform metabolomic profiling of 17 tumor-normal pairs; bulk transcriptomics of 263 normal thyroid, 348 papillary, and 21 undifferentiated thyroid cancer samples; and single-cell transcriptomes from 15 cases, showing the impact of mitochondrial one-carbon metabolism in thyroid tumors. High expression of serine hydroxymethyltransferase-2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is associated with low thyroid differentiation scores and poor clinical features. A subpopulation of tumor cells with high mitochondrial one-carbon pathway activity is observed in the single-cell dataset. SHMT2 inhibition significantly compromises mitochondrial respiration and decreases cell proliferation and tumor size in vitro and in vivo. Collectively, our results highlight the importance of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer and suggest that SHMT2 is a potent therapeutic target.


Asunto(s)
Multiómica , Neoplasias de la Tiroides , Humanos , Glicina Hidroximetiltransferasa/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Redes y Vías Metabólicas/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo
17.
Cell Metab ; 36(1): 116-129.e7, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171331

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado Graso , Animales , Ratones , Acetaminofén/toxicidad , Carbono , Glutatión/metabolismo , Glicina/metabolismo , Glicina Hidroximetiltransferasa/metabolismo , Serina/metabolismo
18.
Chinese Journal of Biotechnology ; (12): 4215-4230, 2021.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-921500

RESUMEN

Threonine aldolases catalyze the aldol condensation of aldehydes with glycine to furnish β-hydroxy-α-amino acid with two stereogenic centers in a single reaction. This is one of the most promising green methods for the synthesis of optically pure β-hydroxy-α-amino acid with high atomic economy and less negative environmental impact. Several threonine aldolases from different origins have been identified and characterized. The insufficient -carbon stereoselectivity and the challenges of balancing kinetic versus thermodynamic control to achieve the optimal optical purity and yield hampered the application of threonine aldolases. This review summarizes the recent advances in discovery, catalytic mechanism, high-throughput screening, molecular engineering and applications of threonine aldolases, with the aim to provide some insights for further research in this field.


Asunto(s)
Aminoácidos , Catálisis , Glicina , Glicina Hidroximetiltransferasa/metabolismo , Cinética , Especificidad por Sustrato , Treonina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA